BAB 8 DISTRIBUSI PELUANG DISKRIT

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 8 DISTRIBUSI PELUANG DISKRIT"

Transkripsi

1 BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu peristiwa terjadi atau tidak terjadi. Untuk menyatakan suatu ketidakpastian atau kepastian diperlukan permodelan matematis yang secara teoritis dinyatakan dengan sebaran atau distribusi. Nilai probabilitas suatu kejadian dalam suatu percobaan tersebar di antara 0 dan 1 atau antara 0% dan 100%. Jika probabilitas/peluang suatu kejadian A terjadi dilambangkan dengan notasi P(A) maka, probabilitas [bukan A] atau komplemen A, atau probabilitas suatu kejadian A tidak akan terjadi, adalah 1-P(A). Secara sederhana peluang suatu kejadian terjadi atau tidak dapat direpresentasikan pada tabel 10.1 berikut. Tabel 10.1 peluang suatu kejadian terjadi atau tidak Tipe representasi Peristiwa terjadi Peristiwa tidak terjadi Persentase 100% 0% Bilangan bulat 1 0 Notasi peluang P[A] 1 P[A] Pada aplikasi di kehidupan sehari-hari, peluang distribusi sangat berguna untuk menganalisis terjadinya suatu peristiwa atau kejadian, jika kejadian bersifat berhingga maka objek sebarannya berbeda dengan kejadian yang tak berhingga. Objek dari sebaran peluang adalah variabel acak dimana objek ini merupakan suatu fungsi yang mengaitkan suatu bilangan real pada setiap unsur dalam ruang sampel. Jenis-jenis sebaran perlu dipahami sebagai dasar penentuan uji kebolehjadian. Dan dalam hubungannya dengan pengujian objek percobaan, pemilihan sebaran akan mempermudah penghitungan peluang. Ditinjau dari objek kajian peluang distribusi akan dikenal istilah peubah acak yang diklasifikasikan dalam kelompok besar yaitu peubah acak diskrit dan kontinyu, dimana masing-masing peubah memiliki beberapa jenis distribusi. Pada sebarang jenis percobaan yang kita lakukan maka setiap proses yang melalui proses pengukuran akan mendapatkan suatu kemungkinan-kemungkinan. Kemungkinan Distribusi Peluang Diskrit Page 1

2 pada percobaan akan menghasilkan suatu hasil numerik. Bilangan tersebut dapat dipandang sebagai nilai yang diperoleh suatu peubah acak. B. Pengertian Distribusi Peluang Diskrit Jika suatu ruang sampel mengandung titik yang berhingga banyaknya atau sederetan angka yang banyaknya sebanyak bilangan bulat, maka ruang sampel itu disebut ruang sampel diskrit sedangkan peubah acak yang didefinisikan pada ruang sampel tersebut adalah variabel acak diskrit. Variabel acak diskrit X menentukan distribusi peluang apabila untuk nilai-nilai X = x 1, x 2,, x n terdapat peluang p (x i ) sehingga: n p(x i ) = 1, i 1 p(x) disebut fungsi peluang untuk variabel acak X pada harga X = x Suatu nilai yang diharapkan akan menjadi kejadian dapat dipandang sebagai nilai harapan atau dinyatakan dengan (X) dibaca ekspektasi. Dimana nilai harapan suatu peubah acak dapat diperoleh dengan mengalikan tiap nilai peubah acak tersebut dengan peluangnya dan menjumlahkan hasilnya. (X) = xi. p(xi) Jenis distribusi peluang diskrit antara lain Distribusi Seragam (Uniform), Distribusi Binominal, Distribusi Multinominal, Distribusi Hypergeometrik, Distribusi Poisson. 1. Distribusi Seragam (Uniform) Diskrit Edhy Sutanta (2005:74) menyatakan setiap kejadian mempunyai probabilitas atau peluang yang sama/ seragam (uniform). Sedangkan menurut Budiyono (2009: 97) Distribusi uniform diskret merupakan distribusi variabel random diskret yang mengasumsikan bahwa semua nilai mempunyai kemungkinan yang sama untuk muncul. Definisi 1: Bila peubah acak X mendapat harga x1, x2,..., xn, dengan peluang yang sama, maka distribusi seragam diskrit diberikan oleh : Keterangan : P(x) = 1 n Distribusi Peluang Diskrit Page 2

3 P(x): Peluang terjadinya x x: harga variabel n banyaknya data pengamatan / ukuran sampel Teorema 1 Rataan distribusi seragam diskrit f(x, k) adalah n μ = E(x) = i=1 x. P(x), dimana E(x)= Ekspektasi x Varians distribusi seragam diskrit adalah k dan σ 2 = (x μ) 2. P(x) i=1 Contoh : Untuk merencanakan persediaan suatu barang x, suatu toko serba ada (Toserba) perlu memperkirakan jumlah permintaan harian terhadap barang x. Menurut catatan penjualan, diketahui bahwa permintaan harian terhadap barang x adalah berkisar di antara 0-5 unit. Permintaan ini memiliki fluktuasi secara acak, sehingga tidak bisa ditentukan peluang permintaannya. Dalam hal ini, maka permintaan terhadap barang x dapat dimodelkan mengikuti distribusi uniform. Untuk empermudah penyelesaian contoh diatas, akan digunakan bantuan perhitungan seperti ditampilkan pada Tabel Distribusi Peluang Diskrit Page 3

