Distribusi Probabilitas Diskret Teoritis

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Distribusi Probabilitas Diskret Teoritis"

Transkripsi

1 Distribusi robabilitas Diskret Teoritis Distribusi robabilitas Teoritis Diskret Distribusi seragam diskret (discrete uniform distribution) Distribusi hipergeometris (hypergeometric distribution) Distribusi Bernoulli (Bernoulli distribution) Distribusi binomial (Binomial distribution) Distribusi binomial negatif atau ascal (negative binomial or ascal distribution) Distribusi geometris (geometric distribution) Distribusi oisson (oisson distribution)

2 Distribusi Seragam Diskret X seragam diskret (a, b) Fungsi distribusi probabilitas: f ( ) ; b a + 0; lainnya a, a +, L, b, b arameter: a, b bulat; b a a : batas bawah b : batas atas Rataan: a + b μx Variansi: ( b a + ) σ X 3 Contoh Histogram Distribusi Seragam Diskret f() a, b

3 robabilitas Variabel Random Berdistribusi Seragam Diskret ( X ) b a + ( X r) r a b a + 5 Contoh erhitungan Jumlah pesanan yang datang per hari diketahui berdistribusi seragam diskret dengan jumlah pesanan yang datang minimum 0 dan maksimum 0. robabilitas jumlah pesanan yang datang per hari adalah 4 atau kurang? 4 ( X 4) , Rata rata jumlah pesanan per hari yang datang? μ X 0 + 5,5 6

4 Distribusi Hipergeometris X hipergeometris (n, N, S) Fungsi distribusi probabilitas: f ( ) S N S CCn ; 0,, L,min N Cn 0; lainnya { n, S} arameter: n, S, N bulat > 0 n N; S N Rataan: μ X n Variansi: S N N n S σ X n N N S N 7 Rumus Kombinasi C n r n r n! r!( n r)! 8

5 ercobaan Hipergeometris Dalam suatu populasi berukuran N, terdapat S obyek yang dikategorikan sukses S, dan sisanya N S dikategorikan gagal Suatu sampel random berukuran n diambil dari populasi Variabel random yang menyatakan banyaknya obyek berkategori sukses yang terpilih merupakan variabel random hipergeometris 9 Contoh Histogram Distribusi Hipergeometris N 0, S, n 4 f() f() N 0, S 6, n f() N 0, S 4, n

6 robabilitas Variabel Random Berdistribusi Hipergeometris S C C C n ( X ) N ( X r) N S n C C r S N S n N 0 Cn Contoh erhitungan Suatu kotak mengandung 7 komponen yang terdiridari4 komponen merek A dan 3 bola komponen merek B. Jika 3 komponen diambil secara random dari kotak, probabilitas bahwa tepat terdapat komponen merek A yang terambil: 4 C C C C C C 4!!! 3!!! 7! 3!4! 3 ( X ) 0,

7 Distribusi Bernoulli X Bernoulli (p) Fungsi distribusi probabilitas: f ( ) p; sukses p; gagal 0; lainnya arameter: p (0 p ) Rataan: μ X p Variansi: σ X p ( p) 3 ercobaan Bernoulli ercobaan hanya menghasilkan dua kejadian yang mungkin, sukses atau gagal robabilitas sukses adalah p (probabilitas gagal, p) Variabel random yang menyatakan munculnya sukses atau gagal merupakan variabel random Bernoulli 4

8 Contoh Histogram Distribusi Bernoulli f() p 0, X sukses gagal 0 p 0,5 f() f() p 0, Hubungan Distribusi Bernoulli dan Seragam Diskret X seragam diskret (a, b); a 0; b X Bernoulli (p); p 0,5 6

9 Distribusi Binomial X binomial (n, p) Fungsi distribusi probabilitas: f ( ) ( p) n n Cp ; 0,, L, n 0; lainnya arameter: n bulat > 0; p (0 p ) Rataan: μ X np Variansi: σ X np ( p) 7 ercobaan Binomial ercobaan terdiri atas n usaha yang saling independen Tiap usaha hanya terdiri dari dua kejadian yang mungkin, sukses atau gagal. robabilitas tiap sukses untuk tiap usaha adalah tetap, yaitu p (probabilitas gagal, p) Variabel random yang menyatakan banyaknya sukses dalamn usaha independen merupakan variabel random binomial ercobaan binomial merupakan percobaan Bernoulli yang independen yang dilakukan sebanyak n kali 8

