ATURAN DASAR PROBABILITAS. EvanRamdan

Ukuran: px
Mulai penontonan dengan halaman:

Download "ATURAN DASAR PROBABILITAS. EvanRamdan"

Transkripsi

1 ATURAN DASAR PROBABILITAS

2 BEBERAPA ATURAN DASAR PROBABILITAS Secara umum, beberapa kombinasi dari kejadian dalam sebuah eksperimen dapat dihitung probabilitasnya berdasarkan dua aturan, yaitu: 1) Aturan Penjumlahan - Kejadian saling lepas - Kejadian tidak saling lepas 2) Aturan Perkalian - Kejadian tak bebas - Kejadian interseksi - Kejadian bebas

3 KEJADIAN SALING LEPAS / MUTUALLY EXCLUSIVE Kejadian saling lepas atau Mutually Exclusive terjadi jika kejadian yang satu menyebabkan tidak terjadinya kejadian yang lain, sehingga kejadian tersebut tidak dapat terjadi pada saat yang bersamaan, atau dikenal juga dengan kejadian saling asing. Jika kejadian A danb B saling lepas, probabilitas terjadinya kejadian tersebut adalah : P ( A B) = P (A) + P (B) Untuk tiga kejadian saling lepas ditulis: P ( A B C) = P (A) + P (B) + P(C)

4 CONTOH 1 Sebuah dadu dilemparkan ke atas, kejadiankejadiannya adalah : A = peristiwa mata dadu 2 muncul B = mata dadu lebih dari 4 muncul Tentukan probabilitasnya dari kejadian P (A U B) : Jawab: P (A) = 1/6 dan P (B) = 2/6 P ( A U B ) = 1 /6 + 2/6 = 3/6

5 CONTOH 2 Sebuah mesin otomatis pengisi kantong plastik dengan campuran beberapa jenis sayuran menunjukkan bahwa sebagian besar kantong plastik berisi sayuran dengan bobot yang benar. Meskipun demikian, karena adanya variasi dalam ukuran sayuran, maka sebuah paket kantong plastik mungkin bobotnya sedikit lebih ringan atau lebih berat dari standar. Pengecekan terhadap 4000 paket menunjukkan hasil sbb: Bobot Kejadian Jumlah Paket Lebih Ringan A 100 Standar B 3600 Lebih berat C 300 Hitung peluang jika sebuah paket tertentu bobotnya akan lebih ringan atau berat dari standar!

6 KEJADIAN TIDAK SALING LEPAS / NON MUTUALLY EXCLUSIVE Dua peristiwa dikatakan non exclusive, bila dua peristiwa tidak saling lepas atau kedua peristiwa atau lebih tersebut dapat terjadi bersamaan Dirumuskan sbb : P (A B) = P(A) + P(B) P(A B)

7 Contoh 1 Berapa probabilitas bahwa sebuah kartu yang dipilih secara acak dari suatu set kartu yang berisi 52 kartu adalah kartu bergambar raja (king) atau bergambar hati (heart)?

8 Contoh 2 Sebuah perusahaan elektronik mengambil sampel 100 responden yang ditanya apakah mereka merencanakan untuk membeli TV ukuran besar atau tidak. Setahun berikutnya responden yang sama ditanya apakah mereka benar-benar membeli atau tidak. Hasilnya dalam tabel berikut: Merencanakan Membeli Benar-benar Membeli Ya Tidak Total Ya Tidak Total Hitung berapa peluang seseorang telah merencakan untuk membeli atau benear-benar telah membeli?

9 KEJADIAN BEBAS / INDEPENDENT Peristiwa terjadi atau tidak terjadi tidak mempengaruhi dan tidak dipengaruhi peristiwa lainnya. Apabila A dab B dua peristiwa yang Independent, maka probabilitas bahwa keduanya akan terjadi bersamasama dirumuskan sebagai berikut : P (A B) = P(A) x P(B)

10 Contoh 1 Suatu mata uang logam Rp 50 dilemparkan ke atas sebanyak dua kali. Jika A 1 adalah lemparan pertama yang mendapat gambar burung (B), dan A 2 adalah lemparan kedua yang mendapat gambar burung (B), berapakah P(A 1 A 2 )? Jawab P(A 1 ) = P(B) = ½ dan P(A 2 ) = P(B) = ½, sehingga P(A 1 A 2 ) = P(A 1 ). P(A 2 ) = P(B). P(B) = ½. ½ = ¼

11 Contoh 2 Ketika mengambil 2 lembar kartu berturut-turut secara acak dari satu set kartu bridge. Sebelum pengambilan kedua, hasil pengambilan pertama dikembalikan lagi sehingga pengambilan pertama tidak mempengaruhi hasil pengambilan kedua. Kalau A1 = kartu AS wajik dan A2 = kartu As Hati. Berapa P(A1 A2)?

12 KEJADIAN TIDAK BEBAS / BERSYARAT Terjadi jika peristiwa yang satu mempengaruhi / merupakan syarat terjadinya peristiwa yang lain. Probabilitas bahwa B akan terjadi bila diketahui bahwa A telah terjadi ditulis sbb : P( B/A) Dengan demikian probabilitas bahwa A dan B akan terjadi dirumuskan sbb : P(A B) = P(A) x P(B/A)

13 KEJADIAN TIDAK BEBAS / BERSYARAT (2) Sedang probabilitas A akan terjadi jika diketahui bahwa B telah terjadi ditulid sbb :P (A/B) Maka probabilitas B dan A akan terjadi dirumuskan sbb: P (A B) = P(B) x P(A/B)

