Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas"

Transkripsi

1 Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode Klasikal Menggunakan Frekuensi Relatif Kejadian Dengan carai subyektif Metode Klasikal untuk menentukan Probabilitas Metode ini menggunakan: Eksperimen, yaitu proses yang menghasilkan outcome, dan Event, yaitu outcome dari suatu ekrperimen ne E) = N N = total banyaknya outcome yang mungkin pada suatu eksperimen n e = banyaknya outcome di mana event E terjadi Pada metode ini probabilitas dapat ditentukan sebelum eksperimen dilakukan (a priori) Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Pada metode ini probabilitas suatu event didapat dari banyaknya event tersebut terjadi di masa lalu, dibagi dengan banyak total kesempatan event tersebut terjadi. Probabilitas Subyektif Hanya didasarkan atas perasaan, intuisi, atau pengetahuan orang yang menentukan probabilitas Meskipun bukan merupakan cara yang ilmiah, namun pendekatan ini dapat saja menghasilkan probabilitas yang cukup akurat Struktur Probabilitas Eksperimen. Contoh: Mencatat kurs US$ terhadap rupiah setiap hari Senin pukul 9 pagi selama 1 bulan Event. Contoh: mendapati kurs US$ terhadap rupiah kurang dari Elementary Event: adalah event yang tidak dapat dipecah lagi menjadi event lain. Ruang sampel (sample space): adalah daftar atau tabel lengkap yang memuat semua elementary event pada suatu eksperimen. 6

2 Struktur Probabilitas (lanjutan) Contoh Ruang : Wawancara dengan pertanyaan jenis penanaman modal (PMA atau PMDN), maka ruang sampelnya adalah: Utk 1 responden: {PMA, PMDN} Utk responden: {PMA-PMA, PMA-PMDN, PMDN-PMA, PMDN-PMDN} Struktur Probabilitas (lanjutan) Union = atau = gabungan. Simbol: U. Intersection = dan = irisan. Simbol:. Contoh: Jika diketahui = {1, 4, 7, 9} dan Y = {, 3, 4, 5, 6}, maka UY = {1,, 3, 4, 5, 6, 7, 9} Y = {4} Y S Y S UY Y Struktur Probabilitas (lanjutan) Mutually Exclusive Events: adalah kejadiankejadian yang tidak mempunyai irisan. Artinya, kejadian yang satu meniadakan kejadian yang Y lainnya; kedua kejadian tidak dapat terjadi secara simultan. Jadi: Y) = 0 apabila dan Y mutually exclusive. Struktur Probabilitas (lanjutan) Independent Events: adalah kejadian-kejadian satu sama lain tidak saling mempengaruhi. Artinya, terjadi atau tidak terjadinya satu kejadian tidak mempengaruhi Y terjadi atau tidak terjadinya kejadian yang lainnya. Jadi: Y) = ) dan Y ) = Y) apabila dan Y adalah kejadian independen. Y) artinya probabilitas bahwa terjadi apabila diketahui Y telah terjadi. Struktur Probabilitas (lanjutan) Collectively Exhaustive Events: adalah daftar semua kejadian elementer (elementary events) yang mungkin terjadi pada sebuah eksperimen. Jadi sebuah ruang sampel selalu terdiri atas Collectively Exhaustive Events. Komplemen dari kejadian A, diberi notasi A yang artinya bukan A adalah semua kejadian elementer pada suatu eksperimen yang bukan A. Jadi: A)+A ) = 1 S Aturan hitungan mn Untuk suatu operasi yang dapat dilakukan dengan m cara dan operasi ke dua yang dapat dilakukan dengan n cara, maka kedua operasi dapat terjadi dalam mn cara. Aturan ini dapat dikembangkan untuk tiga atau lebih operasi. A A 7