4 permintaan x Tabel 10.2 Perhitungan untuk distribusi uniform Probabilitas Permintaan P(x) xp(x) (x μ) 2 (x μ) 2 P(x) 0,25 1, Jumlah 15 2,25 0, ,25 0,041 0,25 0,041 2,25 0,37500,25 1,041 17,5 2,91 Berdasarkan hasil perhitungan pada tabel 10.2 maka ekspektasi rata-rata permintaan per hari terhadap barang x, adalah sebagai berikut : μ = E(x) = x. P(x) n i=1 = 15 = 2,5 unit perhari Sedangkan dengan pendekatan distribusi uniform, maka rata-rata permintaan per hari terhadap barang x adalah sebgai berikut : k σ 2 = (x μ) 2. P(x) i=1 σ = k i=1 (x μ) 2. P(x) = 2,91 = 1,7078 unit. 2. Distribusi Binomial Distribusi binomial menggambarkan distribusi probabilitas variabel acak diskrit yang hanya mempunyai dua nilai yang mengkin, misalnya berhasil atau gagal. (Sutanta: 2005, 7). Budiyono (2009 : 98) juga mengatakan bahwa Distribusi peluang binomial adalah distribusi peluang yang dihasilkan dari sebuah eksperimen yang Distribusi Peluang Diskrit Page 4

5 sering dilakukan berulang-ulang, yang setiap kali hasil ulangan mempunyai dua kemungkinan hasil yang dapat disebut sukses dan gagal. Sudjana (2005 : 130) juga berpendapat sama yaitu distribusi binom adalah distribusi yang dihasilkan dari eksperimen yang hanya menghasilkan peristiwa A dan bukan A. Ciri-ciri atau karakteristik distribusi binomial : a. Percobaan diulang sebanyak n kali b. Hasil setiap ulangan dapat dikategorikan dalam 2 kelas. Misal : berhasil atau gagal, ya atau tidak, success atau failed c. Peluang berhasil atau sukses disimbolkan dengan p dan dalam setiap ulangan nilai p tetap, dimana p = 1 q sedangkan peluang gagal dinyatakan dengan q dimana q = 1 p d. Banyaknya keberhasilan dalam peubah acak disimbolkan dengan X e. Setiap ulangan bersifat bebas (independent) satu dengan lainnya. f. Semakin banyak N maka peluang terjadinya suatu kejadian tertentu semakin kecil. Perlu diingat bahwa kejadian yang menjadi pertanyaan ataupun ditanyakan dari suatu permasalahan bisa dikategorikan sebagai kejadian sukses atau berhasil. Definisi 2 Banyaknya sukses X dalam n usaha suatu percobaan binomial disebut suatu peubah acak binomial. Untuk mencari peluang dengan distribusi binomial digunakan rumus : P(X) = ( N X ) px q N X Sedangkan koefisien binom dicari dengan rumus: Sehingga didapatkan rumus : Dengan P(X) = ( N n ) = N! n! (N n)! N! n! (N n)! px q N X X = 0,1,2,, N ; N! = N(N 1)(N 2).1; dan 0! = 1 berdasarkan definisi, dalam distribusi binom dikenal parameter rata-rata (μ) dan simpangan baku (σ) Mean μ = Np Sandar Deviasi σ = Npq Distribusi Peluang Diskrit Page 5

6 Varians σ 2 = Npq Contoh : Dalam pelambungan sebuah mata uang tiga kali, didefinisikan X= banyaknya Angka yang muncul. Berapa peluangnya muncul 2 buah Angka? Jawab : p = Peluang muncul angka pada satu pelambungan = 1 2 N = 3 (Banyaknya pelambungan, banyaknya pengulangan) X = 2 (Banyaknya Angka yang diharapkan muncul) P(X) = ( N X ) px q N X P(X = 2) = ( 3 2 ) (1 2 ) 2 (1 1 2 ) 3 2 = (3) ( 1 4 ) (1 2 ) = 3 8 Jadi peluang munculnya 2 buah Angka adalah Distribusi Multinomial Distribusi multinomial merupakan distribusi variabel acak diskrit dimana suatu percobaan dapat menghasilkan beberapa kejadian. Distribusi multinomial adalah perluasan dari distribusi binomial (Sudjana, 2005 :132). Budiyono (2009 : 101) menyatakan bahwa eksperimen binomial akan menjadi eksperimen multinomial jika setiap percobaan menghasilkan lebih dari dua kemungkinan hasil. Dalam pelambungan sebuah dadu misalnya, akan terjadi kemungkinan, yaitu muncul mata 1,2,3,4,5, atau (Spiegel, Murray R., 2004 : 35). Misalkan sebuah percobaan menghasilkan kejadian E1, E2,, Ek dengan peluang p 1, p 2,, p K dan dilakukan percobaan sebanyak N kali maka peluang terjadinya x1 peristiwa E1, x2 peristiwa E2, xk peristiwa Ek diantara N, ditentukan oleh : P(X 1, X 2,, X K ) = N! X 1! X 2!, X K! p 1 X 1p 2 X 2.. p K X K Dimana X 1 + X X K = N Distribusi ini merupakan perluasan distribusi binomial. Karena rumus diatas adalah suku umum dalam ekspansi multinomial (p 1 + p p K ) N. Distribusi Peluang Diskrit Page