14 Contoh Dua buah tas berisi sejumlah bola. Tas pertama berisi 4 bola putih dan 2 bola hitam. Tas kedua berisi 3 bola putih dan 5 bola hitam. Jika sebuah bola diambil dari masing-masing tas tersebut, hitunglah probabilitasnya bahwa : a. Keduanya bola putih b. Keduanya bola hitam c. Satu bola putih dan satu bola hitam

15 Jawab Misalnya A1menunjukkan peristiwa terambilnya bola putih dari tas pertama dan A2 menunjukkan peristiwa terambilnya bola putih di tas kedua, maka : P(A 1 A 2 ) = P(A 1 ) x P(A 2 /A 1 ) = 4/6 X 3/8 = 1/4 Misalnya A 1 menunjukkan peristiwa tidak terambilnya bola putih dari tas pertama (berarti terambilnya bola hitam) dan A 2 menunjukkan peristiwa tidak terambilnya bola putih dari tas kedua (berarti terambilnya bola hitam) maka : P(A 1 A 1 ) = P(A 1 ) x P(A 2 /A 1 ) = 2/6 x 5/8 = 10/48 = 5/24 Probabilitas yang dimaksud adalah : P(A1 B2) P(B1 A2)

TEORI KEMUNGKINAN (PROBABILITAS)

TEORI KEMUNGKINAN (PROBABILITAS) 3 TEORI KEMUNGKINAN (PROBABILITAS) Teori probabilitas atau peluang merupakan teori dasar dalam pengambilan keputusan yang memiliki sifat ketidakpastian. Ada 3 pendekatan : Pendekatan klasik Pendekatan

Lebih terperinci

, n(a) banyaknya kejadian A dan n(s) banyaknya ruang sampel

, n(a) banyaknya kejadian A dan n(s) banyaknya ruang sampel Peluang Suatu Kejadian a) Kisaran nilai peluang : 0 P( b) P( =, banyaknya kejadian A dan banyaknya ruang sampel c) Peluang komplemen suatu kejadian : P(A c ) = P( d) Peluang gabungan dari dua kejadian

Lebih terperinci

Teori Probabilitas 3.2. Debrina Puspita Andriani /

Teori Probabilitas 3.2. Debrina Puspita Andriani    / Teori Probabilitas 3.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Konsep Probabilitas Ruang Sampel Komplemen Kejadian Probabilitas Bersyarat Berapa peluang munculnya

Lebih terperinci

Teori Probabilitas. Debrina Puspita Andriani /

Teori Probabilitas. Debrina Puspita Andriani    / Teori Probabilitas 5 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Konsep Probabilitas Ruang Sampel Komplemen Kejadian Probabilitas Bersyarat Teorema Bayes Berapa

Lebih terperinci

TEORI PROBABILITAS 1

TEORI PROBABILITAS 1 TEORI PROBABILITAS 1 Berapa peluang munculnya angka 4 pada dadu merah??? Berapa peluang munculnya King heart? Berapa peluang munculnya gambar? 2 PELUANG ATAU PROBABILITAS adalah perbandingan antara kejadian

Lebih terperinci

Pertemuan Ke-1 BAB I PROBABILITAS

Pertemuan Ke-1 BAB I PROBABILITAS Pertemuan Ke-1 BAB I PROBABILITAS 1.1 Arti dan Pentingnya Probabilitas Probabilitas merupakan suatu nilai untuk mengukur besarnya tingkat kemungkinan terjadinya suatu kejadian yang acak. Kejadian Acak

Lebih terperinci

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS PERTEMUAN VIII EvanRamdan PROBABILITAS Dalam menentukan banyaknya anggota kejadian, kadangkala kita tidak selalu dapat mendaftar semua titik sampel dalam percobaan tersebut. Untuk

Lebih terperinci

Pertemuan 2. Hukum Probabilitas

Pertemuan 2. Hukum Probabilitas Pertemuan 2 Hukum Probabilitas Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a B) = n(a) + n(b) n(a B) Kejadian majemuk adalah gabungan atau

Lebih terperinci

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS Definisi: Probabilitas adalah peluang suatu kejadian Manfaat: Manfaat mengetahui probabilitas adalah membantu pengambilan keputusan yang tepat, karena kehidupan di dunia tidak

Lebih terperinci

10. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian

10. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian 0. PELUANG A. Kaidah Pencacahan. Aturan perkalian Apabila suatu peristiwa dapat terjadi dengan n tahap yang berurutan, dimana tahap pertama terdapat a cara yang berbeda dan seterusnya sampai dengan tahap

Lebih terperinci

AMIYELLA ENDISTA. Website : BioStatistik

AMIYELLA ENDISTA.   Website :  BioStatistik AMIYELLA ENDISTA Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com DEFINISI PROBABILITAS Harga angka yang menunjukkan seberapa besar kemungkinan suatu peristiwa terjadi, di antara

Lebih terperinci

Probabilitas dan Statistika Teori Peluang. Adam Hendra Brata

Probabilitas dan Statistika Teori Peluang. Adam Hendra Brata dan Statistika Teori Peluang Adam Hendra Brata / Peluang / Peluang atau Peluang merupakan ukuran numeric tentang seberapa sering peristiwa itu akan terjadi Semakin besar nilai probabilitas menyatakan bahwa

Lebih terperinci

Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia

Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia HUKUM PROBABILITAS Pertemuan ke ke--4 Didin Astriani Prasetyowati, M.Stat Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) +

Lebih terperinci

BAB 3 Teori Probabilitas

BAB 3 Teori Probabilitas BAB 3 Teori Probabilitas A. HIMPUNAN a. Penulisan Hipunan Cara Pendaftaran Cara Pencirian 1) A = {a,i,u,e,o} 1) A = {X: x huruf vokal } 2) B = {1,2,3,4,5} menghasilkan data diskrit 2) B = {X: 1 x 2} menghasilkan