3 Pengambilan dari Suatu Populasi Pengambilan sampel berukuran n dari dari populasi berukuran N dengan penggantian (with replacement) akan menghasilkan N n kemungkinan Pengambilan sampel berukuran n dari dari populasi berukuran N tanpa penggantian (without replacement) akan menghasilkan N N! C n N kemungkinan = = n n!( N n)! Marginal, Union, Joint, and Conditional Probabilities Marginal Probability: A) = probabilitas bahwa A terjadi Union Probability: AUB) = probabilitas bahwa A atau B terjadi Joint Probability: AB) = A B) = probabilitas bahwa A dan B terjadi Conditional Probability: A B) = probabilitas bahwa A terjadi apabila diketahui B telah terjadi Aturan Perjumlahan Aturan Umum Perjumlahan: UY) = ) + Y) Y) Aturan Khusus Perjumlahan: Apabila dan Y adalah kejadian yang mutually exclusive, maka UY) = ) + Y) Aturan Perkalian Aturan Umum Perkalian: Y) = ) * Y ) = Y) * Y) Aturan Khusus Perkalian: Apabila dan Y adalah kejadian yang independen, maka UY) = ) * Y) Aturan untuk Probabilitas Bersyarat (Conditional Probability) Probabilitas bahwa terjadi apabila diketahui Y telah terjadi Y ) )* Y ) P ( Y ) = = Y ) Y ) Contoh Soal tentang Probabilitas Di sebuah kota, diketahui bahwa: 41% penduduk mempunyai sepeda motor 19% mempunyai sepeda motor dan mempunyai mobil % mempunyai mobil Apakah kepemilikan sepeda motor dan kepemilikan mobil di kota tersebut independen? Gunakan data di atas untuk menjawabnya. Bila seorang penduduk di kota tersebut diambil secara acak berapa probabilitas bahwa ia memiliki sepeda motor dan tidak memiliki mobil? Bila seorang penduduk di kota tersebut diambil secara acak dan diketahui ia memiliki mobil, berapa probabilitas bahwa ia tidak memiliki sepeda motor? Bila seorang penduduk di kota tersebut diambil secara acak, berapakah probabilitas bahwa ia tidak memiliki sepeda motor dan tidak memiliki mobil? 8

4 Jawab S M S = memiliki sepeda motor; M = memiliki mobil S) = 0.41, SM) = 0.19, M) = 0.. Karena S)M) SM), maka kepemilikan sepeda motor dan kepemilikan mobil tidak independen. dengan diagram Venn didapatkan SM ) = 0.. S M) = S M) / M) = 0.03 / 0. = S M ) = 0.56 (dari diagram Venn) Contoh Soal tentang Probabilitas Hasil sebuah survai yang menanyakan Apakah Anda mempunyai komputer dan/atau kalkulator di rumah? adalah sebagai berikut. Apakah kepemilikan kalkulator dan kepemilikan komputer independen? Kalkulator Komputer Ya Tdk Ya Tdk 3 15 Jawab A = memiliki komputer; B = memiliki kalkulator Kalkulator Ya Komputer Ya Tdk 49 A) = = B) = = AB) = = A)*B) = 0.653*0.76 = AB) A dan B tidak independen Tdk Bagian 3 Variabel Acak Diskret Variabel Acak () Variabel Acak Diskret Variabel acak diskret: hanya mempunyai sejumlah terbatas nilai Variabel acak kontinu: dapat mempunyai tak hingga nilai Rata-rata µ = E( ) = * ) ) f() Deviasi Standar σ = ( µ ) * ) ) =1 f ( x) dx =1 9

5 Distribusi Binomial Distribusi Binomial n = # trials = # sukses p = probabilitas sukses pada satu trial q = 1 - p = probabilitas gagal pada satu trial Rata-rata Distribusi Binomial µ = n* p Deviasi Standar Distribusi Binomial n! ) = p!( n )! σ = q n n * p * q Distribusi Binomial (lanjutan) Terjadi pada: eksperimen yang terdiri atas n trials, dengan setiap trial mempunyai probabilitas sukses p (konstan) MINITAB: Calc -> Probability Distribution -> Binomial Distribusi Poisson Distribusi Poisson: λ e ) =! = 0, 1,,. λ = rata-rata e =.7188 Rata-rata Distribusi Poisson µ = λ Deviasi standar Distribusi Poisson σ = λ Distribusi Poisson merepresentasikan kejadian yang amat jarang. = banyaknya kejadian tersebut terjadi pada suatu waktu atau area MINITAB: Calc -> Probability Distribution -> Poisson λ Bagian 4 Distribusi Normal dan Normal Standar Distribusi Normal (=Gauss) Parameter: µ = rata-rata, dan σ = deviasi standar f(x) Variabel Acak Kontinu µ 10

