DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin
|
|
|
- Yanti Tanudjaja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 DISTRIBUSI SAMPLING Oleh : Dewi Rachmati
2 Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa pegembalia maka ada N buah sampel yag berlaia. Jika pada tiap sampel yag berlaia tsb diambil rata-rataya maka diperoleh N rata-rata.
3 Dari kumpula rata-rata tsb dapat dihitug rata-rata da simpaga bakuya. Rata-rata yag diperoleh dari kumpula data baru tsb adalah µ da simpaga bakuya adalah. Berlaku : (/N) > 5% N µ = µ da = N Jika N cukup besar dibadigka, maka : (/N) 5% µ = µ da =
4 : ukura variasi rata-rata sampel sekitar rata-rata populasi atau besarya perbedaa rata-rata yag diharapka dari sampel ke sampel diamaka kekelirua stadar rata-rata Meurut dalil limit pusat : jika cukup besar, maka distribusi rata-rata sampel medekati distribusi ormal Akibatya : utuk 30 pedekata ormal dapat diguaka
5 Apabila dari populasi diketahui variasi da perbedaa atara rata-rata dari sampel ke sampel diharapka tidak lebih dari sebuah harga d yag ditetuka maka berlaku : d atau d
6 Distribusi Proporsi Misalka sebuah populasi berukura higga N di dalamya terdapat peristiwa A sebayak Y, maka parameter proporsi peristiwa A sebesar µ = Y/N. Dari populasi ii diambil sampel acak berukura da dimisalka di dalamya ada peristiwa A sebayak, maka proporsi peristiwa A dalam sampel =/.
7 Jika semua sampel yag mugki diambil dari populasi tsb maka diperoleh sekumpula harga-harga statistik proporsi. Utuk (/N) > 5% : rata-rata : simpaga bakuya : Utuk (/N) 5% : rata-rata : simpaga baku : / / = = π ( π ) π ( π ) µ = π / N N µ = π /
8 Utuk 30 pedekata ormal dapat diguaka, sehigga : Z = / π / N(0,) Apabila dari populasi diketahui variasi da perbedaa atara proporsi dari sampel ke sampel diharapka tidak lebih dari sebuah harga d yag ditetuka maka berlaku : / d ~
9 Distribusi Simpaga Baku Misalka sebuah populasi berukura higga N, dari populasi ii diambil sampel acak berukura, lalu utuk setiap sampel dihitug simpaga bakuya yaitu S. Dari kumpula sampel dihitug rata-rataya yaitu µ da simpaga bakuya. S S Utuk 00, distribusi simpaga baku sagat medekati distribusi ormal dega rata-rata : µ = da simpaga baku : S = S
10 Trasformasi yag diperluka utuk membuat distribusi ormal baku : Z = S µ S S ~ N(0,)
11 Distribusi Media Jika populasi berdistribusi ormal atau hampir ormal, maka utuk sampel acak berukura 30, maka distribusi media aka medekati distribusi ormal dega rata-rata : baku : µ = µ Me Me,533 = da simpaga dega µ da merupaka parameter populasi.