Lebih terperinci

TEORI PROBABILITAS (TEORI KEMUNGKINAN)

TEORI PROBABILITAS (TEORI KEMUNGKINAN) BAB 6 TEORI PROBABILITAS (TEORI KEMUNGKINAN) Kompetensi Menjelaskan konsep dasar teori probabilitas Indikator 1. Menjelaskan probabilitas 2. Menjelaskan peristiwa mutually exclusive 3. Menjelaskan peristiwa

Lebih terperinci

BAB V TEORI PROBABILITAS

BAB V TEORI PROBABILITAS BAB V TEORI PROBABILITAS Probabilitas disebut juga dengan peluang atau kemungkinan. Probabilitas merupakan suatu nilai yang digunakan untuk mengukur tingkat terjadinya suatu kejadian yang acak. Oleh karena

Lebih terperinci

Ruang Sampel dan Kejadian

Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Perhatikan sekeping mata uang logam dengan sisi-sisi ANGKA dan GAMBAR Sisi Angka (A) Sisi Gambar (G) Maka : Ruang Sampel (S) = { A, G } Titik Sampel = A dan G, maka n(s) = 2 Kejadian

Lebih terperinci

Pert 3 PROBABILITAS. Rekyan Regasari MP

Pert 3 PROBABILITAS. Rekyan Regasari MP Pert 3 PROBABILITAS Rekyan Regasari MP Berapakah kemungkinan sebuah koin yang dilempar akan menghasilkan gambar angka Berapakah kemungkinan gedung ini akan runtuh Berapakah kemungkinan seorang kreditur

Lebih terperinci

PELUANG KEJADIAN MAJEMUK

PELUANG KEJADIAN MAJEMUK PELUANG KEJADIAN MAJEMUK Oleh : Saptana Surahmat Perhatikan masalah berikut : Dalam sebuak kotak kardus terdapat 12 buah lampu bohlam, tiga diantaranya rusak. Jika diamboil secara acak dua buah sekaligus,

Lebih terperinci

Probabilitas = Peluang

Probabilitas = Peluang 1. Pendahuluan Probabilitas = Peluang Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Kejadian = Event : himpunan bagian dari ruang contoh

Lebih terperinci

Beberapa Hukum Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Hukum Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Hukum Peluang Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Suatu kejadian dapat merupakan gabungan atau irisan dari dua atau

Lebih terperinci

Peluang suatu kejadian

Peluang suatu kejadian Peluang suatu kejadian Percobaan: Percobaan adalah suatu tindakan atau kegiatan yang dapat memberikan beberapa kemungkinan hasil Ruang Sampel: Ruang sampel adalah himpunan semua hasil yang mungkin dari

Lebih terperinci

Statistika & Probabilitas. Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T

Statistika & Probabilitas. Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T Statistika & Probabilitas Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T Kejadian Kejadian adalah himpunan bagian (subset) dari ruang sampel S. Dapat dipahami, kejadian adalah himpunan dari

Lebih terperinci

LEMBAR AKTIVITAS SISWA PELUANG

LEMBAR AKTIVITAS SISWA PELUANG Nama Siswa : LEMBAR AKTIVITAS SISWA PELUANG 2 2. Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.16 Memahami dan menerapkan berbagai aturan pencacahan melalui beberapa contoh nyata serta menyajikan alur perumusan

Lebih terperinci

MATERI KULIAH STATISTIKA I PROBABLITAS. (Nuryanto, ST., MT)

MATERI KULIAH STATISTIKA I PROBABLITAS. (Nuryanto, ST., MT) MATERI KULIAH STATISTIKA I PROBABLITAS (Nuryanto, ST., MT) Pendahuluan Percobaan : proses yang menghasilkan data Ruang Contoh (S) : hasil percobaan himpunan yang memuat semua kemungkinan Kejadian = Event

Lebih terperinci

Menghitung peluang suatu kejadian

Menghitung peluang suatu kejadian Menghitung peluang suatu kejadian A. Ruang Sampel, Titik Sampel, dan Kejadian Dari pandangan intuitif, peluang terjadinya suatu peristiwa atau kejadian adalah nilai yang menunjukkan seberapa besar kemungkinan

Lebih terperinci

PELUANG KEJADIAN. Macam-macam permutasi 1. Permutasi n unsur dari n unsur n. P n. 2. Permutasi dengan beberapa unsur yang sama

PELUANG KEJADIAN. Macam-macam permutasi 1. Permutasi n unsur dari n unsur n. P n. 2. Permutasi dengan beberapa unsur yang sama PELUANG KEJADIAN A. Aturan Perkalian/Pengisian Tempat Jika kejadian pertama dapat terjadi dalam a cara berbeda, kejadian kedua dapat terjadi dalam b cara berbeda, kejadian ketiga dapat terjadi dalam c

Lebih terperinci

6. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian

6. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian 6. PELUANG A. Kaidah Pencacahan. Aturan perkalian Apabila suatu peristiwa dapat terjadi dengan n tahap yang berurutan, dimana tahap pertama terdapat a cara yang berbeda dan seterusnya sampai dengan tahap

Lebih terperinci

Oleh: BAMBANG AVIP PRIATNA M

Oleh: BAMBANG AVIP PRIATNA M Oleh: BAMBANG AVIP PRIATNA M Pecobaan / eksperimen acak Ruang Sampel Peristiwa / kejadian / event Peluang peristiwa Sifat-sifat peluang Cara menghitung peluang 1. hasilnya tidak dapat diduga dengan tingkat

Lebih terperinci

TEORI PROBABILITA OLEH: RESPATI WULANDARI, M.KES

TEORI PROBABILITA OLEH: RESPATI WULANDARI, M.KES TEORI OLEH: RESPATI WULANDARI, M.KES KONSEP Dalam kehidupan sehari-hari orang selalu dihadapkan dengan masalah-masalah ketidakpastian. Misalnya: 1. pengusaha dihadapkan pada masalah berhasil atau tidaknya

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung PERMUTASI, KOMBINASI DAN PELUANG A. KAIDAH PENCACAHAN Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung berapa banyaknya cara yang mungkjin terjadi dalam suatu percobaan. Kaidah pencacahan

Lebih terperinci

Materi W12c P E L U A N G. Kelas X, Semester 2. B. Peluang Kejadian Majemuk. 3. Kejadian Majemuk saling Bebas Bersyarat.