6 Distribusi Normal dan Normal Standar (lanjutan) Distribusi Normal Standar = distribusi normal untuk µ = 0 dan σ = 1. Konversi dari yang terdistribusi normal ke Z yang terdistribusi normal standar: µ z = σ MINITAB: Calc -> Probability Distribution -> Normal Pilihan Distribusi Probabilitas di dalam MINTAB Calc -> Probability Distribution -> [nama distribusinya, misalnya Normal]. Ada 3 Pilihan: Probability Density Cumulative Probability Inverse Cumulative Probabilty Probability Density Cumulative Probability f(x) f(x) f(input) = output (untuk kontinu) = input) = output (untuk diskret) < input) = output output output µ input µ input Inverse Cumulative Probabilty f(x) < output) = input Contoh Soal Distribusi Kontinu Contoh: Diketahui terdistribusi normal dengan rata-rata 10 dan deviasi standar 15. Carilah x agar >x) = 5%. intput µ output Ans: x =

7 Pendekatan Normal untuk Binomial Binomial: diskret, parameter n dan p Normal: kontinu, parameter µ dan σ Untuk n besar, distribusi binomial akan menyerupai distribusi normal. Jadi untuk masalah binomial dengan n besar, dapat didekati dengan distribusi normal Ingat: Untuk diskret: =x) = ada nilai Untuk kontinu: =x) = 0 Contoh Pendekatan Normal untuk Binomial Untuk yang terdistribusi bimonial dengan n = 80 dan p = 0.3, carilah =4) >30) 30<<34) <33) Jawab: Untuk distribusi bimonial: Rata-rata = µ = np = 80*0.3 = 4 Deviasi Standar = σ = n * p * q = Rata-rata dan deviasi standar tersebut digunakan sebagai parameter distribusi normal = 4) = 3.5 < < 4.5) = < Z < ) diskret kontinu = -0.1 < Z < 0.1) = * = koreksi kontinuitas Cek dengan rumus Binomial: 80! 4 = 4) = !(80 4)! 80 4 = > 30) = > 30.5) = Z > ) diskret kontinu = Z > ) = = koreksi kontinuitas < 34) = 30.5 < < 34.5) = < Z < ) = < Z <.5617) diskret kontinu = = koreksi kontinuitas ) = < 33.5) = Z < ) = Z <.3177) diskret kontinu koreksi kontinuitas = = Distribusi Eksponensial Distribusi Eksponensial (lanjutan) x f ( x) = λe λ Adalah distribusi kontinu dengan x 0 λ > 0 e = Adalah kelompok distribusi dengan parameter = λ yang terjadi pada = 0 Mempunyai ekor di sebelah kanan Nilai x mulai dari nol sampai tak hingga Puncaknya selalu ada di = 0 Kurvanya selalu mengecil untuk yang membesar Menunjukkan distribusi probabilitas untuk waktu antara kejadian acak Rata-rata dan deviasi standarnya: 1 µ = dan λ 1 σ = λ 1