7 Contoh : Dalam sebuah kotak terdapat 3 bola merah, 4 bola biru, dan 5 bola putih. Sebuah bola diambil dari kotak tersebut, dilihat warnanya, kemudian dikembalikan lagi kedalam kotak. Diambil sebuah bola lagi, dilihat warnanya, kemudian dikembalikan lagi kedalam kotak. Hal demikian dilakukan sampai kali. Dalam kali pengambilan tersebut, berapa peluangnya terdapat 1 bola merah, 2 bola biru, dan 3 bola putih? Jawab : x 1 = 1; x 2 = 2; x 3 = 3; n = ; p 1 = 3 12 ; p 2 = 4 12 ; p 3 = 5 12 P(1 bola merah, 2 bola biru, dan 3 bola putih) =! 1! 2! 3! ( 3 12 ) 1 ( 4 12 ) 2 ( 5 12 ) 3 = 0, Distribusi Hipergeometrik Definisi 3 Banyaknya sukses X dalam percobaan hipergeometrik disebut peubah acak hipergeometrik. Budiyono (2009 : 102), menyatakan bahwa distribusi hipergeometrik adalah distribusi dari eksperimen sampling tanpa pengambilan. Jika sebuah variabel acak x menyatakan jumlah sukses dalam n percobaan / sampel dan total jumlah sukses (Edhy Sutanta, 2005 :79). D diambil dari sebuah populasi berukuran N, maka x dikatakan mengikuti distribusi hipergeometrik dengan fungsi peluang dirumuskan sebagai berikut : p(x) = (D x )(N D n x ) ( N n ) Keterangan : P(x) : peluang x D : pengambilan N : populasi n : banyaknya data pengambilan / sampel (Sutanta:2005,79) Distribusi Peluang Diskrit Page 7

8 Dengan x = 0,1,2,, n dan faktor faktor diruas kanan ditentukan oleh rumus : ( N n ) = N! n! (N n)! Apabila populasi besar dan sampel relatif kecil, pengambilan secara sampling dilakukan tanpa pengembalian menimbulkan efek terhadap probabilitas sukses dalam setiap percobaan kecil, untuk mendekati nilai probabilitas hipergeometrik dapat digunakan konsep distribusi binomial, dengan syarat n 0,05 N. Suatu percobaan hipergeometrik memiliki sifat berikut: 1. Sampel acak ukuran n diambil dari N benda. 2. Sebanyak k benda dapat diberi nama sukses sedangkan sisanya, N k diberi nama gagal. Rataan dan variansi distribusi hipergeometrik h(x; N, n, k) adalah μ = nk N dan σ 2 = Teorema 4 N n N 1 n. k N (1 k N ) Contoh : Suatu kotak memuat 100 bola dan 5 diantaranya merah. Jika 10 bola diambil tanpa pengembalian, berapakah probabilitas mendapat paling sedikit 4 merah? Jawab : p(x) = (D x )(N D n x ) ( N n ) p(x 4) + p(x = 5) = (5 4 )( ) ( ) + ( 5 5 )( ) ( ) = 0, Distribusi Poisson Distribusi poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson. Percobaan Poisson apabila menghasilkan peubah acak X yang menyatakan banyaknya hasil selama selang waktu, periode atau daerah tertentu. Misalnya jumlah barang yang cacat setiap kali pengiriman, banyaknya hubungan telepon yang diterima kantor per jam. Distribusi Peluang Diskrit Page 8