Materi W12c P E L U A N G. Kelas X, Semester 2. B. Peluang Kejadian Majemuk. 3. Kejadian Majemuk saling Bebas Bersyarat. Materi W12c P E L U A N G Kelas X, Semester 2 B. Peluang Kejadian Majemuk 3. Kejadian Majemuk saling Bebas Bersyarat www.yudarwi.com B. Peluang Kejadian Majemuk 3. Kejadian Majemuk Saling Bebas Bersyarat

Lebih terperinci

PROBABILITAS MODUL PROBABILITAS

PROBABILITAS MODUL PROBABILITAS MODUL 6 PROBABILITAS. Pendahuluan Masalah probabilitas adalah masalah frekuensi sesuatu kejadian. Dari itu, probabilitas suatu kejadian dapat diatasi sebagai perbandingan frekuensi kejadian itu dengan

Lebih terperinci

Peluang. Ilham Rais Arvianto, M.Pd. STMIK AKAKOM Yogyakarta

Peluang. Ilham Rais Arvianto, M.Pd. STMIK AKAKOM Yogyakarta eluang Ilham Rais rvianto, M.d STMIK KKOM Yogyakarta Ruang Sampel dan Titik Sampel Ruang sampel adalah himpunan dari semua kejadian yang mungkin muncul pada suatu percobaan. Ruang sampel dilambangkan dengan

Lebih terperinci

Sekoin uang logam mempunyai dua permukaan H dan T dilemparkan berkali kali. Hasil yg diperoleh pada setiap pelemparan apakah H atau T di catat Hasil

Sekoin uang logam mempunyai dua permukaan H dan T dilemparkan berkali kali. Hasil yg diperoleh pada setiap pelemparan apakah H atau T di catat Hasil Pertemuan 13 &14 Sekoin uang logam mempunyai dua permukaan H dan T dilemparkan berkali kali. Hasil yg diperoleh pada setiap pelemparan apakah H atau T di catat Hasil dari keseluruhan event yang didapat

Lebih terperinci

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya 2 Aturan Perkalian, Permutasi, dan Kombinasi dalam ; Pemecahan Masalah Ruang Sampel Suatu Percobaan ; Suatu Kejadian dan Penafsirannya ; Pada era demokrasi saat ini untuk menduduki suatu jabatan tertentu

Lebih terperinci

Kompetens n i s : Mahasiswa mam a pu p menjel enj a el s a ka k n gejala ekonomi dengan meng guna k n a konsep probabil i i l t i as

Kompetens n i s : Mahasiswa mam a pu p menjel enj a el s a ka k n gejala ekonomi dengan meng guna k n a konsep probabil i i l t i as Kompetensi: Mahasiswa mampu menjelaskan gejala ekonomi dengan menggunakan konsep probabilitas Hal. 9- Penelitian itu Penuh Kemungkinan (tdk pasti) Mengubah Saya tidak yakin Menjadi Saya yakin akan sukses

Lebih terperinci

peluang Contoh 6.1 Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? Matematika Dasar Page 46

peluang Contoh 6.1 Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? Matematika Dasar Page 46 peluang 6.1 Kaidah Pencacahan A. Aturan Perkalian Misal suatu plat nomor sepeda motor terdiri atas dua huruf berbeda yang diikuti tiga angka dengan angka pertama bukan 0. Berapa banyak plat nomor berbeda

Lebih terperinci

PELUANG. n cara yang berbeda. Contoh 1: Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali?

PELUANG. n cara yang berbeda. Contoh 1: Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? -1- PELUANG 1. KAIDAH PENCACAHAN 1.1 Aturan Pengisian Tempat Jika beberapa peristiwa dapat terjadi dengan n1, n2, n3,... cara yang berbeda, maka keseluruhan peristiwa itu dapat terjadi dengan n n......

Lebih terperinci

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168 SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.!!. A. B. 4 2 C. 2 2 D. 2 2 2.!!!. A. 840 B. 504 C. 162 D. 84 168 3. Untuk menuju kota C dari Kota A harus melewati kota B. Dari kota A menuju kota B melewati

Lebih terperinci

Lab. Statistik - Kasus 1. Lab. Statistik Kasus 2. Lab. Statistik Kasus 3

Lab. Statistik - Kasus 1. Lab. Statistik Kasus 2. Lab. Statistik Kasus 3 Haryoso Wicaksono, halaman 1 dari 5 halaman Lab. Statistik - Kasus 1 1. Jelaskan istilah-istilah statistik berikut : a. sampel e. responden b. populasi f. data kuantitatif c. statistik sampel g. data kualitatif

Lebih terperinci

PELUANG. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI. Oleh: Hj. ITA YULIANA, S.Pd, M.