8 f() λ Distribusi Eksponensial (lanjutan) x ) 0 = e λx 0 Contoh Soal Distribusi Eksponensial Di restoran sebuah kota kecil kedatangan pelanggan dapat dianggap terdistribusi Poisson dengan rata-rata 3. pelanggan per 30 menit. Berapa menit waktu rata-rata antar kedatangan pelanggan di restoran tersebut? Berapa probabilitas bahwa antar kedatangan pelanggan ada selang 1 jam atau kurang? Berapa probabilitas bahwa dua pelanggan datang dengan selang waktu kedatangan 15 menit atau lebih? x 0 Jawab µ = 1/3. = Jadi rata-rata 0.313*30 menit = 9.39 menit waktu antar kedatangan pelanggan 1 jam = interval, yaitu * 30 menit. Jadi x =. >) = 1-exp( -3.*) = menit = 0.5 interval. Jadi x = 0.5. >0.5) = exp( -3.*0.5) = 0.0 Bagian 5 Sampling dan Distribusi Sampling Sampling (pengambilan sampel) Dapat menghemat biaya Dapat menghemat waktu Untuk sumberdaya yang terbatas, pengambilan sampel dapat memperluas cakupan studi Bila proses riset bersifat destruktif, pengambilan sampel dapat menghemat produk Apabila akses ke seluruh populasi tidak dapat dilakukan, pengambilan sampel adalah satusatunya pilihan Random Sampling Simple random sampling Stratified random sampling Systematic random sampling Cluster random sampling 13

9 Nonrandom Sampling Convenience sampling Judgement sampling Quota sampling Sampling Distribution (distribusi sampling) untuk Rata-rata Populasi Rata-rata = µ Deviasi standar = σ Rata-rata sampel = Rata-rata sampel = Jadi Variabel acak Rata-rata sampel = Teorema Limit Tengah untuk Ratarata Sampling Distribution (distribusi sampling) untuk Proporsi Apabila sampel berukuran n besar (>30) diambil dari populasi yang mempunyai rata-rata µ dan deviasi standar σ, maka rata-rata sampel akan terdistribusi normal dengan rata-rata µ dan deviasi standar σ/ n Khusus: apabila populasinya terdistribusi normal, maka n pada teorema di atas tidak harus besar. Jadi Z µ σ n = adalah normal standar Proporsi = p Λ pˆ Populasi Proporsi = P Variabel acak Proporsi = Proporsi = p Λ p Λ Teorema Limit Tengah untuk Proporsi Apabila sampel berukuran n diambil dari populasi yang proporsinya P, dengan n*p > 5 dan n*q > 5, maka proporsi sampel p Λ akan terdistribusi normal dengan rata-rata P dan deviasi standar (P*Q/n). Jadi Z = pˆ P P* Q adalah Normal standar n Bagian 6 Estimasi untuk Populasi Tunggal 14

10 Statistika Inferensial Populasi Estimasi Interval untuk µ Selang kepercayaan σ 100(1-α)% untuk µ ± Zα pada sampel besar: n σ σ Artinya: P µ Zα + Zα = 100(1 α)% n n Distribusi Normal Standar Simpulkan (estimasi) tentang parameter mendapatkan statistik α 1-α α Note: apabila σ tidak diketahui dapat digantikan dengan s Estimasi: Estimasi titik, estimasi interval, uji hipotesa Z α 0 Z α Z Estimasi Interval untuk µ (lanjutan) MINITAB: Stat -> Basic Statistics -> 1-sample z Estimasi Interval untuk µ (lanjutan) Output MINITAB: Confidence Intervals The assumed sigma = 10 Variable N Mean StDev SE Mean 95.0 % CI HrgTanah ( 890.9, 957.5) Estimasi Interval untuk µ, sampel kecil. Asumsi: Populasi terdistribusi Normal Selang kepercayaan 100(1-α)% untuk µ pada sampel kecil: s P tα, n 1 n t ± α,n 1 s n s Artinya: µ + t α = 100(1 α )%, n 1 n Estimasi Interval untuk µ sampel kecil (lanjutan) MINITAB: Stat -> Basic Statistics -> 1-sample t α 1-α distribusi t dengan df = n-1 α t α, n 1 0 t α, n 1 t 15

Histogram (contoh MINITAB) Distribusi Frekuensi. Ungrouped Data vs Grouped data Range Class midpoint Frekuensi Relatif Frekuensi Kumulatif