10 Contoh Histogram Distribusi Binomial f() n 5; p 0, f() n 5; p 0, f() n 5; p 0, robabilitas Variabel Random Berdistribusi Binomial n n ( X r) C p ( p) r n ( X r) C p ( p) 0 n 0

11 Contoh erhitungan robabilitas suatu komponen tidak mengalami kerusakan dalam suatu pengujian adalah 0,75. robabilitas tepat terdapat komponen yang tidak mengalami kerusakan jika dilakukan pengujian sebanyak 4 kali: 4 4 4! ( X ) C ( 0,75) ( 0,75) ( 0,75) ( 0,5) 0, 09!! robabilitas terdapat komponen atau lebih yang tidak rusak jika dilakukan pengujian sebanyak 4 kali: 4 ( X ) ( X ) C ( 0,75) ( 0,75) 0 4! 0!! 0,0508 0, !!! 0 4 ( 0,75) ( 0,5) + ( 0,75) ( 0,5) 3 Hubungan Distribusi Binomial dan Bernoulli X i Bernoulli (p) X i independen dan identik Y n i X i Y binomial (n, p)

12 Hampiran Distribusi Binomial terhadap Hipergeometris X hipergeometris (n, S, N); n/n 0 X binomial (n, p); p S/N 3 Contoh erhitungan Suatu pabrik menerima pasokan material sebanyak 5000 unit dengan 000 unit diantaranya adalah material jenis A. Jika 0 unit dipilih secara random, probabilitas tepat terdapat 3 unit material jenis A yang terpilih: ( X 3) C ( ) ( ) ! 3!7! 0, ( 0,) ( 0,8) 7 4

13 Distribusi Binomial Negatif (ascal) X binomial negatif (k, p) Fungsi distribusi probabilitas: f ( ) ( p) C k k k p ; k, k +, L 0; lainnya arameter: k bulat > 0; p (0 p ) Rataan: μ X k p Variansi: k σ X ( p) p 5 ercobaan Binomial Negatif ercobaan terdiri atas n usaha yang saling independen Tiap usaha hanya terdiri dari dua kejadian yang mungkin, sukses atau gagal. robabilitas tiap sukses untuk tiap usaha adalah tetap, yaitu p (probabilitas gagal, p) Variabel random yang menyatakan banyaknya usaha agar terjadi sukses ke k merupakan variabel random binomial negatif 6

14 Contoh Histogram Distribusi Binomial Negatif f() k ; p 0, Variabel random X banyaknya usaha untuk memperoleh k sukses k ; p 0,5 f() robabilitas Variabel Random Berdistribusi Binomial Negatif ( X ) p k ( p) k C k r ( ) k X r C k p ( p) k k 8

15 Contoh erhitungan robabilitas produk cacat adalah 0,. Jika produk diambil satu per satu, probabilitas ditemukannya produk yang cacat yang ketiga pada pengambilan kelima? 4!!! ( X 5) C ( 0,) ( 0,) ( 0,) ( 0,9) 0, Definisi Lain dari Variabel Random Binomial Negatif & Fungsi Dist. rob. Variabel random binomial negatif X dapat juga didefinisikan sebagai banyaknya gagal sebelum memperoleh k sukses Fungsi distribusi probabilitas: f ( ) ( p) + k k C p ; 0,,, L 0; lainnya X C p p ( ) ( ) + k k r + k k ( X r) C p ( p) 0 arameter: k bulat > 0; p (0 p ) Rataan: k( p) μx p Variansi: σ k X ( p) p 30