PELUANG. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI. Oleh: Hj. ITA YULIANA, S.Pd, M. LA - WB (Lembar Aktivitas Warga Belajar) PELUANG Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Created By Ita Yuliana 13 Peluang Kompetensi Dasar 1. Menggunakan

Lebih terperinci

4.2 Nilai Peluang Secara Teoritis

4.2 Nilai Peluang Secara Teoritis 4.2 Nilai Peluang Secara Teoritis Apa yang akan kamu pelajari? Mencari peluang dengan tiap titik sampel berkesempatan sama untuk terjadi Menentukan kepastian dan kemustahilan Kata Kunci: Peluang Teoritis

Lebih terperinci

GENETIKA POPULASI. Kuswanto. Fakultas Pertanian Universitas Brawijaya

GENETIKA POPULASI. Kuswanto. Fakultas Pertanian Universitas Brawijaya GENETIKA POPULASI Kuswanto Fakultas Pertanian Universitas Brawijaya 2012 1 Pengertian Genetika ilmu yang mempelajari pewarisan sifat Populasi kumpulan individu Genetika Populasi pewarisan sifat pada tingkat

Lebih terperinci

Aksioma Peluang. Bab Ruang Contoh

Aksioma Peluang. Bab Ruang Contoh Bab 2 Aksioma Peluang 2.1 Ruang Contoh Dalam suatu percobaan, kita tidak tahu dengan pasti apa hasil yang akan terjadi. Misalnya pada percobaan membeli lampu pijar, kita tidak tahu dengan pasti, apakah

Lebih terperinci

1. 10 orang finalis suatu lomba kecantikan akan dipilih secara acak 3 yang terbaik. Banyak cara pemilihan tersebut ada cara.

1. 10 orang finalis suatu lomba kecantikan akan dipilih secara acak 3 yang terbaik. Banyak cara pemilihan tersebut ada cara. 1. 10 orang finalis suatu lomba kecantikan akan dipilih secara acak 3 yang terbaik. Banyak cara pemilihan tersebut ada cara. A. 70 B. 80 C. 120 D. 360 E. 720 Karena tidak ada aturan atau pengurutan, maka

Lebih terperinci

Pertemuan 1 KONSEP DASAR PROBABILITAS

Pertemuan 1 KONSEP DASAR PROBABILITAS Pertemuan 1 KONSEP DASAR PROBABILITAS Pengantar Banyak kejadian dalam kehidupan sehari-hari yang sulit diketahui dengan pasti, terutama kejadian yang akan datang. Meskipun kejadian-kejadian tersebut tidak

Lebih terperinci

1.1 Konsep Probabilitas

1.1 Konsep Probabilitas TEORI DASAR PROBABILITAS 1.1 Konsep Probabilitas Probabilitas/peluang secara umum dapat diartikan sebagai ukuran matematis terhadap kecenderungan akan munculnya sebuah kejadian. Secara matematis peluang

Lebih terperinci

Nilai Probabilitas berkisar antara 0 dan 1.

Nilai Probabilitas berkisar antara 0 dan 1. ROBBILITS Tujuan belajar : 1. Mengerti konsep probalitas 2. Mengerti hukum-hukum probabilita 3. Mengerti konsep mutually exclusif dan non exclusive, serta konsep bebas dan tak bebas 4. Memahami permutasi

Lebih terperinci

PROBABILITAS. Disajikan oleh: Bernardus Budi Hartono. pakhartono at gmail dot com budihartono at acm dot org

PROBABILITAS. Disajikan oleh: Bernardus Budi Hartono.   pakhartono at gmail dot com budihartono at acm dot org PROBABILITAS Disajikan oleh: Bernardus Budi Hartono Web E-mail : pakhartono at gmail dot com budihartono at acm dot org : http://pakhartono.wordpress.com Teknik Informatika [Gasal 2009 2010] FTI - Universitas

Lebih terperinci

Pendekatan Terhadap Probabilitas

Pendekatan Terhadap Probabilitas Probabilitas Probabilitas PROBABILITAS adalah suatu ukuran tentang kemungkinan bahwa suatu peris=wa (event) dimasa mendatang akan terjadi. Probabilitas hanya mempunyai nilai antara 0 dan 1 Eksperiment

Lebih terperinci

Tujuan Pembelajaran. mutually exclusive

Tujuan Pembelajaran. mutually exclusive Tujuan embelajaran Memahami dan menggunakan analisis kombinatorial untuk kejadian kompleks: permutasi dan kombinasi Mendefinisikan terminologi-terminologi penting dalam probabilitas dan menjelaskan bagaimana

Lebih terperinci

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen.

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen. Peluang Peluang dan Kejadian Peluang Bersyarat Peubah Acak dan Nilai Harapan Kovarian dan Korelasi 1.1 PELUANG DAN KEJADIAN Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan

Lebih terperinci

Pendahuluan Teori Peluang

Pendahuluan Teori Peluang Modul Pendahuluan Teori Peluang R.K. Sembiring, Ph.D. A PENDAHULUAN suransi berasal dari kata assurance atau insurance, yang berarti jaminan atau pertanggungan. Hidup penuh dengan ketidakpastian dan manusia

Lebih terperinci

Pierre-Simon Laplace. Born 23 March 1749 Beaumont-en-Auge, Normandy, France Died 5 March 1827 (aged 77) Paris, France Mempelajari peluang dalam judi

Pierre-Simon Laplace. Born 23 March 1749 Beaumont-en-Auge, Normandy, France Died 5 March 1827 (aged 77) Paris, France Mempelajari peluang dalam judi Blaise Pascal Born June 19, 1623 Clermont-Ferrand, France Died August 19, 1662 (aged 39) Paris, France Memenangkan taruhan tentang hasil tos dua dadu yang dilakukan berulang-ulang Pierre-Simon Laplace

Lebih terperinci

Learning Outcomes Peluang Bersyarat Latihan-1 Hukum Penggandaan Hukum Total Peluang Latihan-2. Peluang Bersyarat. Julio Adisantoso.

