Antiremed Kelas 11 Matematika
|
|
|
- Djaja Tan
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Antiremed Kelas 11 Matematika Persiapan UAS -1 Doc. Name: K1AR11MATWJB01UAS doc. Version : halaman Nilai maksimum dari 0x + 8 untuk x dan y yang memenuhi x + y 0, x + y 8, 0 0 dan 0 y 8 adalah (A) 08 (B) 6 (C) 6 (D) 80 (E) Daerah yang diarsir adalah himpunan penyelesaian sistem pertidaksamaan 8 (A) y ; y + x 0; 8y + x 0 (B) y ; y + x 0; y - x 8 (C) y ; y - x ; y - x 8 (D) y ; y + x ; y + x 8 (E) y ; y + x ; y + x 8 (Umptn 90 Ry A) 0. Jika daerah yang diarsir pada daerah di bawah ini merupakan daerah penyelesaian untuk soal progam linier dengan fungsi sasaran f(x, y) = x i maka nilai maksimum f(x, y) adalah (A) f(, 1) (B) f(, 1) (C) f(, ) (D) f(, ) (E) f(, ) 0 (Umptn 9 Ry A, B, dan C) Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 1 ke menu search. Copyright 01 Zenius Education
2 doc. name: K1AR11MATWJB01UAS doc. version : halaman 0. Nilai maksimum f(x, y) = x + 10y di daerah yang diarsir adalah... (A) 60 (B) 0 (C) 6 (D) 0 (E) 16 (Umptn 9 Ry A, B, dan C) 0. Seorang pemilik toko sepatu ingin mengisi tokonya dengan sepatu laki-laki, Paling sedikit 100 pasang, dan sepatu wanita paling sedikit 10 pasang. Toko tersebut dapat memuat 00 pasang sepatu. Keuntungan setiap sepatu lakilaki Rp ,- dan setiap pasang sepatu wanita Rp. 00,-. Jika banyaknya sepatu laki-laki tidak boleh melebihi 10 pasang, maka keuntungan terbesar yang dapat diperoleh : (A) Rp..000 (B) Rp (C) Rp..000 (D) Rp (E) Rp..000 (Umptn 90 Ry A, B, dan C) Matriks A = x 1 x adalah matriks 1 6 singular. Nilai x adalah... (A) - (B) -1 (D) (E) 0. Tentukan determinan dari matrik A = 1 1 dengan metode Minor- Kofaktor (A) 16 (B) 8 (C) - (D) 6 (E) 0 Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 1 ke menu search. Copyright 01 Zenius Education
3 doc. name: K1AR11MATWJB01UAS doc. version : halaman x 08. Jika =, maka berapa nilai y 0 x dan y? Kerjakan dengan metode determinan! (A) x = 1 dan y = (B) x = dan y = (C) x = dan y = 1 (D) x = dan y = 0 (E) x = 1 dan y = Diketahui sistem persamaan linear berikut: x y - z = 9 x y z = x - y z = 8 Nilai dari x + y + z adalah Kerjakan dengan metode invers! (A) -1 (B) 0 (D) (E) 10. Diketahui sistem persamaan linear berikut: x y - z = 9 x y z = x - y z = 8 Nilai dari x + y + z adalah Kerjakan dengan metode Gauss-Jordan! (A) -1 (B) 0 (D) (E) Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 1 ke menu search. Copyright 01 Zenius Education
4 doc. name: K1AR11MATWJB01UAS doc. version : halaman 11. Fungsi f(x) = x 6 terdefinisi pada himpunan (A) {x - x } (B) {x x < } (C) {x x } (D) {x x } (E) {x x -} 1. Jika f(x) = x + 1 dan g(x) = x, maka (g f)(x) = (A) (x - ) + 1 (B) x (x - ) + 1 (C) (x + 1) (x - ) (D) (x + 1) - (E) (x + 1) - (x + 1) x1 1. Jika f(x) = maka f -1 (81) = (A) 1 (B) (C) (D) (E) 1 x 1 1 x 1. Jika f ( x) dan g ( x) maka\ (f o g) -1 (6) = (A) - (B) -1 (D) (E) Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 1 ke menu search. Copyright 01 Zenius Education
5 doc. name: K1AR11MATWJB01UAS doc. version : halaman 1. Diketahui f(x) = x + dan (f o g)(x) = x + rumus g(x) yang benar adalah (A) g(x) = x + (B) g(x) = x + (C) g(x) = x + (D) g(x) = (x + 1) (E) g(x) = (x + ) 16. Jumlah tak terhingga deret adalah... (A) 0 (B) (C) (D) 6 (E) 8 1. Jika di ketahui p = log + log + log + maka p adalah (A) (B) log (C) log (D) (E) log 18. Agar jumlah deret 16log(x-) + 16 log (x-) + 16 log (x-) + terletak antara 1 dan, maka (A) < x < 8 (B) < x < 11 (C) 9 < x < 1 (D) 1 < x < (E) -1 < x < Deret 1 + logcosx + log cosx + log cosx + Konvergen ke S maka 1 (A) S > 1 (B) < S 1 (C) S > (D) < S < 1 (E) < S < 1 Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 1 ke menu search. Copyright 01 Zenius Education