9 Beberapa karakteristik distribusi Poisson adalah sebagai berikut: a. Banyaknya hasil yang terjadi dalam suatu interval tertentu tidak terpengaruh oleh apa yang terjadi pada interval lain yang terpisah (tidak berpotongan dan independent) dalam kaitan ini, proses Poisson dikatakan tidak punya ingatan). b. Peluang terjadi suatu hasil (tunggal) dalam selang tertentu yang amat pendek sebanding dengan panjang selang dan tidak tergantung pada banyaknya hasil yang terjadi dluar selang c. Peluang terjadinya lebih dari satu hasil dalam selang waktu yang pendek (sempit) dapat diabaikan. Distribusi ini merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai nilai 0, 1, 2, 3 dan seterusnya. Suatu bentuk dari distribusi ini adalah rumus pendekatan peluang poisson untuk peluang binomial yang dapat digunakan untuk pendekatan probabilitas binomial dalam situasi tertentu.rumus poisson dapat digunakan untuk menghitung probabilitas dari jumlah kedatangan, misalnya: probabilitas jumlah kedatangan nasabah pada suatu bank pada jam kantor. Budiyono, (2009 : 103) menyatakan jika pada distribusi binomial b(x; n; θ), parameter n cukup besar (secara teoritis n ~) maka akan diperoleh distribusi poisson dangan parameter = nθ. Sutanta (2005:80) menyatakan jika suatu variabel random x menyatakan ratarata kedatangan pada suatu rentang waktu yang kecil, maka x dikatakan mengikuti distribusi poisson, dengan formula : p(x) = P(X = x) = e x x! Dimana : e= = sebuah bilangan tetap untuk e λ dapat dilihat dalam tabel daftar D x = 1,2, 3,.. p(x) = probabilitas kelas sukses Teorema 5 Rataan dan variansi distribusi poisson p(x; µ) keduanya sama dengan µ. Distribusi Poisson dapat diposisikan sebagai bentuk limit distribusi binomial bila n, p 0, dan np tetap tidak berubah. Jadi bila n besar dan p dekat dengan nol, distribusi Poisson dapat digunakan dengan µ = np, untuk menghampiri peluang bimomial. Distribusi Peluang Diskrit Page 9

10 Contoh : Jika peluang seseorang terkena penyakit demam adalah 0,005, berapa peluang bahwa terdapat 18 orang yang terkena penyakit demam dari 3000 orang? Jawab : Jika X= banyaknya orang yang terkena penyakit demam, maka X berdistribusi Poisson dengan parameter =nθ=(3000)(0,005)=15. Oleh karena itu peluang yang ditanyakan ialah : P(X=18) = p(18;15) = e = 0,070 18! Jadi dari 3000 orang, peluang 18 orang diantaranya terkena penyakit demam adalah 0,070. Distribusi Peluang Diskrit Page 10

11 DAFTAR PUSTAKA Akbar, Purnomo Setiady dan Husaini Usman Pengantar Statistika Edisi Kedua. Jakarta : PT Bumi Aksara Akdon dan Riduwan Rumus dan Data dalam Analisis Statistika. Bandung : Alfabeta. Dajan, Anto, 198. Pengantar Metode Statistik Jilid II. Jakarta : LP3ES. Furqon Statistika Terapan Untuk Penelitian. AFABETA:Bandung Gaspersz, Vincent Statistika. Armico:Bandung Hamid, H.M. Akib dan Nar Herrhyanto Statistika Dasar. Jakarta : Universitas Terbuka. Harinaldi, Prinsip-prinsip Statistik untuk Teknik dan Sains. Jakarta : Erlangga. Hasan, M. Iqbal Pokok Pokok Materi Statistika 1 ( Statistik Deskriptif ). Jakarta : PT Bumi Aksara Herrhyanto, Nar Statistika Dasar. Jakarta: Universitas Terbuka. Mangkuatmodjo, Soegyarto Statistika Lanjutan. Jakarta: PT Rineka Cipta. Pasaribu, Amudi Pengantar Statistik. Gahlia Indonesia : Jakarta Rachman,Maman dan Muchsin Konsep dan Analisis Statistik. Semarang : CV. IKIP Semarang Press Riduwan Dasar-dasar Statistika. Bandung : Alfabeta. Saleh,Samsubar STATISTIK DESKRIPTIP. Yogyakarta : UPP AMP YKPN. Siregar,Syofian Statistika Deskriptif untuk Penelitian Dilengkapi Perhitungan Manual dan Aplikasi SPSS Versi 17. Jakarta : Rajawali Pers. Somantri, Ating dan Sambas Ali Muhidin Aplikasi statistika dalam Penelitian. pustaka ceria : Bandung Subana,dkk Statistik Pendidikan. Pustaka Setia:Bandung Sudijono, Anas Pengantar Statistik Pendidikan. Raja Grafindo Persada.Jakarta Sudijono, Anas Pengantar Statistik Pendidikan. Jakarta : PT RajaGrafindo Persada. Sudijono, Anas Pengantar Statistik Pendidikan. Jakarta : PT RajaGrafindo Persada. Sudjana, M.A., M.SC METODE STATISTIKA. Bandung: Tarsito Sugiyono Statistika untuk Penelitian. Bandung : Alfabeta. Supranto, Statistik Teori dan Aplikasi Jilid 2. Jakarta : Erlangga. Usman, Husaini & Setiady Akbar, Purnomo.200. PENGANTAR STATISTIKA. Yogyakarta: BUMI AKSARA. Walpole, Ronald E, Pengantar Statistik Edisi Ke-4. Jakarta : PT Gramedia. Distribusi Peluang Diskrit Page 11