16 Contoh Histogram Distribusi Binomial Negatif k ; p 0, Variabel random X banyaknya gagal sebelum memperoleh k sukses 3 Contoh erhitungan robabilitas produk cacat adalah 0,. Jika produk diambil satu per satu, probabilitas terambilnya produk baik (tidak cacat) sebanyak dua sebelummenghasilkan produk cacat ketiga? 4!!! ( X ) C ( 0,) ( 0,) ( 0,) ( 0,9) 0,

17 Distribusi Geometris X geometris (p) Fungsi distribusi probabilitas: f ( ) ( p) p ;,, L 0; lainnya arameter: p (0 p ) Rataan: μ X Variansi: σ p X p p 33 ercobaan Geometris ercobaan terdiri atas n usaha yang saling independen Tiap usaha hanya terdiri dari dua kejadian yang mungkin, sukses atau gagal. robabilitas tiap sukses untuk tiap usaha adalah tetap, yaitu p (probabilitas gagal, p) Variabel random yang menyatakan banyaknya usaha agar terjadi sukses pertama merupakan variabel random geometris 34

18 Contoh Histogram Distribusi Geometris f() p 0, Variabel random X banyaknya usaha untuk memperoleh sukses pertama f() p 0, robabilitas Variabel Random Berdistribusi Geometris ( X ) p( p) ( X r) p( p) r 36

19 Contoh erhitungan robabilitas produk cacat adalah 0,. Jika produk diambil satu per satu, probabilitas ditemukannya produk yang cacat pada pengambilan ketiga? 3 ( X 3) ( 0,)( 0,) ( 0,)( 0,9) 0, 08 Rata rata banyaknya pengambilan untuk menemukan produk cacat? μ X 0, 0 37 Definisi Lain dari Variabel Random Geometris dan Fungsi Distribusi robabilitas Variabel random geometris X dapat juga didefinisikan sebagai banyaknya gagal untuk memperoleh sukses pertama Fungsi distribusi probabilitas: f ( ) ( p) p ; 0,,, L 0; lainnya X p p ( ) ( ) ( X r) p( p) r 0 arameter: p (0 p ) Rataan: p μx p Variansi: σ X p p 38

20 Contoh Histogram Distribusi Geometris p 0, Variabel random X banyaknya gagal sebelum memperoleh sukses pertama 39 Contoh erhitungan robabilitas produk cacat adalah 0,. Jika produk diambil satu per satu, probabilitas diperoleh dua produk baik (tidak cacat) sebelum diperoleh produk cacat? ( X ) ( 0,)( 0,) ( 0,)( 0,9) 0, 08 Rata rata banyaknya produk baik (tidak cacat) yang diperoleh sebelum menemukan produk cacat? μ X 0, 0, 0,9 0, 9 40

21 Hubungan Distribusi Binomial Negatif dan Geometris X binomial negatif (k, p); k X geometris (p) 4 Distribusi oisson X oisson (λ) Fungsi distribusi probabilitas: f ( ) λ e λ ; 0,,, L! 0; lainnya arameter: λ > 0 λ rata rata kejadian per interval waktu atau daerah tertentu Rataan: Variansi: μ λ X σ X λ 4

22 Ciri Ciri roses oisson Jumlah kejadian yang terjadi dalam suatu interval waktu atau daerah tertentu adalah independen terhadap jumlah kejadian dalam interval waktuataudaerahyang lain. robabilitas suatu kejadian yang terjadi pada interval waktu atau daerah yang sangat kecil adalah proporsional terhadap panjang interval waktu atau luas daerah dan tidak tergantung pada jumlah kejadian yang terjadi di luar interval waktu atau daerah ini. robabilitas lebih dari satu kejadian dalam interval waktu atau daerah yang sangat kecil adalah diabaikan 43 Contoh Histogram Distribusi oisson λ f() f() λ

23 robabilitas Variabel Random Berdistribusi oisson ( X ) e λ λ! ( X r) e r λ λ 0! 45 Contoh erhitungan Banyaknya gangguan mesin yang terjadi per hari diketahui berdistribusi oisson dengan rata rata 0 gangguan per hari. robabilitas bahwa terdapat paling sedikit terdapat 5 gangguan per hari? X 5 X 4 ( ) ( ) 4 0 e ( 0) 0! 0,095 0 ( 0) e 0 0 ( 0) e ( 0) 0 e + + L+ 0!! 4! 0, , L+ 0,