6 doc. name: K1AR11MATWJB01UAS doc. version : halaman 6 0. Jumlah suku deret geometri tak terhingga adalah. Sedangkan jumlah suku-suku yang bernomor genap adalah. Maka suku pertama deret tersebut adalah... (A) (B) (C) (D) (E) 1. Gradien garis yang melalui titik(6, -n) dan (18, 0) adalah gradien garis yang melalui titik (, n) dan titik pusat O(0, 0) adalah (A) 19 (B) 0 (D) 60 (E) 6. Persamaan garis yang melalui titik P(-, ) dan tegak lurus dengan garis x + y - 8 = 0 adalah (A) x - y - 8 = 0 (B) x + y - 8 = 0 (C) x - y + 8 = 0 (D) x - y + 8 = 0 (E) x + y + 8 = 0. Gradien garis yang melalui titi (-, ) dan (1, 6) adalah (A) (B) (D) - (E) -6 Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 1 ke menu search. Copyright 01 Zenius Education
7 doc. name: K1AR11MATWJB01UAS doc. version : halaman. Dari segitiga sama sisi ABC, diketahui panjang sisinya adalah. Titik A berimpit dengan titik O(0, 0), titik B pada sumbu X positif, dan titik C di kuadran ke empat (absis positif, kordinat negatif). Persamaan garis lurus yang melalui B dan C adalah... (A) (B) (C) (D) (E) yx yx y x y x y x. A(-, 1), B(8, 10), dan C(, ) membentuk suatu segitiga. Persamaan garis tinggi segitiga itu yang melalui titik C adalah (A) x + y - 16 = 0 (B) x - y + 16 = 0 (C) x + y - = 0 (D) x + y - 16 = 0 (E) x + y + = 0 6. Luas segitiga berikut adalah (A) cm (B) cm (C) cm 1 (D) cm 1 (E) cm. Dari ΔABC diketahui a = cm, b = cm, dan B = 60 o. Panjang sisi c adalah... (A) 1 cm (B) cm (C) cm (D) cm (E) cm Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 1 ke menu search. Copyright 01 Zenius Education
8 doc. name: K1AR11MATWJB01UAS doc. version : halaman 8 8. Dari ΔABC diketahui a =, b =, c = 6. Luas ΔABC = satuan luas. (A) 6 (D) 6 (B) 6 (E) 1 (C) 6 9. Dari ΔABC diketahui AC = cm, AB = 1 cm, dan A = 60 o. Panjang sisi BC =... (A) (B) 1 1 cm 109 cm (C) (D) 1 cm (E) cm cm 0. ABCD adalah segiempat tali busur dengan AB = 1 cm, BC =, CD = cm, dan 1 AD = cm. Jika sin B =, maka luas ABCD = 6 (A) cm (B) 6 cm (C) cm (D) 6 cm (E) cm Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 1 ke menu search. Copyright 01 Zenius Education
Antiremed Kelas 11 Matematika
Antiremed Kelas 11 Matematika Persiapan UAS - Latihan Soal Doc. Name: K13AR11MATWJB0UAS doc. Version : 016-0 halaman 1 01. Nilai maksimum dari 0x + 8 untuk x dan y yang memenuhi x + y 0, x + y 8, 0 0 dan
Antiremed Kelas 11 Matematika
Antiremed Kelas Matematika Persiapan UTS Doc. Name: KARMATWJB0UTS Version: 04-0 halaman 0. Nilai maksimum dari 0 + 8 untuk dan y yang memenuhi + y 0, + y 48, 0 0 dan 0 y 48 adalah. (A) 408 (B) 456 (C)
Antiremed Kelas 12 Matematika
Antiremed Kelas Matematika Persiapan UAS Doc. Name: ARMAT0UAS Doc. Version : 06-08 halaman 0. Jika f(x)= (x x 5)dx dan f()=0, maka f(x) =... x + x - 5x - 6 4x - x + 5x - 4 5 5 x x x x - x + 5x - 5 x +
SPMB 2004 Matematika Dasar Kode Soal
SPMB 00 Matematika Dasar Kode Soal Doc. Name: SPMB00MATDAS999 Version : 0- halaman 0. Nilai x yang memenuhi persamaan : 3 x ( ) adalah. 0 - - 0. Dalam bentuk pangkat positif dan bentuk akar, x y x y...