BAB 9 DISTRIBUSI PELUANG KONTINU

BAB 9 DISTRIBUSI PELUANG KONTINU BAB 9 DISTRIBUSI PELUANG KONTINU A. Pengertian Distribusi Peluang Kontinu Distribusi peluang kontinu adalah peubah acak yang dapat memperoleh semua nilai pada skala kontinu. Ruang sampel kontinu adalah

Lebih terperinci

BAB 12 REGRESI. turun. X = subyek pada variabel independen yang mempunyai nilai tertentu. Regresi Page 1

BAB 12 REGRESI. turun. X = subyek pada variabel independen yang mempunyai nilai tertentu. Regresi Page 1 BAB 1 REGRESI A. Pendahuluan Dalam pengambilan keputusan, seringkali dijumpai beberapa permasalahan dimana terdapat dua atau lebih variabel tunggal yang hubungannya tidak dapat dipisahkan dan perlu diselidiki

Lebih terperinci

BAB 13 KORELASI. Korelasi Page 1

BAB 13 KORELASI. Korelasi Page 1 BAB 13 KORELASI A. Pengerian Korelasi Linear Sederhana Korelasi adalah istilah statistik yang menyatakan derajat hubungan linear antara dua variabel atau lebih, yang ditemukan oleh Karl Pearson pada awal

Lebih terperinci

BAB 10 DISTRIBUSI PELUANG KONTINU (Menginterpretasikan table)

BAB 10 DISTRIBUSI PELUANG KONTINU (Menginterpretasikan table) BAB 10 DISTRIBUSI PELUANG KONTINU (Menginterpretasikan table) A. Distribusi normal Probabilitas distribusi normal standar kumulatif dapat lebih mudah di hitung dengan bantuan tabel distribusi normal. Berikut

Lebih terperinci

BAB 11 HIPOTESIS. Hipotesis Page 1

BAB 11 HIPOTESIS. Hipotesis Page 1 BAB 11 HIPOTESIS A. Pengertian Hipotesis Statistik Hipotesis pada dasarnya merupakan suatu proposisi atau anggapan yang mungkin benar, dan sering digunakan sebagai dasar pembuatan keputusan/pemecahan persoalan

Lebih terperinci

BAB 4 UKURAN TENDENSI SENTRAL

BAB 4 UKURAN TENDENSI SENTRAL BAB 4 UKURAN TENDENSI SENTRAL A. Pengertian Ukuran Tendensi Sentral Beserta Macam - macamnya Menurut Saleh (998 : 3-4), pengukuran nilai sentral merupakan suatu usaha yang ditujukan untuk mengukur besarnya

Lebih terperinci

BAB 2 PENYAJIAN DATA DALAM BENTUK TABEL

BAB 2 PENYAJIAN DATA DALAM BENTUK TABEL BAB 2 PENYAJIAN DATA DALAM BENTUK TABEL A. Pengertian Tabel Tabel menurut KBBI ialah daftar yang berisi ikhtisar sejumlah (besar) data informasi, biasanya berupa kata-kata dan bilangan yang tersusun secara

Lebih terperinci

, dengan i = 1, 2, 3

, dengan i = 1, 2, 3 BAB 6 UKURAN LETAK A. Pengertian Ukuran Letak Beserta Macam macamnya Pada pembahasan sebelumnya telah diusahakan untuk mengetahui besarnya nilai rata-rata dari distribusi rekuensi yang diperoleh, tetapi

Lebih terperinci

BAB 3 PENYAJIAN DATA DALAM BENTUK DIAGRAM

BAB 3 PENYAJIAN DATA DALAM BENTUK DIAGRAM BAB 3 PENYAJIAN DATA DALAM BENTUK DIAGRAM A. Penyajian Data dalam Bentuk Diagram 1. Pengertian grafik atau diagram Diagram atau grafik menurut Somantri (2006:107) adalah gambar-gambar yang menunjukan data

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

BAB 1 PENGERTIAN DASAR DALAM STATISTIKA

BAB 1 PENGERTIAN DASAR DALAM STATISTIKA BAB 1 PENGERTIAN DASAR DALAM STATISTIKA A. Statistika, Statistik, Statistika Deskriptif 1. Pengertian Statistika Statistika adalah bagian dari matematika yang secara khusus membicarakan caracara pengumpulan,

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS U N I F O R M ( S E R A G A M ) B E R N O U L L I B I N O M I A L P O I S S O N MA 4085 Pengantar Statistika 26 Februari 2013 Utriweni Mukhaiyar M U L T I N O M I A L H I P E

Lebih terperinci

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Distribusi Peluang Teoritis. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

DISTRIBUSI PELUANG TEORITIS

DISTRIBUSI PELUANG TEORITIS Distribusi Teoritis 1/ 15 DISTRIBUSI PELUANG TEORITIS 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. PEUBAH ACAK Fungsi yang mendefinisikan

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Diskrit 2 Adam Hendra Brata Distribusi Hipergeometrik Distribusi Hipergeometrik Jika sampling dilakukan tanpa pengembalian dari kejadian sampling yang diambil

Lebih terperinci

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.