24 Hampiran Distribusi oisson terhadap Binomial X binomial (n, p); n ; p 0 X oisson (λ); λ np 47 Contoh erhitungan robabilitas suatu produk yang harus dibuang karena rusak adalah 0,0. Jika terdapat sebanyak 000 produk, probabilitas terdapat 0 produk yang dibuang karena rusak? λ ( 000)( 0,0) ( X 5) e ( 0 ) ( 0) 5! 0,

25 Ciri Reproduktif Variabel Random oisson X i oisson (λ i ) X i saling independen Y n i X i Y oisson (λ), λ λ + λ λ n 49 Contoh erhitungan Banyaknya gangguan mesin A yang terjadi per hari diketahui berdistribusi oisson dengan rata rata 0 gangguan per hari. Banyaknya gangguan mesin B yang terjadi per hari diketahui berdistribusi oisson dengan rata rata 5 gangguan per hari. robabilitas banyaknya gangguan sebanyak 5 per hari adalah: λ λ + λ ( X 5) ( 5) 5 5 e 5! 0,

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

Distribusi Probabilitas Diskrit: Poisson

Distribusi Probabilitas Diskrit: Poisson Distribusi Probabilitas Diskrit: Poisson 7.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Pendekatan Binomial Poisson Distribusi Poisson Kapan distribusi

Lebih terperinci

Beberapa Distribusi Peluang Diskrit

Beberapa Distribusi Peluang Diskrit Beberapa Distribusi Peluang Diskrit Departemen Teknik Informatika Institut Teknologi Bandung Page 1 Isi : Distribusi Seragam Distribusi Binomial Distribusi Multinomial Page 2 Distribusi

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT BAB IV. DISTRIBUSI PROBABILITAS DISKRIT A. Variabel random diskrit. Variabel random diskrit X adalah : Cara memberi nilai angka pada setiap elemen ruang sampel X(a) : Ukuran karakteristik tertentu dari

Lebih terperinci

Distribusi Probabilitas Diskrit: Geometrik Hipergeometrik

Distribusi Probabilitas Diskrit: Geometrik Hipergeometrik Distribusi Probabilitas Diskrit: Geometrik Hipergeometrik 4.3 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Geometrik Distribusi Hipergeometrik Distribusi

Lebih terperinci

BAB 8 DISTRIBUSI PELUANG DISKRIT

BAB 8 DISTRIBUSI PELUANG DISKRIT BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu

Lebih terperinci

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Distribusi Peluang DISKRIT DAN KONTINYU Random Variable Random variable / peubah acak: Suatu fungsi yang mengaitkan suatu bilangan real dengan tiap elemen

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu xiv BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif

Lebih terperinci

UJI HIPOTESIS UNTUK PROPORSI

UJI HIPOTESIS UNTUK PROPORSI PENGUJIAN HIPOTESIS UJI HIPOTESIS UNTUK PROPORSI Uji Hipotesis untuk Proporsi Data statistik sampel: - = Proporsi kejadian sukses dalam sampel - p = Proporsi kejadian sukses dalam populasi - - Statistik

Lebih terperinci

PEMBAHASAN UTS 2015/2016 STATISTIKA 1

PEMBAHASAN UTS 2015/2016 STATISTIKA 1 PEMBAHASAN UTS 2015/2016 STATISTIKA 1 1. pernyataan berikut ini menjelaskan definisi dan cakupan statistika deskriptif, KECUALI : a. statistika deskriptif mendeskripsikan data yang telah dikumpulkan (Organizing)

Lebih terperinci

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah,, ST., MT

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah,, ST., MT UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah,, ST., MT UJI KERANDOMAN (RANDOMNESS TEST / RUN TEST) Uji KERANDOMAN Untuk menguji apakah data sampel yang diambil merupakan data yang acak / random Prosedur