Antiremed Kelas 12 Matematika
Antiremed Kelas Matematika Integral - Latihan Ulangan Doc. Name: ARMAT098 Version : 0 0 halaman 0. f (x)=x +x+ maka f(x) =... x +x +x +c x +x +x+c x - x +x+c x +x +x+c x - x +x+c 0. 0. 0. 0 x +c x c x
K13 Revisi Antiremed Kelas 11 Matematika
K3 Revisi Antiremed Kelas Matematika Turunan - Latihan Soal Doc. Name: RK3ARMATWJB080 Version: 06- halaman 0. Jika f(x) = 8x maka f'(x) =. (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui y = sin ( π x),
UN SMA IPA 2002 Matematika
UN SMA IPA 00 Matematika Kode Soal Doc. Name: UNSMAIPA00MAT999 Doc. Version : 0-0 halaman 0. Ditentukan nilai a = 9, b =, dan c =. Nilai 9 8 0. Hasil kali akar-akar persamaan kuadrat 0 adalah... - a b
UN SMA IPA 2003 Matematika
UN SMA IPA 00 Matematika Kode Soal Doc. Version : 0-0 halaman 0. Persamaan kuadrat (k + )² - (k - ) +k - = 0, mempunyai akar-akar nyata dan sama. Jumlah kedua persamaan tersebut 9 9 0. Jika akar-akar persamaan
Antiremed Kelas 12 Matematika
Antiremed Kelas Matematika Persiapan UTS Doc. Name: ARMAT0UTS Doc. Version : 04-0 halaman 0. Integral substitusi dasar serie A (A) x 4 dx 5 cos x dx = 0. (A) 5x dx sin x d x 0. 7 x x x dx 04. dx 5x 05.
K13 Antiremed Kelas 11 Matematika Peminatan
K13 Antiremed Kelas 11 Matematika Peminatan Persiapan UAS 1 Doc. Name: K13AR11MATPMT01UAS Version : 015-11 halaman 1 01. Sukubanyak f() = 3 + + 3- dapat ditulis sebagai. f() = [( + ) - 3] + f() = [( -
Doc. Name: SPMB2007MATDAS999 Doc. Version :
SPMB 007 Matematika Kode Soal Doc. Name: SPMB007MATDAS999 Doc. Version : 0-0 halaman 0. Solusi persamaan 5 ( x ) adalah (D) 4 5 6 5 5 0. Jika x dan x adalah akar-akar persamaan : (5 - log x) log x = log
Kurikulum 2013 Antiremed Kelas 09 Matematika
Kurikulum 03 Antiremed Kelas 09 Matematika Latihan Ulangan Barisan dan Deret Bilangan Doc. Name: K3AR09MAT099 Version: 05- halaman 0. Suku ke-40 dari barisan 7, 5, 3,, adalah (UAN 003) -69 (B) -7 (C) -73
UN SMA IPA 2014 Pre Matematika
UN SMA IPA 04 Pre Matematika Kode Soal Doc. Name: UNSMAIPA04PREMAT999 Doc. Version : 04-0 halaman 0. Diketahui premis-premis berikut: Premis : Jika harga turun, maka penjualan naik. Premis : Jika permintaan
Antiremed Kelas 10 Matematika
Antiremed Kelas 0 Matematika Persiapan UAS Matematika Doc. Name: AR0MAT0UAS Version : 06-07 halaman 0. (A)... 60 0. y A A (A) - 0 A y y... 0. 0,08 0,0064... (A) 6 0,04,6 4 0,4 04. Jika 0,477maka 0... (A),86,998,97,999,98
UN SMA 2017 Matematika IPS
UN SMA 017 Matematika IPS Soal UN SMA 017 - Matematika IPS Doc. Name: UNSMA017MATIPS999 Version: 017-10 Halaman 1 01. Persamaan grafik fungsi kuadrat pada gambar berikut adalah... X 8 0 4 Y (A) y = x -
UN SMA IPA 2008 Matematika
UN SMA IPA 008 Matematika Kode Soal P Doc. Name: UNSMAIPA008MATP Doc. Version : 0-0 halaman 0. Ingkaran dari pernyataan "Semua anak-anak suka bermain air." Tidak ada anak-anak yang suka bermain air. Semua
UN SMA IPA 2008 Matematika
