PENGUJIAN HIPOTESIS DUA RATA-RATA
|
|
|
- Lanny Kusumo
- 9 tahun lalu
- Tontonan:
Transkripsi
1 PENGUJIN HIPOTEI DU RT-RT Pegujia hipoesis dua raa-raa diguaka uuk membadigka dua keadaa aau epaya dua populasi. Misalya kia mempuyai dua populasi ormal masig-masig dega raa-raa µ da µ sedagka simpaga bakuya σ da σ. ecara idepede dari populasi kesau diambil sebuah sample acak berukura sedagka dari populasi kedua diambil sebuah sample acak berukura. dari kedua sample ii beruru-uru didapa x, s da x, s. ka diuji eag raa-raa µ da µ. a. σ dikeahui jika > 30 da > 30, maka diguaka simpaga baku populasi (σ da Uji Z. Prosedur pegujia hipoesis :. Formulasi hipoesis : Uji dua pihak Ho : µ µ Ha : µ µ Uji pihak kaa Ho : µ µ Ha : µ > µ Ho : µ µ Ha : µ < µ. Meeuka ilai α da ilai Z abel Z abel (uuk uji dua pihak Z abel Z ( Z (uuk uji sau pihak 3. Krieria pegujia Uji Dua pihak Ho dierima, jika - Ho diolak, jika Z hiug - Uji pihak kaa Ho dierima, jika Z hiug < Ho diolak, jika Z hiug < Z hiug < Z ( Z ( Z Ho dierima, jika Z hiug > - Z Ho diolak, jika Z hiug - Z Z Z ( aau Z hiug Z ( hp://muhammadiafgai.ordpress.com
2 4. Uji saisic Zhiug σ σ 5. Kesimpula Cooh : eorag guru berpedapa baha meode pembelajara I lebih baik dari meode pembelajara II pada pokok bahasa rigoomeri. Uuk iu, diambil sample di dua kelas masig-masig dega jumlah sisa 40 da 44 dega raa-raa ilai ujia da simpaga baku 6,8 da 4, sera 7, da 5,6. Ujilah pedapa ersebu dega α 5%. Jaab : Dikeahui : σ σ Prosedur pegujia hipoesis :. Formulasi hipoesis : Ho : Ha :. Nilai α 0,05 da ilai Z abel Z abel 3. Krieria pegujia Ho dierima, jika Ho diolak, jika 4. Uji saisic Zhiug σ σ 5. Kesimpula Karea, maka Jadi, b. Jika σ idak dikeahui, maka diguaka simpaga baku sample ( da Uji. Jika 30, 30, da 30, maka : Prosedur pegujia hipoesisya :. Formulasi hipoesis : Uji dua pihak Ho : µ µ Ha : µ µ hp://muhammadiafgai.ordpress.com
3 Uji pihak kaa Ho : µ µ Ha : µ > µ Ho : µ µ Ha : µ < µ. Meeuka ilai α da ilai abel abel (uuk uji dua pihak abel α; α; (uuk uji sau pihak,dega 3. Krieria pegujia Uji Dua pihak Ho dierima, jika - α; Ho diolak, jika hiug - Uji pihak kaa Ho dierima, jika hiug < Ho diolak, jika hiug < hiug < α; Ho dierima, jika hiug > - Ho diolak, jika hiug - 4. Uji saisic hiug ( ( α; aau hiug α; 5. Kesimpula Cooh : Dua pedekaa dalam pembelajara bagu ruag diberika kepada dua kelompok sisa. ample acak yag eridiri aas sisa diberi pedekaa da 0 sisa diberi pedekaa. hasil ujia seelah diberi kedua pedekaa ersebu sebagai beriku : Pedekaa Pedekaa Dalam araf yaa α 5%, euka apakah kedua macam pedekaa iu sama baikya aau idak?. hp://muhammadiafgai.ordpress.com 3
4 ( ( ( ( Prosedur pegujia hipoesisya :. Formulasi hipoesis : Ho : Ha :. Meeuka ilai α da ilai abel abel 3. Krieria pegujia Ho dierima, jika Ho diolak, jika 4. Uji saisic hiug ( ( 5. Kesimpula Karea, maka Jadi, Jika 30, 30, eapi > 30, maka : Prosedur pegujia hipoesisya :. Formulasi hipoesis : Uji dua pihak Ho : µ µ Ha : µ µ Uji pihak kaa Ho : µ µ Ha : µ > µ Ho : µ µ Ha : µ < µ hp://muhammadiafgai.ordpress.com 4