Lebih terperinci

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Zaman modern (>1940), dgn cara membentuk bilangan acak secara numerik/aritmatik (menggunakan komputer), disebut Pseudo Random

Lebih terperinci

DISTRIBUSI VARIABEL RANDOM

DISTRIBUSI VARIABEL RANDOM DISTRIBUSI VARIABEL RANDM Distribusi Variabel Diskrit Distribusi variabel diskrit adalah salah satu variabel acak yang diasumsikan memiliki bilangan terbatas dari nilai-nilai yang berbeda. Contoh : Waktu

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP STATISTICS WEEK 4 Hanung N. Prasetyo Pendahuluan: Penyajian distribusi probabilitas dalam bentuk grafis, tabel atau melalui rumusan tidak masalah, yang ingin dilukiskan adalah perilaku (kelakuan) perubah

Lebih terperinci

BAB VI DISTRIBUSI PROBABILITAS MENERUS

BAB VI DISTRIBUSI PROBABILITAS MENERUS BAB VI DISTRIBUSI ROBABILITAS MENERUS 6. Distribusi Uniform (seragam) Menerus Distribusi seragam menerus merupakan distribusi yang paling sederhana. Karaketristik distribusi ini adalah fungsi kepadatannya

Lebih terperinci

DISTRIBUSI PROBABILITAS (PELUANG)

DISTRIBUSI PROBABILITAS (PELUANG) DISTRIBUSI PROBABILITAS (PELUANG) Distribusi Probabilitas (Peluang) Distribusi? Probabilitas? Distribusi Probabilitas? JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Distribusi = sebaran,

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISKRIT Distribusi binomial Distribusi binomial - Distribusi peluang diskrit Distribusi geometrik Distribusi hipergeometrik Distribusi poison BERNOULLI TRIAL

Lebih terperinci

SEJARAH DISTRIBUSI POISSON

SEJARAH DISTRIBUSI POISSON SEJARAH DISTRIBUSI POISSON Distribusi poisson disebut juga distribusi peristiwa yang jarang terjadi, ditemukanolehs.d. Poisson (1781 1841), 1841), seorang ahli matematika berkebangsaan Perancis. Distribusi

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi

Lebih terperinci

Statistik Non Parametrik

Statistik Non Parametrik Statistik Non Parametrik UJI FRIEDMAN (UJI X ) r X r UJI Friedman (uji ) Untuk k sampel berpasangan (k>) dengan data setidaknya data skala ordinal Sebagai alternatif dari analisis variansi dua arah bila

Lebih terperinci

PEMODELAN KUALITAS PROSES

PEMODELAN KUALITAS PROSES TOPIK 6 PEMODELAN KUALITAS PROSES LD/SEM II-03/04 1 1. KERANGKA DASAR Sampling Penerimaan Proses Produksi Pengendalian Proses MATERIAL PRODUK PRODUK BAIK SUPPLIER Manufacturing Manufacturing KONSUMEN PRODUK

Lebih terperinci

Distribusi Probabilitas Diskrit. Dadan Dasari

Distribusi Probabilitas Diskrit. Dadan Dasari Distribusi Probabilitas Diskrit Dadan Dasari Daftar Isi DIstribusi Uniform Distribusi Binomial DIstribusi Multinomial Distribusi Hipergeometrik Distribusi Poisson Distribusi Probabilitas Uniform Diskrit

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET Pertemuan 7. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET 4. Pendahuluan 4.2 Distribusi seragam diskret 4.3 Distribusi binomial dan multinomial

Lebih terperinci

l.makalah DISTRIBUSI PROBABILITAS DISKRIT

l.makalah DISTRIBUSI PROBABILITAS DISKRIT l.makalah DISTRIBUSI PROBABILITAS DISKRIT Kata Pengantar Puji syukur atas kehadirat Allah SWT karena rahmat serta karunia-nya penulis dapat menyelesaikan makalah ini.shalawat serta salam dari Allah SWT

Lebih terperinci

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B) Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:

Lebih terperinci

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson DISTRIBUSI POISSON Pendahuluan Distribusi poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson. Distribusi ini merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1. Distribusi Seragam Diskrit