UN SMA IPA 008 Matematika Kode Soal D0 Doc. Version : 0-06 halaman 0. Ingkaran dari pernataan "Ada bilangan prima adalah bilangan genap." Semua bilangan prima adalah bilangan genap. Semua bilangan prima
SIMAK UI 2009 Matematika Dasar
SIMAK UI 009 Matematika Dasar Kode Soal 94 Doc. Name: SIMAKUI009MATDAS94 Version: 0-0 halaman 0. Perhatikan gambar berikut! Dalam sistem pertidaksamaan y x, y x,y x 0,y x 9 nilai minimum dari -y - x dicapai
UN SMA 2014 Matematika IPA
UN SMA 0 Matematika IPA Kode Soal Doc. Name: UNSMA0MATIPA999 Doc. Version : 0- halaman 0. Diketahui premis-premis berikut: Premis : Jika harga BBM naik, maka harga. bahan pokok naik. Premis : Jika harga
SPMB 2003 Matematika Dasar Kode Soal
SPMB 003 Matematika Dasar Kode Soal Do. Name: SPMB003MATDAS999 Version : 0- halaman 3 (-a) (a) 0. Jika a 0, maka 3 (6a ) (A) - a (B) -a -a a (E) a 3... 0. Jika salah satu akar persamaan kuadrat - 3 - p
K13 Revisi Antiremed Kelas 12 Matematika
K Revisi Antiremed Kelas Matematika Persiapan Penilaian Akhir Semester (PAS) Ganjil Doc. Name: RKARMATWJB0PAS Version : 0- halaman 0. Diketahui kubus ABCD.EFGH dengan panjang rusuk. Jika P titik tengah
UN SMA IPA 2013 Matematika
UN SMA IPA 0 Matematika Kode Soal Doc. Name: UNSMAIPA0MAT Doc. Version : 0-06 halaman 0. Diketahui premis-premis berikut: Premis I : Jlika Budi ulang tahun maka semua kawannya datang. Premis II : Jika
UN SMA IPA 2012 Matematika
UN SMA IPA 0 Matematika Kode Soal E8 Doc. Name: UNSMAIPA0MATE8 Doc. Version : 0- halaman. Diketahui premis-premis berikut: Premis I : Jika hari ini hujan maka saya tidak pergi. Premis II : Jika saya tidak
Kurikulum 2013 Antiremed Kelas 11 Matematika
Kurikulum 03 Antiremed Kelas Matematika Turunan Fungsi dan Aplikasinya Soal Doc. Name: K3ARMATPMT060 Version: 05-0 halaman 0. Jika f(x) = 8x maka f (x). (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui
UN SMA IPS 2013 Matematika
UN SMA IPS 0 Matematika Kode Soal Doc. Name: UNSMAIPS0MAT999 Version: 0-07 halaman 0. Ingkaran dari pernyataan Semua peserta ujian mengharapkan nilai tinggi dan lulus (A) Ada peserta ujian mengharapkan
UN SMA 2014 Matematika IPS
UN SMA 04 Matematika IPS Kode Soal Doc. Name: UNSMA04MATIPS999 Doc. Version : 0-0 halaman 0. Negasi dari pernyataan Semua bilangan rasional adalah bilangan real dan prima adalah... Tidak ada bilangan rasional
UN SMA IPS 2008 Matematika
UN SMA IPS 008 Matematika Kode Soal P Doc. Name: UNSMAIPS008MATP Doc. Version : 0-0 halaman 0. Negasi dari pernyataan: Permintaan terhadap sebuah produk tinggi dan harga naik. Adalah. Permintaan terhadap
Antiremed Kelas 10 Matematika
Antiremed Kelas 10 Matematika Persiapan UAS -1 Doc. Name: K1AR10MATWJB01UAS doc. Version : 015-04 halaman 1 01. Nilai dari a 1 a 6 adalah. a 8 a 9 a 10 a 11 a 1 0. 8 60. ( B) 6 5 6 5 5 A, B, C, dan D salah
UN SMA IPA 2010 Matematika
UN SMA IPA 00 Matematika Kode Soal P0 Doc. Name: UNSMAIPA00MATP0 Doc. Version : 0-0 halaman 0. Akar-akar persamaan kuadrat x² + (a - ) x + =0 adalah α dan β. Jika a > 0 maka nilai a =. 8 x 0. Diketahui