12 Distribusi Selisih Rata-rata Misalka ada dua populasi masig-masig berukura N da N. Populasi kesatu mempuyai rata-rata µ da simpaga baku, sedagka populasi kedua mempuyai rata-rata µ da simpaga baku. Dari populasi kesatu diambil secara acak sampel-sampel berukura da
13 dari populasi kedua diambil secara acak sampelsampel berukura. Utuk populasi kesatu diguaka peubah, da utuk populasi kedua diguaka peubah Y. Dari sampel-sampel tadi dihitug rata-rataya da diperoleh :,,..., k da Y, Y,..., Yr Dega k bayak sampel yag dapat diambil dari populasi kesatu da r bayak sampel yag dapat diambil dari populasi kedua
14 Betuk selisih atara rata-rata dari sampel ke sampel pada kumpula kesatu da ratarata dari sampel ke sampel pada kumpula kedua, sehigga didapat kumpula selisih rata-rata : i Y j dega i=,,,k da j=,,,r. Utuk N da N yag cukup besar da sampel-sampel acak diambil secara idepede satu sama lai diperoleh : µ = µ µ da = + Y Y
15 Diperoleh juga : dega i=,,,k da j=,,,r. Berlaku : j i Y Y Y da µ µ µ + = = Y Y da µ µ µ + = + = + +
16 Trasformasi yag diperluka utuk membuat distribusi ormal baku : Jika variasi kedua populasi sama da tidak diketahui guaka : ( ) ( ) (0,) ~ Y Y N Z = µ µ ~ ) ( ) ( + + = p t S Y T µ µ
17 Simpaga baku sampel gabuga utuk kedua populasi S p = ( ) S + + ( ) S
18 Cara Sadi utuk Selisih Rataa Misalka Y = D, µ -µ =µ D da S d simpaga baku selisih yag membetuk sampel, jika populasi diaggap ormal maka T D µ D = ~ t Sd / Selag kepercayaa (-α)00% utuk µ D : d s t d < µ < d + α d / α / t s d
19 Distribusi Selisih Proporsi Misalka ada dua populasi masig-masig berdistribusi biomial, keduaya berukura cukup besar. Jika proporsi terjadiya peristiwa A pada populasi kesatu π da pada populasi kedua π. Dari populasi kesatu diambil secara acak sampel-sampel berukura da dari populasi kedua diambil secara acak sampelsampel berukura.
20 Betuk selisih atara proporsi dari sampel ke sampel pada kumpula kesatu da rata-rata dari sampel ke sampel pada kumpula kedua, sehigga didapat kumpula selisih proporsi : Y i j dega i=,,,k da j=,,,r. Rata-rata selisih proporsi : µ sp = π π Simpaga baku selisih proporsi : sp = π Teori Peaksira ( π) π ( π ) +
PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:
PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.
x = μ...? 2 2 s = σ...? x x s = σ...?
Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)
Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu
BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab
Metode Statistika STK211/ 3(2-3)
Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X
Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.
Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,
ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika
Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu
Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :
PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,
BAB 6: ESTIMASI PARAMETER (2)
Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara
STATISTIK PERTEMUAN VIII
STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag
DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)
DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,
REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan
REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k
Distribusi Sampel & Statistitik Terurut
Distribusi Sampel & Statistitik Terurut Sampel Acak, Rataa sampel, X-bar, Variasi sampel, S, Teorema Limit Pusat, Distribusi t,, F Statistik Terurut MA 3181 Teori Peluag 11 November 014 Utriwei Mukhaiyar
Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,
DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara
Distribusi Pendekatan (Limiting Distributions)
Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,
Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X
Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..
Distribusi Sampling (Distribusi Penarikan Sampel)
Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,
Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:
Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira
9 Departemen Statistika FMIPA IPB
Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara
STATISTIKA SMA (Bag.1)
SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data
Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015
Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi
INTERVAL KEPERCAYAAN
INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira
PETA KONSEP RETURN dan RISIKO PORTOFOLIO
PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI
PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011
PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai
Mata Kuliah: Statistik Inferensial
PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: [email protected] DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)
BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan
BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu
MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA
MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ
TINJAUAN PUSTAKA Pengertian
TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok
Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi
Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval
Statistika Inferensial
Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi
STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP
STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,
Bab 6 PENAKSIRAN PARAMETER
Bab 6 PENAKSIRAN PARAMETER Stadar Kompetesi : Setelah megikuti kuliah ii, mahasiswa dapat memahami hubuga ilai sampel da populasi da meetuka distribusi samplig yag tepat utuk diguaka Kompetesi Dasar :
Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1
Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik
RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015
RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi
BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara
BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula
Pendugaan Parameter. Debrina Puspita Andriani /
Pedugaa Parameter 7 Debria Puspita Adriai E-mail : [email protected] / [email protected] Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:
DERET TAK HINGGA (INFITITE SERIES)
MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag
PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4]
PENAKIRAN Peaksira Titik Peaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk σ MA 8 Aalisis Data Utriwei Mukhaiyar Oktober 00 008 by UP & UM METODE PENAKIRAN. Peaksira Titik Nilai tuggal dari suatu
Prestasi itu diraih bukan didapat!!! SOLUSI SOAL
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk
Teorema Nilai Rata-rata
Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi
BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI
BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas
BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya
5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel
Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga
BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL
BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,
BAB VII RANDOM VARIATE DISTRIBUSI DISKRET
BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka
Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi
Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,
Sebaran Penarikan Contoh. Dept Statistika FMIPA IPB
Sebara Pearika Cotoh Dept Statistika FMIPA IPB Statistik: karakteristik umerik yag diperoleh dari data cotoh Dari sebuah populasi dapat diperoleh bayak cotoh acak. Dari setiap cotoh acak, dapat dihitug
mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.
Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah
PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R
PENAKSIRAN P E N A K S I R A N T I T I K P E N A K S I R A N S E L A N G S E L A N G K E P E R C A Y A A N U N T U K R A T A A N S E L A N G K E P E R C A Y A A N U N T U K V A R I A N S I M A 0 8 S T
Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.
MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa
METODE PENAKSIRAN PENAKSIRAN ILUSTRASI CONTOH. pendekatan metode tertentu. Nilai sesungguhnya dari suatu parameter yang berada di selang tertentu.
ENAKIRAN eaksira Titik eaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk MA 08 tatistika Dasar Dose : Udjiaa. asaribu Utriwei Mukhaiyar 6 April 009 METODE ENAKIRAN. eaksira Titik Nilai tuggal dari
ANALISIS REGRESI DAN KORELASI SEDERHANA
LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.
BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran
BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi
DISTRIBUSI KHUSUS YANG DIKENAL
0 DISTRIBUSI KHUSUS YANG DIKENAL Kita sudah membahas fugsi peluag atau fugsi desitas, baik defiisiya maupu sifatya. Fugsi peluag atau fugsi desitas ii merupaka ciri dari sebuah distribusi, artiya fugsi
REGRESI LINIER GANDA
REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka
UKURAN PEMUSATAN UKURAN PENYEBARAN
UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU
BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA
BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret
Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut
Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram
Statistika Matematika Soal da embahasa M Samy Baladram Bab 4 Ubiasedess, Cosistecy, ad Limitig istributios Ubiasedess, Cosistecy, ad Limitig istributios 41 Ekspektasi Fugsi Key oits Ṫeorema 411 Jika T
: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd
R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram
Penaksiran Titik Penaksiran Selang. Selang Kepercayaan untuk VARIANSI MA2081 STATISTIKA DASAR
PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA08 STATISTIKA DASAR MA08 STATISTIKA DASAR Utriwei Mukhaiyar 5 Oktober 0 Metode Peaksira Peaksira Titik
BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy
BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag
III BAHAN DAN METODE PENELITIAN. memelihara itik Damiaking murni di Kampung Teras Toyib Desa Kamaruton
III BAHAN DAN METODE PENELITIAN 3.1 Baha da Alat Peelitia 3.1.1 Telur Tetas Itik Damiakig Baha yag diguaka dalam peelitia ii adalah telur tetas itik Damiakig berasal dari iduk yag dipelihara secara ekstesif
Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval
Pedugaa Parameter Pedahulua Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi
ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto
Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).
BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuanku Tambusai Bangkinang. 7. PENAKSIRAN ( Taksiran Interval untuk rataan, varian dan proporsi)
Pertemua0 BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuaku Tambusai Bagkiag 7. PENAKSIRAN ( Taksira Iterval utuk rataa, varia da proporsi) 7.1 Pedahulua Pada pembahasa sebelumya adalah meletakka
theresiaveni.wordpress.com NAMA : KELAS :
theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu
PROSIDING ISBN:
S-6 Perlukah Cross Validatio dilakuka? Perbadiga atara Mea Square Predictio Error da Mea Square Error sebagai Peaksir Harapa Kuadrat Kekelirua Model Yusep Suparma (yusep.suparma@ upad.ac.id) Uiversitas
Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval
Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi
1 n MODUL 5. Peubah Acak Diskret Khusus
ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai
BARISAN TAK HINGGA DAN DERET TAK HINGGA
BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi
HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.
Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =
JENIS PENDUGAAN STATISTIK
ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka
PENGUJIAN HIPOTESA BAB 7
PENGUJIAN IPOTESA BAB 7 Pedahulua ipotesis ( upo : lemah, Thesis : peryataa ) Diartika :. Peryataa yag masih lemah kebearaya da perlu dibuktika. Dugaa yag sifatya masih semetara ipotesis ii perlu utuk
A. Pengertian Hipotesis
PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa
PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA
PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka
DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA5182 Topik dalam Statistika I: Statistika Spasial 6 September 2012 Utriweni Mukhaiyar
INFERENSI STATISTIKA DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA518 Topik dalam Statistika I: Statistika Spasial 6 September 01 Utriwei Mukhaiyar DISTRIBUSI SAMPEL Beberapa defiisi Suatu populasi terdiri
Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr
materio.r Statistika A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka).
STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis
materio.r A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka). B. PENYAJIAN
LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang
2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua
BAB V ANALISA PEMECAHAN MASALAH
89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas
PENDUGAAN PARAMETER. Ledhyane Ika Harlyan
PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai
UKURAN PEMUSATAN DATA
Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN
STATISTIKA NON PARAMETRIK
. PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha
II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang
II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Tujua Peelitia Peelitia ii bertujua utuk megetahui apakah terdapat perbedaa hasil belajar atara pegguaa model pembelajara Jigsaw dega pegguaa model pembelajara Picture ad Picture
Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1
Kuliah : Rekayasa Hidrologi II TA : Geap 2015/2016 Dose : 1. Novriati.,MT 1 Materi : 1.Limpasa: Limpasa Metoda Rasioal 2. Uit Hidrograf & Hidrograf Satua Metoda SCS Statistik Hidrologi Metode Gumbel Metode
Bab 7 Penyelesaian Persamaan Differensial
Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala
BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA
BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,
A. PENGERTIAN DISPERSI
UKURAN DISPERSI A. PENGERTIAN DISPERSI Ukura diperi atau ukura variai atau ukura peyimpaga adalah ukura yag meyataka eberapa jauh peyimpaga ilai-ilai data dari ilaiilai puatya atau ukura yag meyataka eberapa
Analisa Data Statistik. Ratih Setyaningrum, MT
Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.
BARISAN DAN DERET. Nurdinintya Athari (NDT)
BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga
BAB II TINJAUAN PUSTAKA. dengan asumsi bahwa telah diketahui bentuk fungsi regresinya. atau dalam bentuk matriks dapat ditulis dengan:
BAB II TINJAUAN PUSTAKA 2.1 Regresi Parametrik Regresi parametrik merupaka metode statistika yag diguaka utuk megetahui pola hubuga atara variabel prediktor dega variabel respo, dega asumsi bahwa telah
DERET Matematika Industri 1
DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara
Chapter 7 Student Lecture Notes 7-1
Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji
PENGUJIAN HIPOTESIS DUA RATA-RATA
PENGUJIN HIPOTEI DU RT-RT Pegujia hipoesis dua raa-raa diguaka uuk membadigka dua keadaa aau epaya dua populasi. Misalya kia mempuyai dua populasi ormal masig-masig dega raa-raa µ da µ sedagka simpaga