Learning Outcomes Peluang Bersyarat Latihan-1 Hukum Penggandaan Hukum Total Peluang Latihan-2. Peluang Bersyarat. Julio Adisantoso. 2 Maret 2014 Learning Outcome Mahasiswa dapat memahami kejadian dan peluang bersyarat Mahasiswa dapat memahami hukum penggandaan Mahasiswa dapat memahami hukum total peluang Mahasiswa dapat memiliki dasar

Lebih terperinci

Unit 5 PELUANG. Clara Ika Sari Budhayanti. Pendahuluan

Unit 5 PELUANG. Clara Ika Sari Budhayanti. Pendahuluan Unit 5 PELUANG lara Ika Sari Budhayanti Pendahuluan P ada unit lima ini kita akan membahas peluang. Peluang merupakan salah satu cabang matematika yang mempelajari cara menghitung tingkat keyakinan seseorang

Lebih terperinci

Bab 1 PENGANTAR PELUANG

Bab 1 PENGANTAR PELUANG Bab 1 PENGANTAR PELUANG PENDAHULUAN Misalkan sebuah peristiwa A dapat terjadi sebanyak n kali diantara N peristiwa yang saling ekslusif dan masing-masing terjadi dengan kesempatan yang sama, maka peluang

Lebih terperinci

Learning Outcomes Ruang Contoh Kejadian Aksioma Peluang Latihan. Aksioma Peluang. Julio Adisantoso. 16 Pebruari 2014

Learning Outcomes Ruang Contoh Kejadian Aksioma Peluang Latihan. Aksioma Peluang. Julio Adisantoso. 16 Pebruari 2014 16 Pebruari 2014 Learning Outcome Mahasiswa dapat memahami ruang contoh, kejadian, dan koleksi Mahasiswa dapat melakukan operasi himpunan kejadian Mahasiswa dapat memahami aksioma peluang Mahasiswa dapat

Lebih terperinci

Pertemuan ke-5 : Kamis, 7 April : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21

Pertemuan ke-5 : Kamis, 7 April : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21 Pertemuan ke-5 : Kamis, 7 April 2016 Dosen : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21 Materi Teori Peluang: 1. Operasi Kejadian 2. Peluang: definisi dan sifat-sifatnya Operasi Kejadian

Lebih terperinci

Probabilitas dan Proses Stokastik

Probabilitas dan Proses Stokastik Probabilitas dan Proses Stokastik Tim ProStok Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember Surabaya, 2014 O U T L I N E 1. Capaian Pembelajaran 2. Pengantar dan 3. Contoh 4. Ringkasan

Lebih terperinci

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang. MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial

Lebih terperinci

Bab 3 Pengantar teori Peluang

Bab 3 Pengantar teori Peluang Bab 3 Pengantar teori Peluang Istilah peluang atau kemungkinan, sering kali diucapkan atau didengar. Sebagai contoh ketika manajer dari sebuah klub sepak bola ditanya wartawan tentang hasil pertandingan

Lebih terperinci

TEORI PROBABILITAS. a. Ruang Contoh. Definisi : Ruang contoh adalah himpunan semua kemungkinan hasil suatu percobaan, dan dilambangkan dengan S.

TEORI PROBABILITAS. a. Ruang Contoh. Definisi : Ruang contoh adalah himpunan semua kemungkinan hasil suatu percobaan, dan dilambangkan dengan S. TEORI PROBABILITAS ISTILAH YANG SERING DIGUNAKAN a. Ruang Contoh Definisi : Ruang contoh adalah himpunan semua kemungkinan hasil suatu percobaan, dan dilambangkan dengan S. Bayangkan percobaan melempar

Lebih terperinci

PROBABILITAS BERSYARAT. Dr. Julan Hernadi

PROBABILITAS BERSYARAT. Dr. Julan Hernadi 1 PROBABILITAS BERSYARAT Dr. Julan Hernadi 1 Pendahuluan Tujuan utama dari pemodelan probabilitas adalah untuk menentukan bagaimana kecenderungan suatu kejadian A muncul bila kita melakukan percobaan.

Lebih terperinci

PELUANG. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah

PELUANG. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah 1 PELUANG Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah Kompetensi Dasar : Menggunakan aturan perkalian, permutasi dan kombinasi

Lebih terperinci

Probabilitas = Peluang (Bagian II)

Probabilitas = Peluang (Bagian II) Probabilitas = Peluang (Bagian II) 3. Peluang Suatu Kejadian Peluang dalam pengertian awam "kemungkinan" Mis : 1. Hari ini kemungkinan besar akan turun hujan 2. Kemungkinan tahun depan inflasi akan mencapai

Lebih terperinci

STATISTICS. WEEK 2 Hanung N. Prasetyo TELKOM POLYTECHNIC/HANUNGNP

STATISTICS. WEEK 2 Hanung N. Prasetyo TELKOM POLYTECHNIC/HANUNGNP STTISTICS WEEK 2 Hanung N. rasetyo OLYTECHNIC/HNUNGN Ruang sample dari suatu eksperimen merupakan suatu himpunan semua kemungkinan hasil suatu eksperimen. Ruang sample dinotasikan dengan Ώ Sedangkan kejadian

Lebih terperinci

Konsep Dasar Peluang. Modul 1

Konsep Dasar Peluang. Modul 1 Modul Konsep Dasar Peluang Dra. Kusrini, M. Pd. M odul ini berisi 3 Kegiatan Belajar. Dalam Kegiatan Belajar Anda akan mempelajari Konsep Himpunan dan Pencacahan, dalam Kegiatan Belajar 2 Anda akan mempelajari