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1. Distribusi Seragam Diskrit DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1 TI2131 TEORI PROBABILITAS MINGGU KE-9 Distribusi Seragam Disrit Jia sebuah variabel random X mengambil nilai x 1, x 2,, x dengan probabilitas yang sama, maa distribusi

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan berjalannya waktu, ilmu pengetahuan dan teknologi (sains dan teknologi) telah berkembang dengan cepat. Salah satunya adalah ilmu matematika yang

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB BeberapaDistribusiPeluang Diskrit Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Pengantar Pengamatanyang dihasilkanmelaluipercobaanyang berbeda

Lebih terperinci

KARAKTERISASI SEBARAN BINOMIAL NEGATIF

KARAKTERISASI SEBARAN BINOMIAL NEGATIF Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 65 70 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KARAKTERISASI SEBARAN BINOMIAL NEGATIF DEBY HANDAYANI Program Studi Magister Matematika, Fakultas Matematika

Lebih terperinci

PROSES POISSON MAJEMUK. 1. Pendahuluan

PROSES POISSON MAJEMUK. 1. Pendahuluan PROSES POISSON MAJEMUK Chris Risen, Respatiwulan, Pangadi Program Studi Matematika FMIPA UNS Abstrak. Proses Poisson merupakan proses menghitung {; t 0} yang digunakan untuk menentukan jumlah kejadian

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 6. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Variansi dan kovariansi. HARAPAN MATEMATIK Keragaman suatu peubah acak X diperoleh dengan mengambil g(x) = (X µ). Rataan

Lebih terperinci

Metode Statistika (STK 211) Pertemuan ke-5

Metode Statistika (STK 211) Pertemuan ke-5 Metode Statistika (STK 211) Pertemuan ke-5 rrahmaanisa@apps.ipb.ac.id Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak

Lebih terperinci

PENGUJIAN HIPOTESIS 1

PENGUJIAN HIPOTESIS 1 PENGUJIAN HIPOTESIS 1 Pengertian Pengujian Hipotesis From: BAHASA YUNANI HUPO THESIS Lemah, kurang, di bawah Teori, proposisi, atau pernyataan yang disajikan sebagai bukti Hipotesis suatu pernyataan yang

Lebih terperinci

4.1.1 Distribusi Binomial

4.1.1 Distribusi Binomial 4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak

Lebih terperinci

DISTRIBUSI PELUANG TEORITIS

DISTRIBUSI PELUANG TEORITIS Distribusi Teoritis 1/ 15 DISTRIBUSI PELUANG TEORITIS 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. PEUBAH ACAK Fungsi yang mendefinisikan

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII October 7, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7,

Lebih terperinci

Distribusi Teoritis Probabilitas

Distribusi Teoritis Probabilitas Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 2 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

Distribusi Sampling 6.2. Debrina Puspita Andriani /

Distribusi Sampling 6.2. Debrina Puspita Andriani    / 6. Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id Outline Pengertian dan Konsep Dasar Distribusi Sampling Distribusi Sampling Mean Distribusi Sampling Proporsi Distribusi Sampling

Lebih terperinci

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Distribusi Peluang Teoritis. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar.

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar. DISTRIBUSI DISKRIT UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 2081 Statistika Dasar Utriweni Mukhaiyar 7 Maret

Lebih terperinci

: Distribusi Peluang. : D. Rizal Riadi

: Distribusi Peluang. : D. Rizal Riadi MATERI 3 Mata Kuliah Dosen : Distribusi Peluang : Statistik : D. Rizal Riadi Mengingat data kuantitatif dipengaruhi faktor-faktor ketidakpastian dan variasi yang disebabkan akurasi instrumen penelitian

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS 5 Pengendalian Kualitas Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e- Mail : debrina@ub.ac.id Blog : hbp://debrina.lecture.ub.ac.id/ 2

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS U N I F O R M ( S E R A G A M ) B E R N O U L L I B I N O M I A L P O I S S O N MA 4085 Pengantar Statistika 26 Februari 2013 Utriweni Mukhaiyar M U L T I N O M I A L H I P E

Lebih terperinci

PENGUJIAN HIPOTESIS (3) Debrina Puspita Andriani /

PENGUJIAN HIPOTESIS (3) Debrina Puspita Andriani    / PENGUJIAN HIPOTESIS (3) 4 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Uji Hipotesis untuk Variansi/ Standard Deviasi 3 Uji Hipotesis untuk Variansi (1) 4 Data statistik

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.