5 . Meeuka ilai α da ilai abel abel, dega da * Uuk uji dua pihak ( α ( ( α ( * Uuk uji sau pihak ( α ( ( α ( 3. Krieria pegujia Uji Dua pihak Ho dierima, jika - abel < hiug < abel Ho diolak, jika hiug - abel aau hiug abel Uji pihak kaa Ho dierima, jika hiug < abel Ho diolak, jika hiug abel Ho dierima, jika hiug > - abel Ho diolak, jika hiug - abel 4. Uji saisic hiug 5. Kesimpula Cooh : Dua orag guru memberika pegajara dega megguaka dua media yag berbeda. ample radom 4 murid yag diberika pegajara media mempuyai raa-raa 7,5 dega varias 0,98 da sample radom 0 murid dega media mempuyai raa-raa 7, da simpaga baku,9. ujilah dega α 5%, apakah raa-raa hasil belajar dega media lebih baik dari pada media?. Dikeahui : Prosedur pegujia hipoesisya :. Formulasi hipoesis : Ho : Ha : hp://muhammadiafgai.ordpress.com 5
6 . Meeuka ilai α da ilai abel abel 3. Krieria pegujia Ho dierima, jika Ho diolak, jika 4. Uji saisic hiug 5. Kesimpula Karea, maka Jadi, Referesi : udjaa. 00, METOD TTITIK. Tarsio : adug. hp://muhammadiafgai.ordpress.com 6
Rumus-rumus yang Digunakan
Saisika Uipa Surabaya 4. Sampel Tuggal = Rumus-rumus yag Diguaka s..... Sampel berkorelasi D D N N N...... 3. Sampel Bebas a. Uuk varias sama... 3 aau x x s g... 4 b. Sampel Heeroge Guaka Uji Corha - Cox
ANALISIS BEDA Fx F.. S u S g u i g y i an a t n o t da d n a Ag A u g s u Su S s u wor o o
ANALII BEDA Fx. ugiyao da Agus usworo Kosep Peeliia bermaksud meguji keadaa (sesuau) yag erdapa dalam suau kelompok dega kelompok lai Meguji apakah erdapa perbedaa yg Meguji apakah erdapa perbedaa yg sigifika
ANALISIS BEDA. Konsep. Uji t (t-test) Teknik Uji Beda. Agus Susworo Dwi Marhaendro
ANALII BEA Agus usworo wi Marhaedro Kosep Peeliia bermaksud meguji keadaa (sesuau) yag erdapa dalam suau kelompok dega kelompok lai Meguji apakah erdapa perbedaa yg sigifika di aara kelompok-kelompok Tekik
JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA
Achmad Samudi, M.Pd. JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA 6. MENGUJI PROPORSI π : UJI DUA PIAK Mialka kia mempuyai populai biom dega propori periiwa A π Berdaarka ebuah ampel
PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi.
. Pedahulua PENGUJIAN HIPOTESIS Hipoesis Saisik : peryaaa aau dugaa megeai sau aau lebih populasi. Pegujia hipoesis berhubuga dega peerimaa aau peolaka suau hipoesis. Kebeara (bear aau salahya) suau hipoesis
B A B III METODE PENELITIAN. Objek penelitian dalam penelitian ini adalah menganalisis perbandingan
30 B A B III METODE PENELITIAN 3. Peeapa Lokai da Waku Peeliia Objek peeliia dalam peeliia ii adalah megaalii perbadiga harga jual produk melalui pedekaa arge pricig dega co-plu pricig pada oko kue yag
V. PENGUJIAN HIPOTESIS
V. PENGUJIAN IPOTEI A. IPOTEI TATITIK Defiisi uau hipoesa saisik adalah suau peryaaa aau dugaa megeai sau aau lebih variabel populasi. ipoesis digologka mejadi. ipoesis ol adalah hipoesis yag dirumuska
JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER
STATISTIK CUKUP Oleh: Ramayai Rizka M (11810101003), Dey Ardiao (1181010101), Ikfi Ulyawai (1181010103), Falviaa Yulia Dewi (1181010106), Ricki Dio Rosada (11810101034), Nurma Yuia D (11810101035), Wula
DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin
DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa
PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:
PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.
ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika
Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu
Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) . Definisi L.2 (Kejadian lepas )
33 LAMPIRAN 34 35 Beberapa Defiisi Ruag Cooh Kejadia da Peluag Suau percobaa yag dapa diulag dalam kodisi yag sama, yag hasilya idak dapa diprediksi dega epa eapi kia bisa megeahui semua kemugkia hasil
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Jeis Peeliia Jeis peeliia ii ergolog peeliia komparasioal, yaiu peeliia yag dilaksaaka uuk megeahui ada idakya perbedaa aar variabel yag sedag dielii. Jika perbedaa iu memag
A. Pengertian Hipotesis
PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa
III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I
7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3
Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd
Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag
DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)
DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,
BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan
BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu
PENGARUH STRATEGI PEMBELAJARAN GENIUS LEARNING TERHADAP HASIL BELAJAR FISIKA SISWA
ISSN 5-73X PENGARUH STRATEGI PEMBELAJARAN GENIUS LEARNING TERHADAP HASIL BELAJAR ISIKA SISWA Henok Siagian dan Iran Susano Jurusan isika, MIPA Universias Negeri Medan Jl. Willem Iskandar, Psr V -Medan
Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.
Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,
PENGUJIAN HIPOTESIS. pernyataan atau dugaan mengenai satu atau lebih populasi.
PENGUJIAN HIPOTESIS 1. PENDAHULUAN Hipoesis Saisik : pernyaaan aau dugaan mengenai sau aau lebih populasi. Pengujian hipoesis berhubungan dengan penerimaan aau penolakan suau hipoesis. Kebenaran (benar
BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang
BAB 2 LANDASAN EORI 2.1 Pegeria Peramala Peramala adalah kegiaa uuk memperkiraka apa yag aka erjadi di masa yag aka daag. Sedagka ramala adalah suau siuasi aau kodisi yag diperkiraka aka erjadi pada masa
Mata Kuliah: Statistik Inferensial
PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: [email protected] DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)
PREDIKSI PRODUKSI JAGUNG DI JAWA TENGAH DENGAN ARIMA DAN BOOTSTRAP
Prosidig SPMIPA. pp. 57-6. 6 ISBN : 979.74.47. PREDIKSI PRODUKSI JAGUNG DI JAWA TENGAH DENGAN ARIMA DAN BOOTSTRAP Sri Rahayu, Taro Jurusa Maemaika FMIPA UNDIP Semarag Jl. Prof. Soedaro, Kampus UNDIP Tembalag,
PENERAPAN METODE TUTOR SEBAYA UNTUK MENINGKATKAN PRESTASI BELAJAR KIMIA SISWA PADA POKOK BAHASAN REAKSI OKSIDASI DAN REDUKSI DI KELAS X SMAN 1 UKUI
PENERAPAN METODE TUTOR EBAYA UNTUK MENINGKATKAN PRETAI BELAJAR KIMIA IWA PADA POKOK BAHAAN REAKI OKIDAI DAN REDUKI DI KELA X MAN UKUI Asrida Mulyai ), Asmadi M. Noer ), Erviyei 3) ) Mahasiswa Program udi
PENDUGAAN PARAMETER. Ledhyane Ika Harlyan
PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai
Manajemen Keuangan. Idik Sodikin,SE,MBA,MM EVALUASI UNTUK MENENTUKAN KEPUTUSAN INVESTASI. Modul ke: 06Fakultas EKONOMI DAN BISNIS
Modul ke: 06Fakulas EKONOMI DAN BISNIS EVALUASI UNTUK MENENTUKAN KEPUTUSAN INVESTASI Program Sudi Akuasi Idik Sodiki,SE,MBA,MM Krieria Kepuusa Ivesasi aau Pegaggara Modal o Beberapa krieria yag aka diperguaka
Cara uji butiran agregat kasar berbentuk pipih, lonjong, atau pipih dan lonjong
Cara uji buira agrega kasar berbeuk iih, lojog, aau iih da lojog RSNI T-0-005 Ruag ligku Sadar ii meeaka kaidah da aa cara eeua ersease dari buira agrega kasar berbeuk iih, lojog, aau iih da lojog. Pegujia
TINJAUAN PUSTAKA Pengertian
TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok
INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
INTEGRL TK TENTU pecaha rasioal gusia Pradjaigsih, M.Si. Jurusa Maemaika FMIP UNEJ [email protected] DEFINISI Fugsi suku bayak derajad dega bula o egaif 0 dimaa, 0 a a a a a P Fugsi kosa dipadag sbg
Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:
Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira
BILANGAN BAB V BARISAN BILANGAN DAN DERET
Maemaika Kelas IX emese Baisa Bilaga da Dee BILANGAN BAB V BARIAN BILANGAN DAN DERET A. Baisa Bilaga. Pegeia Baisa Bilaga Jika bilaga-bilaga diuuka dega aua eeu maka aka dipeoleh suau baisa bilaga. Cooh
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Tujua Peelitia Peelitia ii bertujua utuk megetahui apakah terdapat perbedaa hasil belajar atara pegguaa model pembelajara Jigsaw dega pegguaa model pembelajara Picture ad Picture