Lebih terperinci

PELUANG. A Aturan Pengisian Tempat. B Permutasi

PELUANG. A Aturan Pengisian Tempat. B Permutasi PELUANG KAIDAH PENCACAHAN kaidah pencacahan didefinisikan sebagai suatu cara atau aturan untuk menghitung semua kemungkinan yang dapat terjadi dalam suatu percobaan tertentu. Ada beberapa metode pencacahan,

Lebih terperinci

Ruang Sampel, Titik Sampel dan Kejadian

Ruang Sampel, Titik Sampel dan Kejadian Dasar Dasar robabilitas DSR DSR ROILITS Ruang Sampel, Titik Sampel dan Kejadian Ruang sampel (sample space atau semesta (universe merupakan himpunan dari semua hasil (outcome yang mungkin dari suatu percobaan

Lebih terperinci

STATISTIK INDUSTRI 1. Agustina Eunike, ST., MT., MBA

STATISTIK INDUSTRI 1. Agustina Eunike, ST., MT., MBA STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Probabilitas PELUANG Eksperimen Aktivitas / pengukuran / observasi suatu fenomena yang bervariasi outputnya Ruang Sampel / Sample Space Semua output

Lebih terperinci

Peluang Bersyarat dan Kejadian Bebas

Peluang Bersyarat dan Kejadian Bebas Bab 3 Peluang Bersyarat dan Kejadian Bebas 3.1 Peluang Bersyarat Misalkan ruang contoh berpeluang sama dari percobaan melempar sebuah dadu bersisi 6, maka S = {1, 2, 3, 4, 5, 6}. Dan terdapat dua kejadian,

Lebih terperinci

Probabilitas dan Proses Stokastik

Probabilitas dan Proses Stokastik Probabilitas dan Proses Stokastik Tim ProStok Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember Surabaya, 2014 O U T L I N E 1. Capaian Pembelajaran 2. Pengantar dan 3. Contoh 4. Ringkasan

Lebih terperinci

April 20, Tujuan Pembelajaran

April 20, Tujuan Pembelajaran pril 20, 2011 1 Tujuan embelajaran Memahami dan menggunakan analisis kombinatorial untuk kejadian kompleks: permutasi dan kombinasi Mendefinisikan terminologi-terminologi penting dalam probabilitas dan

Lebih terperinci

MODUL PELUANG MATEMATIKA SMA KELAS XI

MODUL PELUANG MATEMATIKA SMA KELAS XI KATA PENGANTAR Segala puji syukur bagi Allah SWT yang senantiasa melimpahkan rahmat dan karunia-nya. Sebaik-baiknya shalawat serta salam semoga Allah SWT limpahkan kepada Nabi Besar Muhammad SAW, beserta

Lebih terperinci

Pembahasan Contoh Soal PELUANG

Pembahasan Contoh Soal PELUANG Pembahasan Contoh Soal PELUANG 1. Nomor rumah yang dimaksud terdiri atas dua angka. Ini berarti ada dua tempat yang harus diisi, yaitu PULUHAN dan SATUAN. Karena nomor rumah harus ganjil, maka tempat Satuan

Lebih terperinci

PENCACAHAN RUANG SAMPEL

PENCACAHAN RUANG SAMPEL PENCACAHAN RUANG SAMPEL PERTEMUAN VII EvanRamdan PENDAHULUAN Tanpa kita sadari kehidupan kita sehari-hari selalu berhubungan dengan matematika, khususnya peluang. Misalnya dalam pemilihan umum terdapat

Lebih terperinci

Probabilitas. Tujuan Pembelajaran

Probabilitas. Tujuan Pembelajaran Probabilitas 1 Tujuan Pembelajaran 1.Menjelaskan Eksperimen, Hasil,, Ruang Sampel, & Peluang 2. Menjelaskan bagaimana menetapkan peluang 3. Menggunakan Tabel Kontingensi, Diagram Venn, atau Diagram Tree

Lebih terperinci

PENGUKURAN RISIKO MANFAAT PENGUKURAN RISIKO DIMENSI YANG DIUKUR

PENGUKURAN RISIKO MANFAAT PENGUKURAN RISIKO DIMENSI YANG DIUKUR PENGUKURAN RISIKO MANFAAT PENGUKURAN RISIKO 1. Untuk menentukan kepentingan relatif dari suatu risiko yang dihadapi. 2. Untuk mendapatkan informasi yang sangat diperlukan oleh Manajer Risiko dalam upaya

Lebih terperinci

PENGUKURAN RISIKO MANFAAT PENGUKURAN RISIKO DIMENSI YANG DIUKUR

PENGUKURAN RISIKO MANFAAT PENGUKURAN RISIKO DIMENSI YANG DIUKUR PENGUKURAN RISIKO MANFAAT PENGUKURAN RISIKO 1. Untuk menentukan kepentingan relatif dari suatu risiko yang dihadapi. 2. Untuk mendapatkan informasi yang sangat diperlukan oleh Manajer Risiko dalam upaya

Lebih terperinci

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009 Ekonomi B.Indonesia Matematika B.Inggris Sejarah frekuensi UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 200/2009 Mata Pelajaran : MATEMATIKA Kelas/jurusan : XI/IPS Hari/Tanggal :

Lebih terperinci

KATA PENGANTAR. Salatiga, Juni Penulis. iii

KATA PENGANTAR. Salatiga, Juni Penulis. iii KATA PENGANTAR Teori Probabilitas sangatlah penting dalam memberikan dasar pada Statistika dan Statistika Matematika. Di samping itu, teori probabilitas juga memberikan dasar-dasar dalam pembelajaran tentang