Histogram (contoh MINITAB) Distribusi Frekuensi. Ungrouped Data vs Grouped data Range Class midpoint Frekuensi Relatif Frekuensi Kumulatif Kursus Statistika Dasar Bagian Statistika Deskriptif Pengelompokan Statistika Statistika Deskriptif: statistika yang menggunakan data pada suatu kelompok untuk menjelaskan atau menarik kesimpulan mengenai

Lebih terperinci

Sekoin uang logam mempunyai dua permukaan H dan T dilemparkan berkali kali. Hasil yg diperoleh pada setiap pelemparan apakah H atau T di catat Hasil

Sekoin uang logam mempunyai dua permukaan H dan T dilemparkan berkali kali. Hasil yg diperoleh pada setiap pelemparan apakah H atau T di catat Hasil Pertemuan 13 &14 Sekoin uang logam mempunyai dua permukaan H dan T dilemparkan berkali kali. Hasil yg diperoleh pada setiap pelemparan apakah H atau T di catat Hasil dari keseluruhan event yang didapat

Lebih terperinci

ESTIMASI. Arna Fariza PENDAHULUAN

ESTIMASI. Arna Fariza PENDAHULUAN ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

STATISTIKA II IT

STATISTIKA II IT STATISTIKA II IT-011227 Ummu Kalsum UNIVERSITAS GUNADARMA 2017 Keterlambatan : KONTRAK KULIAH MOHON KETERLAMBATAN TIDAK LEBIH 15 MENIT Sanksi atau hukuman, sebagai contoh: Menguraikan pengetahuan tentang

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

Ummu Kalsum UNIVERSITAS GUNADARMA

Ummu Kalsum UNIVERSITAS GUNADARMA Ummu Kalsum UNIVERSITAS GUNADARMA 2016 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling)

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Probabilitas dan Proses Stokastik

Probabilitas dan Proses Stokastik Probabilitas dan Proses Stokastik Tim ProStok Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember Surabaya, 2014 O U T L I N E 1. Capaian Pembelajaran 2. Pengantar dan 3. Contoh 4. Ringkasan

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:

Lebih terperinci

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY PENGANTAR PROBABILITAS GANGGA ANURAGA POKOK BAHASAN Konsep dasar probabilitas Teori himpunan Permutasi Kombinasi Koefisien binomial Koefisien multinomial Probabilitas Aksioma probabilitas Probabilitas

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

STATISTIK PERTEMUAN VII

STATISTIK PERTEMUAN VII STATISTIK PERTEMUAN VII Distribusi Sampling Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, pada statistik

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Biostatistika (KUI 611) TOPIK 3: VARIABEL RANDOM & DISTRIBUSI PROBABILITAS

Biostatistika (KUI 611) TOPIK 3: VARIABEL RANDOM & DISTRIBUSI PROBABILITAS Biostatistika (KUI 611) TOPIK 3: VARIABEL RANDOM & DISTRIBUSI PROBABILITAS 1 Probabilitas Perlunya pengetahuan tentang probabilitas dalam Biostatistik Pengertian probabilitas, variabel random dan distribusi

Lebih terperinci

Dasar-dasar Statistika Pemodelan Sistem

Dasar-dasar Statistika Pemodelan Sistem Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016

Lebih terperinci

Review Teori Probabilitas

Review Teori Probabilitas Rekayasa Trafik 1 Review Teori Probabilitas Rekayasa Trafik Outline Arti Probabilitas Counting Method Random Variable Discrete RV Continuous RV Multiple RVs Rekayasa Trafik 2 Arti Probabilitas Rekayasa

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Distribusi Peluang DISKRIT DAN KONTINYU Random Variable Random variable / peubah acak: Suatu fungsi yang mengaitkan suatu bilangan real dengan tiap elemen

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26 Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

ALJABAR SET & AKSIOMA PROBABILITAS

ALJABAR SET & AKSIOMA PROBABILITAS ALJABAR SET & AKSIOMA PROBABILITAS Pokok Bahasan Sample Space Event Aljabar Set Prinsip dan Aksioma Probabilitas Equally Likely Event Conditional Probability Independent Event Sample Space dan Event Eksperimen