Lebih terperinci

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B) Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS Uniform U (seragam) MultinomialM l i i l Bernoulli Hipergeometrik Binomial Geometrik Poisson Binomial Negatif MA 2081 Statistika Dasar Utriweni Mukhaiyar 27 September 2012 2 Distribusi

Lebih terperinci

Beberapa Distribusi Peluang Diskrit

Beberapa Distribusi Peluang Diskrit Beberapa Distribusi Peluang Diskrit Departemen Teknik Informatika Institut Teknologi Bandung Page 1 Isi : Distribusi Seragam Distribusi Binomial Distribusi Multinomial Page 2 Distribusi

Lebih terperinci

PENDAHULUAN Definisi: Contoh Kasus:

PENDAHULUAN Definisi: Contoh Kasus: DISTRIBUSI PROBABILITAS 1 PENDAHULUAN Definisi: Distribusi probabilitas adalah sebuah susunan distribusi yang mempermudah mengetahui probabilitas sebuah peristiwa. Merupakan hasil dari setiap peluang peristiwa.

Lebih terperinci

DISTRIBUSI PROBABILITAS (PELUANG)

DISTRIBUSI PROBABILITAS (PELUANG) DISTRIBUSI PROBABILITAS (PELUANG) Distribusi Probabilitas (Peluang) Distribusi? Probabilitas? Distribusi Probabilitas? JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Distribusi = sebaran,

Lebih terperinci

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar DISTRIBUSI DISKRIT Uniform (seragam) Bernoulli Binomial Poisson Beberapa distribusi lainnya : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 081 Statistika Dasar Utriweni Mukhaiyar 5 Maret

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar.

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar. DISTRIBUSI DISKRIT UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 2081 Statistika Dasar Utriweni Mukhaiyar 7 Maret

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

4.1.1 Distribusi Binomial

4.1.1 Distribusi Binomial 4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak

Lebih terperinci

SEBARAN PELUANG DISKRET

SEBARAN PELUANG DISKRET SEBARAN PELUANG DISKRET Beberapa Peubah Acak Diskret Seragam Bernoulli Binomial Hipergeometrik Binom Negatif Geometrik Poisson Peubah Acak Seragam Bila setiap kemungkinan percobaan memiliki kesempatan

Lebih terperinci

Distribusi Peluang Teoritis

Distribusi Peluang Teoritis Distribusi Peluang Teoritis 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

DISTRIBUSI BINOM. Ciri-ciri: 1.Eksperimen terdiri dari n percobaan yang dapat diulang

DISTRIBUSI BINOM. Ciri-ciri: 1.Eksperimen terdiri dari n percobaan yang dapat diulang DISTRIBUSI PELUANG Distribusi Peluang utk Variabel acak Diskret Distribusi Binom Distribusi Multinom Distribusi Hipergeometrik Distribusi Poison Distribusi Peluang utk Variabel acak Kontinu Distribusi

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu xiv BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS Uniform Bernoulli Binomial Poisson Distribusi Lainnya: Multinomial Hipergeometrik Geometrik Binomial Negatif BI5106 Analisis Biostatistika 27 September 2012 Distribusi uniform

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB BeberapaDistribusiPeluang Diskrit Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Pengantar Pengamatanyang dihasilkanmelaluipercobaanyang berbeda

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi DISTRIBUSI SAMPLING Definisi : distribusi sampling adalah distribusi peluang untuk nilai statistik yang diperoleh dari sampel acak untuk menggambarkan populasi. 1. Distribusi rata rata Misal sampel acak

Lebih terperinci

STATISTIK PERTEMUAN V

STATISTIK PERTEMUAN V STATISTIK PERTEMUAN V Variabel Random/ Acak variabel yg nilai-nilainya ditentukan oleh kesempatan/ variabel yang bernilai numerik yg didefinisikan dlm suatu ruang sampel 1. Variabel Random diskrit Variabel

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

Distribusi Probabilitas Diskrit: Poisson

Distribusi Probabilitas Diskrit: Poisson Distribusi Probabilitas Diskrit: Poisson 7.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Pendekatan Binomial Poisson Distribusi Poisson Kapan distribusi

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG

ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG LAPORAN RESMI PRAKTIKUM PENGANTAR METODE STATISTIKA MODUL 3 ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG Oleh : Diana Nafkiyah 1314030028 Nilamsari Farah Millatina

Lebih terperinci

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal)

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal) Percobaan Bernoulli 5 Percobaan terdiri dari 1 usaha Sukses Usaha Gagal Peluang sukses p Peluang gagal 1-p Misalkan 1, jika terjadi sukses X 0, jika terjadi tidak sukses (gagal) Distribusi Bernoulli 6

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

3/17/2015 PENGANTAR STATISTIKA PROF. DR. KRISHNA PURNAWAN CANDRA, M.S. JURUSAN TEKNOLOGI HASIL PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS MULAWARMAN