Lebih terperinci

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal 1 Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial & Multinomial

Distribusi Probabilitas Diskrit: Binomial & Multinomial Distribusi Probabilitas Diskrit: Binomial & Multinomial 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi Binomial Distribusi

Lebih terperinci

Distribusi Peluang Teoritis

Distribusi Peluang Teoritis Distribusi Peluang Teoritis 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Diskrit 2 Adam Hendra Brata Distribusi Hipergeometrik Distribusi Hipergeometrik Jika sampling dilakukan tanpa pengembalian dari kejadian sampling yang diambil

Lebih terperinci

TIN102 - Pengantar Teknik Industri Materi #9 Ganjil 2014/2015

TIN102 - Pengantar Teknik Industri Materi #9 Ganjil 2014/2015 TIN0 - engantar Teknik Industri Materi #9 Ganjil 04/05 Definisi Analisis antrian merupakan bentuk analisis probabilitas. Hasil dari analisis antrian karakteristik operasional merupakan nilai rata-rata

Lebih terperinci

DISTRIBUSI PROBABILITAS VARIABEL RANDOM

DISTRIBUSI PROBABILITAS VARIABEL RANDOM Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan DISTRIBUSI PROBABILITAS VARIABEL RANDOM Statistika dan Probabilitas 2 Distribusi probabilitas variabel random diskrit Distribusi

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

TIN102 - Pengantar Teknik Industri Materi #9 Ganjil 2015/2016 TIN102 PENGANTAR TEKNIK INDUSTRI

TIN102 - Pengantar Teknik Industri Materi #9 Ganjil 2015/2016 TIN102 PENGANTAR TEKNIK INDUSTRI Materi #9 TIN0 ENGANTAR TEKNIK INDUSTRI endahuluan engembangan model matematis dari suatu sistem dunia nyata, menemukan beberapa elemen penting adalah aak dan tidak dapat diabaikan variasinya. Sehingga,

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

PENDAHULUAN Definisi: Contoh Kasus:

PENDAHULUAN Definisi: Contoh Kasus: DISTRIBUSI PROBABILITAS 1 PENDAHULUAN Definisi: Distribusi probabilitas adalah sebuah susunan distribusi yang mempermudah mengetahui probabilitas sebuah peristiwa. Merupakan hasil dari setiap peluang peristiwa.

Lebih terperinci

BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( )

BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( ) BIOSTATISTIK UJI HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA (20611003) NURTASMIA (20611022) SOBRI (20611027) : Tahapan-tahapan dalam uji hipotesis 1.Membuat hipotesis nol (H o ) dan hipotesis alternatif (H

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

KAJIAN TENTANG PENDEKATAN DISTRIBUSI BINOMIAL OLEH DISTRIBUSI NORMAL SKRIPSI MUSTAFA KEMAL RAMBE

KAJIAN TENTANG PENDEKATAN DISTRIBUSI BINOMIAL OLEH DISTRIBUSI NORMAL SKRIPSI MUSTAFA KEMAL RAMBE KAJIAN TENTANG PENDEKATAN DISTRIBUSI BINOMIAL OLEH DISTRIBUSI NORMAL SKRIPSI MUSTAFA KEMAL RAMBE 090823073 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan

Lebih terperinci

DISTRIBUSI BINOMIAL berhasil gagal berhasil gagal berhasil gagal ya tidak success failed sukses atau berhasil gagal. sukses atau berhasil.