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji t Uji Proportional Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., 2001. Walpole, R.E.,

Lebih terperinci

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson DISTRIBUSI POISSON Pendahuluan Distribusi poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson. Distribusi ini merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII October 7, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7,

Lebih terperinci

DATA COLLECTION PLAN SAMPLING

DATA COLLECTION PLAN SAMPLING DATA COLLECTION PLAN Tipe data ada 2 macam: 1. Data kualitatif (categorical), misalnya: status perkawinan, partai politik, warna mata (defined categories). 2. Data kuantitatif (numerical), terdiri atas

Lebih terperinci

Distribusi Peluang. Kuliah 6

Distribusi Peluang. Kuliah 6 Distribusi Peluang Kuliah 6 1. Diskrit 1. Bernoulli 2. Binomial 3. Poisson Distribution 2. Kontinu 1. Normal (Gaussian) 2. t 3. F 4. Chi Kuadrat Distribusi Peluang 1.1. Distribusi Bernoulli Distribusi

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Distribusi Sampling Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Populasi dan Sampel Unit adalah entitas (wujud) tunggal, biasanya orang atau suatu obyek, yang diinginkan

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Langkah-langkah Uji Hipotesis Jenis Uji Hipotesis satu populasi Uji Z Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability

Lebih terperinci

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP STATISTICS WEEK 4 Hanung N. Prasetyo Pendahuluan: Penyajian distribusi probabilitas dalam bentuk grafis, tabel atau melalui rumusan tidak masalah, yang ingin dilukiskan adalah perilaku (kelakuan) perubah

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

Wilcoxon Signed-Rank Test Single-Sample (Ade Heryana, SST, MKM) April 16, 2017

Wilcoxon Signed-Rank Test Single-Sample (Ade Heryana, SST, MKM) April 16, 2017 BINOMIAL SIGN TEST FOR A SINGLE-SAMPLE (Uji Tanda Binomial untuk Satu Sampel) Oleh: Ade Heryana, SST, MKM Prodi Kesehatan Masyarakat, FIKES Univ. Esa Unggul PENDAHULUAN Uji Binomial Sign Single-sample

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak STK511 Analisis Statistika Pertemuan 3 Sebaran Peluang Peubah Acak Beberapa Konsep Dasar Percobaan statistika: kegiatan yang hasil akhir keluarannya tidak diketahui di awal, tetapi kemungkinan-kemungkinannya

Lebih terperinci

STATISTIKA BISNIS PENDUGAAN STATISTIKA. Deden Tarmidi, SE., M.Ak., BKP. Modul ke: Fakultas Ekonomi dan Bisnis. Program Studi Akuntansi

STATISTIKA BISNIS PENDUGAAN STATISTIKA. Deden Tarmidi, SE., M.Ak., BKP. Modul ke: Fakultas Ekonomi dan Bisnis. Program Studi Akuntansi Modul ke: STATISTIKA BISNIS PENDUGAAN STATISTIKA Fakultas Ekonomi dan Bisnis Deden Tarmidi, SE., M.Ak., BKP. Program Studi Akuntansi www.mercubuana.ac.id PENDAHULUAN Data yang sudah didapat dari populasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL

MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL Tujuan Praktikum: Membantu mahasiswa memahami materi Distribusi Eksponensial Pengambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat Distribusi

Lebih terperinci

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso. Beberapa 27 April 2014 Beberapa Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat memahami dan menghitung

Lebih terperinci

Estimasi dan Confidence Interval

Estimasi dan Confidence Interval Estimasi dan Confidence Interval Tjipto Juwono, Ph.D. June 2017 TJ (SU) Estimasi dan Confidence Interval June 2017 1 / 31 Point Estimate Point Estimate: Adalah suatu nilai tunggal (point) yang diperoleh

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

BAB 8 DISTRIBUSI PELUANG DISKRIT

BAB 8 DISTRIBUSI PELUANG DISKRIT BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu

Lebih terperinci

Estimasi dan Confidence Interval

Estimasi dan Confidence Interval Estimasi dan Confidence Interval Tjipto Juwono, Ph.D. April 5, 2016 TJ (SU) Estimasi dan Confidence Interval April 2016 1 / 30 Point Estimate Point Estimate: Adalah suatu nilai tunggal (point) yang diperoleh

Lebih terperinci

BAB 2 LANDASAN TEORI. Dalam penulisan skripsi ini, dijabarkan beberapa aksioma dan teorema yakni sebagai berikut :

BAB 2 LANDASAN TEORI. Dalam penulisan skripsi ini, dijabarkan beberapa aksioma dan teorema yakni sebagai berikut : BAB 2 LANDASAN TEORI 2.1 Aksioma dan Teorema Dalam penulisan skripsi ini, dijabarkan beberapa aksioma dan teorema yakni sebagai berikut : Aksioma 1 Untuk setiap kejadian, non-negatif.. Yakni bahwa probabilitas

Lebih terperinci

Distribusi Sampling 6.2. Debrina Puspita Andriani /

Distribusi Sampling 6.2. Debrina Puspita Andriani    / 6. Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id Outline Pengertian dan Konsep Dasar Distribusi Sampling Distribusi Sampling Mean Distribusi Sampling Proporsi Distribusi Sampling

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji Z: Proportional Populasi Uji Hipotesis 2 populasi: Uji Z Uji pooled t-test Uji paired t-test Referensi: Johnson, R. A., Statistics

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Distribusi Probabilitas Diskrit: Poisson

Distribusi Probabilitas Diskrit: Poisson Distribusi Probabilitas Diskrit: Poisson 7.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Pendekatan Binomial Poisson Distribusi Poisson Kapan distribusi

Lebih terperinci

BAB 5 PENENTUAN POPULASI DAN SAMPEL PENELITIAN. Populasi adalah wilayah generalisasi yang terdiri atas obyek atau

BAB 5 PENENTUAN POPULASI DAN SAMPEL PENELITIAN. Populasi adalah wilayah generalisasi yang terdiri atas obyek atau BAB 5 PENENTUAN POPULASI DAN SAMPEL PENELITIAN 5.1. Populasi dan Sampel Populasi adalah wilayah generalisasi yang terdiri atas obyek atau subyek yang memiliki kuantitas atau kualitas tertentu yang ditentukan

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

Probabilitas. Oleh Azimmatul Ihwah

Probabilitas. Oleh Azimmatul Ihwah Probabilitas Oleh Azimmatul Ihwah Teori Probabilitas Life is full of uncertainty Dimana terkadang kita tidak tahu apa yang akan terjadi semenit kemudian. Namun suatu kejadian dapat diperkirakan lebih sering

Lebih terperinci

SEJARAH DISTRIBUSI POISSON

SEJARAH DISTRIBUSI POISSON SEJARAH DISTRIBUSI POISSON Distribusi poisson disebut juga distribusi peristiwa yang jarang terjadi, ditemukanolehs.d. Poisson (1781 1841), 1841), seorang ahli matematika berkebangsaan Perancis. Distribusi

Lebih terperinci

Probabilitas. Tujuan Pembelajaran

Probabilitas. Tujuan Pembelajaran Probabilitas 1 Tujuan Pembelajaran 1.Menjelaskan Eksperimen, Hasil,, Ruang Sampel, & Peluang 2. Menjelaskan bagaimana menetapkan peluang 3. Menggunakan Tabel Kontingensi, Diagram Venn, atau Diagram Tree

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

(ESTIMASI/ PENAKSIRAN)

(ESTIMASI/ PENAKSIRAN) ESTIMASI PENDAHULUAN Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik tenaga, waktu, maupun

Lebih terperinci

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah, ST., MT SIGN TEST Sign Test Digunakan untuk menguji hipotesa tentang MEDIAN dan DISTRIBUSI KONTINYU. Pengamatan dilakukan pada median dari sebuah distribusi