U J I A N A K H I R S E K O L A H Tahun Pelajaran Mata Diklat : MATEMATIKA Kelas : XI Prakerin Semester : Genap
PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMK NEGERI 6 MALANG Jl. Ki Ageng Gribig 28 Malang 65138 Telp. 0341-722216 Fax. 0341-720138 www.smkn6-malang.sch.id E-mail : @smkn6-malang.sch.id ISO SMM 9001-2008
UN SMA IPA 2006 Matematika
UN SMA IPA Matematika Kode Soal P Doc. Version : - halaman. Sebidang tanah berbentuk persegi panjang dengan luas 8 m². Jika perbandingan panjang dan lebarnya sama dengan sebanding, maka panjang diagonal
Antiremed Kelas 10 Matematika
Antiremed Kelas 0 Matematika Persamaan Kuadrat - Latihan Soal Pilihan Ganda Doc. Name: KAR0MATWJB080 Version : 0-09 halaman 0. Bentuk faktor persamaan - - = 0 ( + )( - ) = 0 ( - )( + ) = 0 ( - )( + ) =
UN SMA IPS 2011 Matematika
UN SMA IPS 0 Matematika Kode Soal Doc. Name: UNSMAIPS0MAT999 Version: 0- halaman 0. Koordinat titik potong grafik fungsi kuadrat y = - - dengan sumbu X dan sumbu Y (A) (-,0),(,0), dan (0,) (B) (-,0),(,0),dan
K13 Revisi Antiremed Kelas 12 Matematika
K Revisi Antiremed Kelas Matematika Geometri Bidang Ruang - Latihan Soal Doc. Name: RKARMATWJB00 Version : 0-0 halaman 0. Diketahui kubus ABCD,EFGH dengan panjang rusuk. Jika P titik HG,Q titik tengah
UN SMA IPA 2011 Matematika
UN SMA IPA 0 Matematika Kode Soal Doc. Name: UNSMAIPA0MAT999 Doc. Version : 0- halaman 0. Suku ke- dan ke-9 suatu barisan aritmetika berturut-turut adalah 0 dan 50. Suku ke- 0 barisan aritmetika tersebut
SIMAK UI 2010 Matematika Dasar
SIMAK UI 00 Matematika Dasar Kode Soal 307 Doc. Name: SIMAKUI00MATDAS307 Version: 0-0 halaman 0. Dua buah dadu dilemar secara bersamaan. x adalah angka yang keluar dari dadu ertama. y adalah angka yang
Xpedia Matematika. Kapita Selekta Set 05
Xpedia Matematika Kapita Selekta Set 05 Doc. Name: XPMAT9705 Doc. Version : 0-07 halaman 0a Garis singgung pada kurva y=x -x + akan sejajar dengan sumbu x di titik yang absisnya... x = x = 0 x = 0 dan
UN SMA IPS 2010 Matematika
UN SMA IPS 00 Matematika Kode Soal Doc. Name: UNSMAIPS00MAT999 Doc. Version : 04-0 halaman 0. Nilai kebenaran yang tepat untuk pernyataan ( p q) ~ p, Pada table berikut adalah... p q (p q) ~ p B B... B
Antiremed Kelas 10 Matematika
Antiremed Kelas Matematika Persiapan UTS Semester Genap Doc. Name: ARMAT0UTS Version: 017-0 Halaman 1 01. Misalkan p adalah pernyataan yang bernilai benar dan q adalah pernyataan yang benar. Dari tiga
Antiremed Kelas 08 Matematika
Antiremed Kelas 08 Matematika Persiapan UAS 1 Matematika Kelas 8 Doc. Name: AR08MAT01UAS Version: 01-0 halaman 1 01. Pemfaktoran dari x y 03. Bentuk paling sederhana dari x 9y x y x 7y x 7y x 9y x y x
TRY OUT MATEMATIKA PAKET 2B TAHUN 2010
TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang
Pembahasan Matematika IPA SIMAK UI 2009
Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa
TRY OUT MATEMATIKA PAKET 2A TAHUN 2010
TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis
UN SMK TKP 2015 Matematika