Lebih terperinci

UKD-4 PELUANG 11 IPA 3 Jumat, 22 Sept 2017

UKD-4 PELUANG 11 IPA 3 Jumat, 22 Sept 2017 UKD-4 PELUANG 11 IPA 3 Jumat, 22 Sept 2017 1. Sebuah dadu dilempar sekali. Peluang munculnya mata dadu bukan kelipatan 3 B. 2/6 C. 3/6 D. 4/6 2. Dari 60 kali pelemparan sebuah dadu, maka frekuensi harapan

Lebih terperinci

II. KONSEP DASAR PELUANG

II. KONSEP DASAR PELUANG II. KONSEP DASAR PELUANG Teori Peluang memberikan cara pengukuran kuantitatif tentang kemungkinan munculnya suatu kejadian tertentu dalam suatu percobaan/peristiwa. Untuk dapat menghitung peluang lebih

Lebih terperinci

SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL

SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL . UN 0 SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topik peluang suatu kejadian. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah

Lebih terperinci

BAB V PENGANTAR PROBABILITAS

BAB V PENGANTAR PROBABILITAS BAB V PENGANTAR PROBABILITAS Istilah probabilitas atau peluang merupakan ukuran untuk terjadi atau tidak terjadinya sesuatu peristiwa. Ukuran ini merupakan acuan dasar dalam teori statistika. 1. Beberapa

Lebih terperinci

Permutations, Combinations, and Probability Jadug Norach Agna Parusa. Copyright 2014 Bimbingan Belajar Merlion BBMerlion.com

Permutations, Combinations, and Probability Jadug Norach Agna Parusa. Copyright 2014 Bimbingan Belajar Merlion BBMerlion.com Permutations, Combinations, and Probability Jadug Norach Agna Parusa Copyright 2014 Bimbingan Belajar Merlion BBMerlion.com 1 PERMUTATIONS & COMBINATIONS Objektif Mengenal konsep ( n P r ) dan ( n C r

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial & Multinomial

Distribusi Probabilitas Diskrit: Binomial & Multinomial Distribusi Probabilitas Diskrit: Binomial & Multinomial 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi Binomial Distribusi

Lebih terperinci

Berapa Peluang anda. meninggal? selesai S-1? menjadi menteri? menjadi presiden?

Berapa Peluang anda. meninggal? selesai S-1? menjadi menteri? menjadi presiden? PELUANG Berapa Peluang anda meninggal? selesai S-1? menjadi menteri? menjadi presiden? Peluang Ukuran / derajat ketidakpastian suatu peristiwa Peluang Kemungkinan (Probability) (Possibility) Peristiwa

Lebih terperinci

Indikator Sub Indikator Banyaknya Butir. kejadian pada percobaan pelemparan uang logam. pelemparan dadu. pengambilan buah. pengambilan kartu bridge.

Indikator Sub Indikator Banyaknya Butir. kejadian pada percobaan pelemparan uang logam. pelemparan dadu. pengambilan buah. pengambilan kartu bridge. 51 52 53 54 Kisi-kisi Instrumen untuk Instrumen Tes Hasil Belajar Mata Pelajaran : Matematika Kelas/ Semester : XI BAHASA/ 2 Standar Kompetensi : Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat

Lebih terperinci

Bab 9. Peluang Diskrit

Bab 9. Peluang Diskrit Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas

Lebih terperinci

Peluang. 2. Jika C n = 3. maka tentukan n. 3. Berapa banyak jabat tangan yang terjadi antara 5 orang?

Peluang. 2. Jika C n = 3. maka tentukan n. 3. Berapa banyak jabat tangan yang terjadi antara 5 orang? Peluang. Dari angka-angka, 5,, dan 9 dibuat bilangan yang terdiri atas tiga angka yang berbeda yang kurang dari 400. Ada berapa banyak bilangan yang didapat? Banyaknya ratusan x puluhan x satuan x 4 x

Lebih terperinci

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 1-7) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 1:HIMPUNAN Operasi Himpunan Sifat-Sifat Operasi Himpunan 2 Minggu 2:COUNTING TECHNIQUE

Lebih terperinci

BAB 2 PELUANG RINGKASAN MATERI

BAB 2 PELUANG RINGKASAN MATERI BAB PELUANG A RINGKASAN MATERI. Kaidah Pencacahan Bila terdapat n tempat yang tersedia dengan k cara untuk mengisi tempat pertama, k cara untuk mengisi tempat kedua, dan seterusnya, maka cara untuk mengisi

Lebih terperinci

Kaidah Bayes dan Kejadian Bebas

Kaidah Bayes dan Kejadian Bebas 6 Maret 2014 Learning Outcome Mahasiswa dapat memahami konsep dan kaidah Bayes Mahasiswa dapat mendefinisikan rasio odd Mahasiswa dapat memahami kejadian bebas Mahasiswa dapat membuktikan beberapa proposisi

Lebih terperinci

www.matematika-pas.blogspot.com E-learning matematika, GRATIS

www.matematika-pas.blogspot.com E-learning matematika, GRATIS Penyusun Editor : Indyah Sulistyawati, S.Pd. ; Wiwik Hermawati, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. ). Pengertian Kaidah Pencacahan (Counting Slots) Kaidah

Lebih terperinci

BAB II PROBABILITAS Ruang sampel (sample space)

BAB II PROBABILITAS Ruang sampel (sample space) BAB II ROBABILITAS 2.1. Ruang sampel (sample space) Data diperoleh baik dari pengamatan kejadian yang tak dapat dikendalikan atau dari percobaan yang dikendalikan dalam laboratorium. Untuk penyederhanaan

Lebih terperinci