3/17/2015 PENGANTAR STATISTIKA PROF. DR. KRISHNA PURNAWAN CANDRA, M.S. JURUSAN TEKNOLOGI HASIL PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS MULAWARMAN PENGANTAR STATISTIKA PROF. DR. KRISHNA PURNAWAN CANDRA, M.S. JURUSAN TEKNOLOGI HASIL PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS MULAWARMAN KULIAH KE-6: BEBERAPA SEBARAN PELUANG DISKRET PUSTAKA: Walpole RE

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

STATISTIKA LINGKUNGAN

STATISTIKA LINGKUNGAN STATISTIKA LINGKUNGAN TEORI PROBABILITAS Probabilitas -pendahuluan Statistika deskriptif : menggambarkan data Statistik inferensi kesimpulan valid dan perkiraan akurat ttg populasi dengan mengobservasi

Lebih terperinci

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Descriptive Statistics mengandung metoda dan prosedur yang digunakan untuk pengumpulan, pengorganisasian, presentasi dan memberikan karakteristik terhadap himpunan

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak STK 511 Analisis statistika Materi 3 Sebaran Peubah Acak 1 Konsep Peluang 2 Peluang Peluang dapat diartikan sebagai ukuran kemungkinan terjadinya suatu kejadian Untuk memahami peluang diperlukan pemahaman

Lebih terperinci

STATISTIKA II (BAGIAN

STATISTIKA II (BAGIAN STATISTIKA II (BAGIAN - ) Oleh : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 008 Wijaya : Statistika II (Bagian-) 0 VI. PENGUJIAN HIPOTESIS Hipotesis

Lebih terperinci

MATERI STATISTIK II. Genrawan Hoendarto

MATERI STATISTIK II. Genrawan Hoendarto MATERI STATISTIK II Teori Probabilitas Variabel Acak dan Nilai Harapan Distribusi Teoritis Distribusi Sampling Pengujian Hipotesis Regresi dan Korelasi Linear Sederhana Statistik Nonparametrik Daftar Pustaka

Lebih terperinci

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Distribusi Peluang DISKRIT DAN KONTINYU Random Variable Random variable / peubah acak: Suatu fungsi yang mengaitkan suatu bilangan real dengan tiap elemen

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

SEJARAH DISTRIBUSI POISSON

SEJARAH DISTRIBUSI POISSON SEJARAH DISTRIBUSI POISSON Distribusi poisson disebut juga distribusi peristiwa yang jarang terjadi, ditemukanolehs.d. Poisson (1781 1841), 1841), seorang ahli matematika berkebangsaan Perancis. Distribusi

Lebih terperinci

Peubah Acak (Lanjutan)

Peubah Acak (Lanjutan) Learning Outcomes 13 April 2014 Learning Outcomes Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat

Lebih terperinci

DISTRIBUSI POISSON. Nevi Narendrati, M.Pd. Teori Peluang 1

DISTRIBUSI POISSON. Nevi Narendrati, M.Pd. Teori Peluang 1 DISTRIBUSI POISSON Percobaan yang menghasilkan peubah acak X yang bernilai numerik, yaitu banyaknya sukses selama selang waktu tertentu atau dalam daerah tertentu, disebut percobaan Poisson. Panjang selang

Lebih terperinci

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP STATISTICS WEEK 4 Hanung N. Prasetyo Pendahuluan: Penyajian distribusi probabilitas dalam bentuk grafis, tabel atau melalui rumusan tidak masalah, yang ingin dilukiskan adalah perilaku (kelakuan) perubah

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Minggu ke- Pokok Bahasan Sub Pokok Bahasan 1. Pendahuluan 1 Perkuliahan

Lebih terperinci

Bab 5 Distribusi Sampling

Bab 5 Distribusi Sampling Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n

Lebih terperinci

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

Distribusi Probabilitas Diskrit. Dadan Dasari

Distribusi Probabilitas Diskrit. Dadan Dasari Distribusi Probabilitas Diskrit Dadan Dasari Daftar Isi DIstribusi Uniform Distribusi Binomial DIstribusi Multinomial Distribusi Hipergeometrik Distribusi Poisson Distribusi Probabilitas Uniform Diskrit

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab 4 Peubah Acak Definisi 4. Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh 4. Jika Y adalah peubah acak banyaknya sisi muka yang muncul pada pelemparan tiga sisi

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

Distribusi Probabilitas Diskret Teoritis

Distribusi Probabilitas Diskret Teoritis Distribusi robabilitas Diskret Teoritis Distribusi robabilitas Teoritis Diskret Distribusi seragam diskret (discrete uniform distribution) Distribusi hipergeometris (hypergeometric distribution) Distribusi

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : STATISTIKA DAN PROBABILITAS KODE / SKS : IT042238 / 2 SKS Program Studi Teknik Mesin S1 Pokok Bahasan Pertemuan dan TIU 1 Pendahuluan memahami tentang konsep statistik

Lebih terperinci

l.makalah DISTRIBUSI PROBABILITAS DISKRIT

l.makalah DISTRIBUSI PROBABILITAS DISKRIT l.makalah DISTRIBUSI PROBABILITAS DISKRIT Kata Pengantar Puji syukur atas kehadirat Allah SWT karena rahmat serta karunia-nya penulis dapat menyelesaikan makalah ini.shalawat serta salam dari Allah SWT