UN SMK TKP 015 Matematika Soal Doc. Name: UNSMKTKP015MAT999 Version: 016-0 halaman 1 01. Waktu yang diperlukan Pak Bambang jika mengendarai mobil dari kota A ke kota B dengan kecepatan rata-rata 50 km/jam
UN SMA 2017 Matematika IPA
UN SMA 07 Matematika IPA Soal UN SMA 07 - Matematika IPA Doc. Name: UNSMA07MATIPA Version: 07-0 Halaman 5-8 5 4 0. Hasil dari - 8 8.4 5 7 7 8 8 8 7 0. Bentuk sederhana dari ( 5 + ) ( - 5 ) - ( 5 +4 ) 4
7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian
1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan
f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}
1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1
UN SMA IPS Matematika Prediksi 3 UN SMA IPS Matematika
UN SMA IPS Matematika Prediksi UN SMA IPS Matematika Doc. Version : 0-0 halaman 0. Negasi dari pernyataan Saya bermain frisbee jika dan hanya jika saya di pantai Saya tidak main frisbee jika dan hanya
SBMPTN 2015 Matematika Dasar
SBMPTN 2015 Matematika Dasar Doc. Name: SBMPTN2015MATDAS999 Version : 2015-09 halaman 1 46. Jika a dan b adalah bilangan real positif, maka 3 3 a b a b (A) -2 (D) 1 (B) -1 (C) 0 2 2 2 3 ab... 47. Diketahui
UN SMA IPS 2008 Matematika
UN SMA IPS 008 Matematika Kode Soal Doc. Name: UNSMAIPS008MAT999 Doc. Version : 0-0 halaman 0. Negasi dari pernyataan Matematika tidak mengasyikan atau membosankan. adalah. Matematika mengasyikan atau
Antiremed Kelas 12 Matematika
Antiremed Kelas Matematika 04- Diagonal Ruang, Diagonal Bidang, Bidang Diagonal. Doc. Name: KARMATWJB040 Version : 0-09 halaman 0. Diketahui kubus ABCD,EFGH dengan panjang rusuk. Jika P titik HG,Q titik
TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul
DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada
UN SMA IPA 2007 Matematika
UN SMA IPA 007 Matematika Kode Soal P Doc. Version : 0-0 halaman 0. Bentuk sederhana dari ( + ) - ( - 0 ) adalah... 8 8 8 0. Jika log a dan log b, maka log 0... a ab a( b) a b ab a(b ) ab 0. Persamaan
Antiremed Kelas 9 Matematika
Antiremed Kelas 9 Matematika Persiapan Uas Matematika Doc. Name: AR09MAT0UAS Version : 205-05 halaman 0. Gambar di bawah ini adalah sebuah foto yang ditempel pada kertas karton berukuran 0cm x 40cm. Di
PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A01) 5b Dengan merasionalkan penyebut, bentuk sederhana dari 5 2
PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A0).. a bc Bentuk sederhana dari 9. a b c c a b. (C) ab c a b c a c b ac b. Dengan merasionalkan penyebut, bentuk sederhana dari. (C). (E).. (D). 7 9 log.
Prediksi 1 UN SMA IPS Matematika
Prediksi UN SMA IPS Matematika Kode Soal Doc. Version : 0-06 halaman 0. () Jika jalan basah maka hari hujan () Jika hari tidak hujan maka jalan tidak basah () Jika jalan tidak basah maka hari tidak hujan
UN SMA 2015 Matematika IPS
UN SMA 05 Matematika IPS Kode Soal Doc. Name: UNSMA05MATIPS999 Doc. Version : 05- halaman 0. Negasi dari pernyataan Matematika tidak mengasyikkan atau membosankan Matematika mengasyikkan atau membosankan.
PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA
Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut
MATEMATIKA DASAR TAHUN 1987
MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,
Prediksi 2 UN SMA IPS Matematika Kode Soal: 302
Prediksi UN SMA IPS Matematika Kode Soal: Doc. Version : -6 halaman. Negasi dari pernyataan Jika saya belajar dengan zenius maka saya lulus UN Jika saya lulus UN maka saya belajar dengan zenius Saya tidak
Antiremed Kelas 09 Matematika
Antiremed Kelas 09 Matematika Latihan Ulangan Barisan dan Deret Bilangan Doc. Name: AR09MAT0698 Version: 03- halaman 0. Suku ke-40 dari barisan 7, 5, 3,, adalah (UAN 003) -69 (B) -7 (C) -73 (D) -75 0a
K13 Revisi Antiremed Kelas 11 Matematika Wajib
K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan
UN SMA 2015 Matematika IPA
UN SMA 05 Matematika IPA Soal Doc. Name: UNSMA05MATIPA Doc. Version : 05- halaman 0. Ani rajin elajar maka naik kelas. Ani dapat hadiah atau tidak naik kelas. Ani rajin elajar. Kesimpulan yang sah adalah
2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a
Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab
Siap UAN Matematika. Oleh. Arwan Hapsan. Portal Pendidikan Gratis Indonesia.
Siap UAN Matematika Oleh Arwan Hapsan Portal Pendidikan Gratis Indonesia Http://okor.id Copyright okor.id Artikel ini boleh dicopy,diubah, dikutip, di cetak dalam media kertas atau yang lain, dipublikasikan
Antiremed Kelas 10 Matematika
Antiremed Kelas Matematika Persamaan Kuadrat - Latihan Soal Essay Do Name: KARMATWJB8 Version : 4-9 halaman. Nyatakan persamaan-persamaan berikut ke dalam bentuk baku kemudian tentukan nilai b c dan a
TRY OUT MATEMATIKA PAKET 3B TAHUN 2010
. Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan
K13 Revisi Antiremed Kelas 12 Matematika
K Revisi Antiremed Kelas Matematika Persiaan UTS Semester Ganjil Doc. Name : RKARMATWJB0UTS Version : 06-09 halaman 0. Diketahui kubus ABCD.EFGH dengan anjang rusuk. Jika titik tengah HG, Q titik tengah
D. 90 meter E. 95 meter
1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x
Matematika Ujian Akhir Nasional Tahun 2004
Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke
TAHUN PELAJARAN 2009 / 2010 MATEMATIKA SMA PROGRAM STUDI IPA. Rabu, 3 Februari Menit
Try Out TAHUN PELAJARAN 009 / 00 MATEMATIKA SMA PROGRAM STUDI IPA Rabu, Februari 00 0 Menit PETUNJUK :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer (LJK) yang tersedia dengan menggunakan pensil
1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.
1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik
D. (1 + 2 ) 27 E. (1 + 2 ) 27
1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2
Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3
Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log
Antiremed Kelas 7 Matematika
Antiremed Kelas 7 Matematika Persiapan Uas Matematika Doc. Name: AR07MAT0UAS Version : 0-04 halaman 3 0. Hasil dari 3 : 3 3 3 4 6 6 6 0. Hasil dari +(- : 3) -9 - -9 9 03. Hasil dari 7 30 7 : 4 04. Ibu
UN SMA 2016 Matematika IPA
UN SMA 06 Matematika IPA Latihan Soal Doc. Name: UNSMA06MATIPA999 Doc. Version : 06-0 halaman 0. Salah satu akar persamaan kuadrat mx - x + = 0 adalah dua kali akar yang lain. Nilai m =. 0-0. Rina membeli
UN SMK PSP 2014 Matematika
UN SMK PSP 014 Matematika Soal Doc. Name: UNSMKPSP014MAT999 Doc. Version : 016-03 halaman 1 01. Nilai dari -50-5 5 5 (E) 50 1 3 3 6 4 15 64 81... ab c 0. Bentuk sederhana dari 3 adalah... a bc 10 a b c
b c a b a c 1. Bentuk sederhanaa dari
7 a b c. Bentuk sederhanaa dari 6 6a b c c A. a b b B. a c C. b a c bc D. a E. 7 7 c a b. Dalam kantong kantong diambil dua kelereng sekaligus, maka peluang mendapatkan kelereng satu berwarna merah dan
1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E
1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... A. 3-3 + 21-7 21-21 + 7 2. Persamaan (2m - 4)x² + 5x + 2 = 0 mempunyai akar-akar real berkebalikan, maka nilai m adalah... A. -3-3 6 Kunci
UN SMA IPS 2012 Matematika