DISTRIBUSI BINOMIAL berhasil gagal berhasil gagal berhasil gagal ya tidak success failed sukses atau berhasil gagal. sukses atau berhasil. DISTRIBUSI BINOMIAL Pendahuluan Distribusi binomial merupakan suatu proses distribusi probabilitas yang dapat digunakan apabila suatu proses sampling dapat diasumsikan sesuai dengan proses Bernoulli. Proses

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

Teori Peluang Diskrit

Teori Peluang Diskrit Teori Peluang Diskrit Peluang Diskrit Apa yang terjadi jika keluaran dari suatu eksperimen tidak memiliki peluang yang sama? Dalam kasus ini, peluang p(s) dipadankan dengan setiap keluaran s S, di mana

Lebih terperinci

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 3 4 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA 1 LUVY S. ZANTHY KAPSEL SMA 2 LUVY S. ZANTHY KAPSEL SMA 3 Distribusi Binomial O Dalam suatu percobaan statistik sering dijumpai pengulangan

Lebih terperinci

ANALISIS KEMAMPUAN PROSES

ANALISIS KEMAMPUAN PROSES LOGO ANALISIS KEMAMPUAN PROSES Kelompok 7 Rohmad Hadi S. Ananta Ade Kurniawan Nariswari Setya Dewi Kristy Handayani Lisa Apriana Dewi Nanda Hidayati Nining Dwi Lestari M0107082 M0108015 M0108022 M0108053

Lebih terperinci

Nilai Probabilitas berkisar antara 0 dan 1.

Nilai Probabilitas berkisar antara 0 dan 1. ROBBILITS Tujuan belajar : 1. Mengerti konsep probalitas 2. Mengerti hukum-hukum probabilita 3. Mengerti konsep mutually exclusif dan non exclusive, serta konsep bebas dan tak bebas 4. Memahami permutasi

Lebih terperinci

Peubah Acak (Lanjutan)

Peubah Acak (Lanjutan) Learning Outcomes 13 April 2014 Learning Outcomes Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS Uniform Bernoulli Binomial Poisson Distribusi Lainnya: Multinomial Hipergeometrik Geometrik Binomial Negatif BI5106 Analisis Biostatistika 27 September 2012 Distribusi uniform

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS Uniform U (seragam) MultinomialM l i i l Bernoulli Hipergeometrik Binomial Geometrik Poisson Binomial Negatif MA 2081 Statistika Dasar Utriweni Mukhaiyar 27 September 2012 2 Distribusi

Lebih terperinci

Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi

Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi ESTIMASI TITIK Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi sampel. Statistik merupakan bentuk dari

Lebih terperinci

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah, ST., MT SIGN TEST Sign Test Digunakan untuk menguji hipotesa tentang MEDIAN dan DISTRIBUSI KONTINYU. Pengamatan dilakukan pada median dari sebuah distribusi

Lebih terperinci

ANALISIS KEMAMPUAN PROSES PADA DATA BERDISTRIBUSI BINOMIAL

ANALISIS KEMAMPUAN PROSES PADA DATA BERDISTRIBUSI BINOMIAL ANALISIS KEMAMPUAN PROSES PADA DATA BERDISTRIBUSI BINOMIAL Makalah Untuk Memenuhi Tugas Mata Kuliah Pengendalian Kualitas Statistik Yang Dibina Oleh Bapak Hendro Permadi Nama Kelompok: Sudarsono (309312422762)

Lebih terperinci

PENGENDALIAN KUALITAS STATISTIK

PENGENDALIAN KUALITAS STATISTIK PENGENDALIAN KUALITAS STATISTIK PENGENDALIAN KUALITAS STATISTIK Pendahuluan Kualitas / Mutu : Ukuran tingkat kesesuaian barang/ jasa dg standar/spesifikasi yang telah ditentukan/ ditetapkan. Pengendalian

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS SATUAN ACUAN PERKULIAHAN MATA KULIAH : KODE : TIK1010 / SKS : 3 SKS SEMESTER : III / GANJIL WAKTU : 150 Menit JUMLAH PERTEMUAN : 16 x pertemuan (14 x materi kuliah, 2 x Ujian (UTS dan UAS)) 1 ANALISIS

Lebih terperinci