Lebih terperinci

Binomial Distribution. Dyah Adila

Binomial Distribution. Dyah Adila Binomial Distribution Dyah Adila Binomial Distribution adalah bentuk percobaan yang memiliki syarat-syarat sebagai berikut: 1. Percobaan dilakukan sebanyak n kali. 2. Setiap percobaan memiliki dua hasil

Lebih terperinci

Pemilihan Data (Sampel) Penelitian

Pemilihan Data (Sampel) Penelitian Pemilihan Data (Sampel) Penelitian 1. Populasi dan Sampel Populasi yaitu sekelompok orang, kejadian atau segala sesuatu yang mempunyai karakteristik tertentu. Populasi adalah keseluruhan subjek penelitian

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

Penduga : x p s r b. Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER

Penduga : x p s r b. Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER 5.1 Pengertian Pendugaan Parameter. Pendugaan merupakan suatu bagian dari statistik inferensia yaitu suatu pernyataan mengenai parameter populasi yang tidak diketahui

Lebih terperinci

Muhammad Arif Rahman https://arifelzainblog.lecture.ub.ac.id/

Muhammad Arif Rahman https://arifelzainblog.lecture.ub.ac.id/ Muhammad Arif Rahman arifelzain@ub.ac.id Populasi Keseluruhan objek penelitian atau keseluruhan elemen yang akan diteliti. Sampel Sebagian dari populasi Representatif dapat memberi gambaran yang tepat

Lebih terperinci

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Kehidupan sehari-hari sering dihadapkan dengan beberapa pilihan yang harus ditentukan memilih yang mana. Biasanya dihadapkan dengan kemungkinankemungkinan

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

BAB II PROBABILITAS Ruang sampel (sample space)

BAB II PROBABILITAS Ruang sampel (sample space) BAB II ROBABILITAS 2.1. Ruang sampel (sample space) Data diperoleh baik dari pengamatan kejadian yang tak dapat dikendalikan atau dari percobaan yang dikendalikan dalam laboratorium. Untuk penyederhanaan

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2009, hal : 53) simulasi dapat diartikan sebagai suatu

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2009, hal : 53) simulasi dapat diartikan sebagai suatu BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2009, hal : 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif untuk

Lebih terperinci

PEMBAHASAN UTS 2015/2016 STATISTIKA 1

PEMBAHASAN UTS 2015/2016 STATISTIKA 1 PEMBAHASAN UTS 2015/2016 STATISTIKA 1 1. pernyataan berikut ini menjelaskan definisi dan cakupan statistika deskriptif, KECUALI : a. statistika deskriptif mendeskripsikan data yang telah dikumpulkan (Organizing)

Lebih terperinci

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Descriptive Statistics mengandung metoda dan prosedur yang digunakan untuk pengumpulan, pengorganisasian, presentasi dan memberikan karakteristik terhadap himpunan

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

STATISTIKA LINGKUNGAN

STATISTIKA LINGKUNGAN STATISTIKA LINGKUNGAN TEORI PROBABILITAS Probabilitas -pendahuluan Statistika deskriptif : menggambarkan data Statistik inferensi kesimpulan valid dan perkiraan akurat ttg populasi dengan mengobservasi

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

Metode Sampling dan Teorema Central Limit

Metode Sampling dan Teorema Central Limit Metode Sampling dan Teorema Central Limit Tjipto Juwono, Ph.D. Oct 28, 2016 TJ (SU) Metode Sampling dan Teorema Central Limit Oct 2016 1 / 52 Mengapa Perlu Sampling? Contoh Kita ingin mengetahui elektabilitas

Lebih terperinci

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.

Lebih terperinci

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL

PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL Statistika, Vol., No., Mei PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL Moh. Yamin Darsyah, Dwi Haryo Ismunarti Program Studi S Statistika Universitas Muhammadiyah Semarang, Jl. Kedung

Lebih terperinci

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Distribusi Normal. 1-Sep-14

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Distribusi Normal. 1-Sep-14 Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Distribusi Normal 1-Sep-14 http://istiarto.staff.ugm.ac.id 1 Distribusi Binomial Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari

Lebih terperinci

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.

Lebih terperinci