UN SMA IPS 01 Matematika Kode Soal A Doc. Name: UNSMAIPS01MATA Doc. Version : 01-1 halaman 1 01. Ingkaran pernyataan Pada hari Senin siswa SMAN memakai sepatu hitam dan atribut lengkap adalah. Pada hari
UN SMA 2016 Matematika IPS
UN SMA 06 Matematika IPS Soal Doc. Name: UNSMA06MATIPS999 Doc. Version : 06-0 halaman 0. Diketahui a 0, b 0, dan c 0. Bentuk 3 4 8a b c sederhana dari 5 6 adalah... 4a b c a b c 4 3 8 6 4 4a b c 4 c 4a
04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )
0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)
UN SMA IPA 2009 Matematika
UN SMA IPA 009 Matematika Koe Soal P88 Doc. Name: UNSMAIPA009MATP88 Doc. Version : 0-0 halaman 0. Perhatikan premis-premis berikut ini : :Jika Ai muri rajin maka Ai muri panai :Jika Ai muri panai maka
PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Blog:
PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Email: [email protected] Blog: http://istiyanto.com Berikut soal-soal yang dapat Anda gunakan untuk latihan dalam menghadapi
Antiremed Kelas 10 Matematika
Antiremed Kelas 0 Matematika Persamaan dan Fungsi Kuadrat - Fungsi Kuadrat - Pilihan Ganda Doc. Name: AR0MAT00 Version : 0-07 halaman 0. Ordinat titik balik grafik fungsi arabola y x x (5 9) adalah 5,
Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0
Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 PETUNJUK UMUM :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer
Ujian Akhir Nasional Tahun Pelajaran 2002/2003
DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran / SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D) SELASA, 6 MEI Pukul 7.. DEPARTEMEN PENDIDIKAN NASIONAL --D-P Hak Cipta pada
1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.
1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00
K13 Revisi Antiremed Kelas 11 Matematika Wajib
K13 Revisi Antiremed Kelas 11 Matematika Wajib Baris dan Deret Aritmatika - Latihan Soal Ulangan Doc. Name: RK13AR11MATWJB0603 Version : 2016-11 halaman 1 01. Suku ke-20 pada barisan 3, 9, 15, 21,. Adalah
7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3
. 4% uang Ani diberikan kepada adiknya dan 5% dari uang tersebut untuk membayar rekening listrik dan 5% untuk membayar rekening telpon, sisa uang Ani adalah Rp 4.,. Berapakah jumlah uang Ani a. Rp 4.,
TO UN SMA / MA tahun Bidang Studi : Matematika Program IPA
TO UN SMA / MA tahun 0 0 Bidang Studi : Matematika Program IPA. Diketahui premis-premis. Jika ulangan dibatalkan, maka semua siswa senang. Jika suasana kelas tidak ramai, maka beberapa siswa tidak senang.
Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E
1 Nama : Ximple Education No. Peserta : 08-6600-747 1 1. Jika a = 1, b = 6, maka nilai dari 6 a b 1 4 =. a b A. 6 B. 4 C. 1 6 D. 1 4 E.. Nilai dari ( log + log log log ) log 7+ log =. A. B. C. 4 D. 4 8
M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2
SISTEM PERSAMAAN LINEAR M. PRAHASTOMI M. S. 0. MD-8-8 B C G E F A D H 6 7 8 6 Jika gradien garis AB = m, gradien garis CD = m, gradien garis EF = m dan gradien garis GH = m, maka... () m = () m = 0 ()
Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3.
Nama : No. Peserta :. Jika x =, y =, dan z = 0, maka nilai dari x y z =. x yz A. 6 B. 5 C. 6 D. 9 E.. Jika log A. ab+a+b a+ B. b+a+ a+ C. a+b+ a+ D. ab+a+ a+ E. ab+a+ a+ = a dan log 5 = b, maka log 60.
SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011
SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan
Antiremed Kelas 11 Matematika
Antiremed Kelas Matematika UTS Latihan Matematika Kelas Doc. Name: ARMAT0UTS Version : 0-0 halaman 0. Median kuartil bawah, dan kuartil atas dari : 0,,9,,,,,9,9,,8,0 adalah. (A) (B) (C) (D) (E) 6. 9.6.
Matematika EBTANAS Tahun 1991
Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai
PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan
Pilihlah satu jawaban yang tepat.. (x x 4 ) dx.. ULANGAN AKHIR SEMESTER TAHUN PELAJARAN 007/008 Mata Pelajaran : Matematika Kelas / Program : XII / Ilmu Alam Hari, Tanggal : Waktu : 90 menit ( ) ` a. x
8. Nilai x yang memenuhi 2 log 2 (4x -
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum