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

MA2181 Analisis Data - U. Mukhaiyar 1

MA2181 Analisis Data - U. Mukhaiyar 1 DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:

Lebih terperinci

VARIABEL RANDOM DAN DISTRIBUSI PELUANG

VARIABEL RANDOM DAN DISTRIBUSI PELUANG 1 VARIABEL RANDOM DAN DISTRIBUSI PELUANG Dr. Vita Ratnasari, M.Si Definisi Variabel Random 2 Variabel random ialah Suatu fungsi yang mengaitkan suatu bilangan real pada setiap unsur dalam ruang sampel.

Lebih terperinci

DISTRIBUSI KONTINU. Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U

Lebih terperinci

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT BAB IV. DISTRIBUSI PROBABILITAS DISKRIT A. Variabel random diskrit. Variabel random diskrit X adalah : Cara memberi nilai angka pada setiap elemen ruang sampel X(a) : Ukuran karakteristik tertentu dari

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson DISTRIBUSI POISSON Pendahuluan Distribusi poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson. Distribusi ini merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol BAB II TINJAUAN PUSTAKA A. Regresi Regresi adalah suatu studi statistik untuk menjelaskan hubungan dua variabel atau lebih yang dinyatakan dalam bentuk persamaan. Salah satu variabel merupakan variabel

Lebih terperinci

I. PENDAHULUAN II. TINJAUAN PUSTAKA

I. PENDAHULUAN II. TINJAUAN PUSTAKA I. PENDAHULUAN 1.1 Latar Belakang Pada kehidupan sehari-hari, distribusi probabilitas dapat diterapkan dalam banyak hal yang memberikan keuntungan serta manfaat dalam pengaplikasiannya. Misalnya, pada

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET Pertemuan 7. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET 4. Pendahuluan 4.2 Distribusi seragam diskret 4.3 Distribusi binomial dan multinomial

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF 1 (MI) KODE / SKS: KK / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF 1 (MI) KODE / SKS: KK / 2 SKS Minggu Pokok Bahasan ke dan TIU 1 1. Pendahulua n tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika Mahasiswa dapat menjelaskan pengertian statistika

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF (TK) KODE / SKS: KD / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF (TK) KODE / SKS: KD / 2 SKS Minggu Pokok Bahasan ke dan TIU 1 1. Pendahulua n tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika Mahasiswa dapat menjelaskan pengertian statistika

Lebih terperinci

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran Kurikulum 20 matematika K e l a s XI DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami perbedaan

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

BAB 5 UKURAN DISPERSI

BAB 5 UKURAN DISPERSI BAB 5 UKURAN DISPERSI A. Ukura Dispersi Meurut Hasa (011 : 101) ukura dispersi atau ukura variasi atau ukura peyimpaga adalah ukura yag meyataka seberapa jauh peyimpaga ilai-ilai data dari ilai-ilai pusatya

Lebih terperinci

BAHAN KULIAH STATISTIKA (Kelas Teori)

BAHAN KULIAH STATISTIKA (Kelas Teori) BAHAN KULIAH STATISTIKA (Kelas Teori) Fakultas : Fakultas Teknologi Industri Jurusan : Teknik informatika Mata kuliah & Kode : STATISTIKA SKS : Teori : 3 Praktik : - Semester dan Waktu : Sem : I Waktu

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks Minggu Pokok Bahasan ke dan TIU 1 1Pendahuluan tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika statistika Mahasiswa dapat menjelaskan kegunaan

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 6. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Variansi dan kovariansi. HARAPAN MATEMATIK Keragaman suatu peubah acak X diperoleh dengan mengambil g(x) = (X µ). Rataan

Lebih terperinci

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh PEUBAH ACAK Materi 4 - STK211 Metode Statistika October 2, 2017 Okt, 2017 1 Pendahuluan Pernahkah bertanya, mengapa dalam soal ujian penerimaan mahasiswa baru, jika jawaban benar diberi nilai 4, salah

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jenis dan Pendekatan Penelitian Dilihat dari jenis penelitian, penelitian ini merupakan penelitian kuantitatif, yaitu penelitian yang bertujuan untuk menyelidiki sejauh mana

Lebih terperinci

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY PENGANTAR PROBABILITAS GANGGA ANURAGA POKOK BAHASAN Konsep dasar probabilitas Teori himpunan Permutasi Kombinasi Koefisien binomial Koefisien multinomial Probabilitas Aksioma probabilitas Probabilitas

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kode / SKS Program Studi Fakultas : Statistika Dasar : IT012244 / 2 SKS : Sistem Komputer : Ilmu Komputer & Teknologi Informasi 1 Pendahuluan konsep statistika dan notasi penjumlahan 1.1. Konsep statistika

Lebih terperinci

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL

Lebih terperinci