SEBARAN t dan SEBARAN F
SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita
BAB V ANALISA HASIL. Untuk mendapatkan jenis peramalan yang dinginkan terdapat banyak
BB V NLIS HSIL 5.1 Ukura kurasi Hasil Peramala Uuk medapaka jeis peramala yag digika erdapa bayak parameer-parameer yag dapa diguaka. Seperi yag elah diuraika pada ladasa eori, parameer-parameer ersebu
Distribusi Sampling (Distribusi Penarikan Sampel)
Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,
Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015
Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi
BAB V ANALISA PEMECAHAN MASALAH
89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas
III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur
0 III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai Mei 03. B. Populasi da Sampel Populasi dalam peelitia
A.Interval Konfidensi pada Selisih Rata-rata
A.Iterval Kofidei pada Seliih Rata-rata. Bila kita mempuyai da maig-maig adalah mea ample acak beba berukura da yag diambil dari populai dega ragam da diketahui, maka elag kepercayaa 00-% bagi - adalah
MODIFIKASI METODE DEKOMPOSISI ELZAKI (MMDE) UNTUK PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL TAK LINEAR
Bulei Ilmiah Ma.Sa. da Terapaya (Bimaser) Volume 06, No. (07), hal -0. MODIFIKASI METODE DEKOMPOSISI ELZAKI (MMDE) UNTUK PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL TAK LINEAR Ermawai, Helmi, Frasiskus
Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi
Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval
Bagian 7. Jawab. Uji Hipotesis. Beberapa Uji Hipotesis pada Statistika Parametrik. Beberapa Uji Hipotesis pada Statistika Nonparametrik
Jawab p = proporsi sekrearis di seluruh perkanoran di Bandung yang diperlengkapi dengan kompuer di ruang kerjanya Karena p idak dikeahui, asumsikan nilainya.5 q = 1 p =.5 Tingka keyakinan 95% =.5 dan /
Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :
PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,
STATISTIKA NON PARAMETRIK
. PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha
BAB III RUNTUN WAKTU MUSIMAN MULTIPLIKATIF
BAB III RUNTUN WAKTU MUSIMAN MULTIPLIKATIF Pada bab ini akan dibahas mengenai sifa-sifa dari model runun waku musiman muliplikaif dan pemakaian model ersebu menggunakan meode Box- Jenkins beberapa ahap
III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur
III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam
Analisis Rangkaian Listrik Di Kawasan Waktu
Sudaryao Sudirham Aalisis Ragkaia Lisrik Di Kawasa Waku 3- Sudaryao Sudirham, Aalisis Ragkaia Lisrik () BAB 3 Peryaaa Siyal da Spekrum Siyal Dega mempelajari lajua eag model siyal ii, kia aka memahami
BAB IV DESKRIPSI ANALISIS DATA
BAB IV DESKRIPSI ANALISIS DATA A. Dekripi Data Peelitia ii megguaka peelitia ekperime, ubyek peelitiaya dibedaka mejadi dua kela, yaitu kela kotrol da kela ekperime. Kela kotrol pada peelitia ii merupaka
BAB 2 LANDASAN TEORI
35 BAB LANDASAN TEORI Meode Dekomposisi biasanya mencoba memisahkan iga komponen erpisah dari pola dasar yang cenderung mencirikan dere daa ekonomi dan bisnis. Komponen ersebu adalah fakor rend (kecendrungan),
KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB
KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB Sudi kelayaka bisis pada dasarya berujua uuk meeuka kelayaka bisis berdasarka krieria ivesasi Krieria ersebu diaaraya adalah ; 1. Nilai bersih kii (Ne
BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model
3 BAB III METODE PENELITIAN A. Jei Peelitia Tujua peelitia ii yaki membadigka kemampua berpikir kriti dega kemampua berpikir kreatif dega megguaka dua model pembelajara yaitu model pembelajara berbai maalah
B. DESKRIPSI SINGKAT MATA KULIAH
A. IDENTITAS MATA KULIAH Nama Maa Kuliah : Kalkulus 1 Kode Maa Kuliah : MUG1A4 SKS : 4 (empa) Jeis : Maa kuliah wajib Jam pelaksaaa : Taap muka di kelas = 4 jam per peka Tuorial/ resposi Semeser / Tigka
REGRESI LINIER GANDA
REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka
III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5
III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut
Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai
PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,
BAB 6: ESTIMASI PARAMETER (2)
Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara
BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.
BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek
REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan
REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k
BAB II TINJAUAN PUSTAKA. Black dan Scholes (1973) menyatakan bahwa nilai aset mengikuti Gerak
BAB II TINJAUAN PUSTAKA. Peeliia Terdahulu Black da Scholes (973) meyaaka bahwa ilai ase megikui Gerak Brow Geomeri, dega drif μ (ekpekasi dari reur) da volailias σ (deviasi sadar dari reur). Berawal dari
Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL
Nama : INDRI SUCI RAHMAWATI NIM : 2015-32-005 ANALISIS REGRESI SESI 01 HAL. 86-88 Latiha 2 Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a. Hitug Sum of Square for Regressio (X) b.
BAB 3 METODE PENELITIAN
BAB 3 METODE PENELITIAN 3 Meode Pegumpula Daa 3 Jeis Daa Pada peeliia ii aka megguaka jeis daa yag bersifa kuaiaif Daa kuaiaif adalah daa yag berbeuk agka / omial Dalam peeliia ii aka megguaka daa pejuala
ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto
Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Jenis Peneliian Jenis peneliian kuaniaif ini dengan pendekaan eksperimen, yaiu peneliian yang dilakukan dengan mengadakan manipulasi erhadap objek peneliian sera adanya konrol.
MODUL PRAKTIKUM Statistik Inferens (MIK 411)
MODUL PRAKTIKUM tatistik Iferes (MIK 4) Disusu Oleh Nada Aula Rumaa, KM., MKM UNIVERITA EA UNGGUL 07 Revisi (tgl) : 0 (0 Desember 07) / 4 UJI T DEPENDEN/BERPAANGAN (PAIRED T TET) A. Pedahulua Uji t berpasaga,
BAGIAN 2 TOPIK 5. andhysetiawan
BAGIAN OIK 5 adhyseiawa Isi Maeri Modulasi Aliudo AM Modulasi Frekuesi FM adhyseiawa MODULASI AMLIUDO DAN MODULASI ANGULAR SUDU Modulasi roses erubaha karakerisik aau besara gelobag ebawa, euru ola gelobag
Pengujian Hipotesis untuk selisih dua nilai tengah populasi
Pegujia Hipotei utuk eliih dua ilai tegah populai Hipotei Hipotei atu arah: H 0 : - 0 v H : - < 0 H 0 : - 0 v H : - > 0 Hipotei dua arah: H 0 : - = 0 v H : - 0 Statitik uji z h ( ( ) ) 0 Formula klik diketahui
BAB III METODOLOGI PENELITIAN
38 BAB III METODOLOGI PENELITIAN A. Metode Peelitia Metode peelitia adalah suatu cara ilmiah utuk medapatka data dega tujua tertetu. Peelitia yag megagkat judul Efektivitas Tekik Permaia Pioy Heyo dalam
INTERVAL KEPERCAYAAN
INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira
ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA
ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA Laar Belakag Masalah Semaki berambah pesaya pembagua dibidag kosruksi maka meyebabka meigka pula kebuuha aka meerial-maerial
BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL. MESIN OKK Gill BCG1-P2 PADA BAGIAN DRAWING PT VONEX INDONESIA
BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL MESIN OKK Gll BCG1-P PADA BAGIAN DRAWING PT VONEX INDONESIA 3.1 Pedahulua Pada Bab II elah djelaska megea eor eor yag dbuuhka uuk meeuka jadwal opmum
Statistika 2. Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc.
Statistika Toik Bahasa: Pegujia Hiotesis Oleh : Edi M. Pribadi, SP., MSc. E-mail: [email protected]. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu
Muhammad Firdaus, Ph.D
Muhammad Firdaus, Ph.D DEPARTEMEN ILMU EKONOMI FEM-IPB 010 PENGERTIAN GARIS REGRESI Garis regresi adalah garis yang memplokan hubungan variabel dependen (respon, idak bebas, yang dipengaruhi) dengan variabel
Analisis Model dan Contoh Numerik
Bab V Analisis Model dan Conoh Numerik Bab V ini membahas analisis model dan conoh numerik. Sub bab V.1 menyajikan analisis model yang erdiri dari analisis model kerusakan produk dan model ongkos garansi.
NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN
NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN Nomi Kelari *, Hasriai 2, Musraii 2 Mahasiswa Program S Maemaika 2 Dose Jurusa Maemaika Fakulas Maemaika da Ilmu Pegeahua
Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL
Nama : INDRI SUCI RAHMAWATI NIM : 2015-32-005 ANALISIS REGRESI SESI 01 HAL. 85-88 Latiha 1 Pelajari data dibawah ii, tetuka depede da idepedet variabel serta a. Hitug Sum of for Regressio (X) b. Hitug
Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,
DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara
1. Pendahuluan. Materi 3 Pengujuan Hipotesis
Materi 3 Pegujua Hiotesis. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu atau lebih oulasi) Kebeara suatu hiotesis diuji dega megguaka statistik samel hiotesis
Statistika Inferensial
Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi
METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa
19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh
BAB 2 LANDASAN TEORI. pada masa mendatang. Peramalan penjualan adalah peramalan yang mengkaitkan berbagai
BAB 2 LANDASAN TEORI 2.1 Pegeria Peramala (orecasig) Peramala (orecasig) adalah suau kegiaa yag memperkiraka apa yag aka erjadi pada masa medaag. Peramala pejuala adalah peramala yag megkaika berbagai
ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN
8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika
BAB III ANALISIS LOOKBACK OPTIONS
BAB III : ANALII LOOKBACK OPION BAB III ANALII LOOKBACK OPION Pada Bab III ii aka dibahas egeai lookback opios da aalisisa Asusi ag kia pakai adalah saha ag diguaka (uderlig asse) idak eberika divide ipe
Hidraulika Komputasi
Hdraulka Kompuas Meoda Beda Hgga Ir. Djoko Lukao, M.Sc., Ph.D. Jurusa Tekk Spl Fakulas Tekk Uversas Gadjah Mada Peyelesaa Pedekaa Karea dak dperoleh peyelesaa aals, maka dguaka peyelesaa pedekaa umers.
ρ = sehingga momen pertama dan kedua BAB 2 TEORI DASAR 2.1 Random Walk ρi = ε) = q= 1 p. Posisi suku bunga bergerak pada
BAB EORI DASAR Uuk meeuka ieres rae differeial, peulis aka membahas erlebih dahulu beberapa eori yag berkaia dega proses sokasik Pergeraka suau parikel yag bergerak secara acak aau disebu juga megikui
Ukuran Dispersi Multivariat
Bab IV Ukua Disesi Mulivaia Pada bab ii, eama-ama aka dikemukaka defiisi eag veko vaiasi vaiabel-vaiabel sada (VVVS sebagai ukua disesi mulivaia akala seluuh vaiabel yag eliba adalah vaiabel sada. Selajuya
PENGUJIAN HIPOTESA BAB 7
PENGUJIAN IPOTESA BAB 7 Pedahulua ipotesis ( upo : lemah, Thesis : peryataa ) Diartika :. Peryataa yag masih lemah kebearaya da perlu dibuktika. Dugaa yag sifatya masih semetara ipotesis ii perlu utuk
BAB 7 MOMEN, KEMIRINGAN DAN KERUNCINGAN
BAB 7 MOMEN, KEMIRINGAN DAN KERUNCINGAN A. Mome Misalka diberika variable x dega harga- harga : x, x,., x. Jika A = sebuah bilaga tetap da r =,,, maka mome ke-r sekitar A, disigkat m r, didefiisika oleh
BAB 2 TINJAUAN TEORI. Ramalan pada dasarnya merupakan dugaan atau perkiraan mengenai terjadinya suatu
BAB 2 TINJAUAN TEORI 2.1 Pegeria Peramala Ramala pada dasarya merupaka dugaa aau perkiraa megeai erjadiya suau kejadia aau perisiwa di waku yag aka daag. Peramala merupaka sebuah ala bau yag peig dalam
MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA
MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ
