STATISTIKA NON PARAMETRIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "STATISTIKA NON PARAMETRIK"

Transkripsi

1 . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha Uji No Parametrik: - Tidak memafaatka semua iformasi dari sampel (Tidak efisie) Beberapa Uji No Parametrik yag aka dipelajari : - Uji tada berpasaga - Uji Perigkat Sampel Ma-Whitey - Uji Perigkat Sampel Wilcoxo - Uji Korelasi Perigkat Spearma - Uji Kokordasi Kedal (bacalah di Diktat Statistika Uiv Guadarma) - Uji Ru(s) (bacalah di Diktat Statistika Uiv Guadarma). UJI TANDA BERPASANGAN Uji dilakuka pada sampel terpisah (idepede) tada (+) data pada suatu sampel > pasagaya dalam sampel yag lai tada ( ) data pada suatu sampel < pasagaya dalam sampel yag lai tada Nol (0) data pada suatu sampel pasagaya dalam sampel yag lai Tada Nol tidak diguaka dalam perhituga Notasi yag diguaka : bayak tada (+) da tada ( ) dalam sampel p proporsi SUKSES dalam sampel q p p 0 proporsi SUKSES dalam H 0 q 0 p 0 p q Stadar Error Galat Baku σ p Rata-Rata Sampel µ p p 0 p µ p Statistik Uji zhitug σ p 0 0

2 z hitug p p p 0 q 0 0 SUKSES tergatug dari apa yag ditayaka (igi diuji) dalam soal. Jika yag igi diuji A > B maka SUKSES adalah bayak tada (+) Jika yag igi diuji A < B maka SUKSES adalah bayak tada ( ) Nilai p 0 disesuaika dega ilai pegujia p 0 yag diigika dalam soal atau jika igi diuji A B maka p 0 q Cotoh a: Berikut adalah ilai preferesi kosume terhadap Merk Sabu Madi. Dega taraf yata %, ujilah apakah proporsi preferesi kosume pada kedua merk berilai sama? Tabel. Preferesi sabu LUXE Vs GIVE No. LUXE GIVE Tada Respode Bayak tada (+) 8 Bayak tada ( ) Jika kita asumsika LUXE lebih disukai dibadig GIVE maka SUKSES dalam sampel adalah p proporsi bayak tada (+) dalam sampel bayak positif 8 p q p Karea igi diuji proporsi yag suka LUXE GIVE maka p 0 q

3 Lagkah Pegujia:. H 0 : p H : p Statistik Uji : z 3. Uji: Arah 4. Taraf Nyata Pegujia α % α/ 0.5% Daerah Peolaka H 0 z < z z < da z > z z > Nilai statistik Uji : z hitug p p0 p0 q Kesimpula: z hitug 0.87 ada di daerah peerimaa H 0 H 0 diterima Proporsi kosume yag meyukai LUXE masih sama dega yag meyukai GIVE. Cotoh b: Dega megguaka data pada Tabel da taraf yata % ujilah apakah proporsi preferesi kosume pada sabu LUXE dibadig sabu GIVE sudah lebih dari 0.30? p p H 0 : p H : p 0 > Statistik Uji : z 3. Uji Arah 4. Taraf Nyata Pegujia α % 0.0 3

4 5. Daerah Peolaka H 0 z > z 0. 0 z > Nilai statistik Uji : p p z 0 hitug p q Kesimpula: z hitug.5 ada di daerah peolaka H 0, H 0 ditolak H diterima Proporsi kosume yag meyukai LUXE sudah lebih dari UJI PERINGKAT SAMPEL MANN - WHITNEY Uji ii merupaka alteratif uji beda rata-rata Parametrik dega megguaka t (Sampel-sampel berukura kecil). Lagkah pertama pegujia ii adalah peguruta ilai mulai dari yag terkecil higga terbesar. Peguruta dilakuka tapa pemisaha kedua sampel. Selajutya lakuka peetapa Rak (Perigkat) dega atura berikut: Perigkat ke - diberika pada ilai terkecil di uruta pertama Perigkat tertiggi diberika pada ilai terbesar Jika tidak ada ilai yag sama maka uruta perigkat Jika ada ilai yag sama, maka rakig dihitug dega rumus Perigkat (R) uruta data yg berilai sama bayak data yg berilai sama 4

5 Cotoh a: Berika perigkat (rakig) data dalam tabel berikut ii! Tabel. Nilai UAS Statistika Mahasiswa Fak. Ekoomi Mahasiswa Fak. Ilmu Komputer Nilai Uruta Ragkig Nilai Uruta Rakig R 7 R 93 Rakig utuk Nilai Rakig utuk Nilai Notasi yag diguaka R Jumlah perigkat dalam sampel ke R Jumlah perigkat dalam sampel ke ukura sampel ke ukura sampel ke Ukura kedua sampel tidak harus sama ( + + ) Rata-rata R µ R ( + + ) Rata-rata R µ R Stadar Error (Galat Baku) σ R ( + + ) R µ R z Statistik Uji σ R Dalam perhituga haya R yag diguaka, karea ia mejadi subyek dalam H 0 da H : 5

6 Peetapa H 0 da H : Terdapat 3 alteratif H 0 da H : (a) H 0 µ da H < µ Uji arah dega daerah peolaka z < z α (b) H 0 µ da H > µ Uji arah dega daerah peolaka z > z α (c) H 0 µ da H µ Uji arah dega daerah peolaka yaitu z < z α / da z > z α / Cotoh b: Berdasarka Tabel (lihat Cotoh a), ujilah dega taraf yata 5%, apakah (perigkat) ilai mahasiswa Fak, Ekoomi lebih besar dibadig mahasiswa Ilmu Komputer?. H 0 µ H µ > µ. Statistik Uji : z 3. Uji Arah 4. Taraf Nyata Pegujia α 5% Daerah Peolaka H 0 z > z z > Nilai statistik Uji : R 7 R ( + + ) 0 ( ) µ R ( + + ) σ R R µ R 7 05 z σ R 6

7 7. Kesimpula: z hitug 0.9 ada di daerah peerimaah 0, H 0 diterima (Perigkat) ilai UAS Statistika di Fakultas Ekoomi Fakultas Ilmu Komputer. 4. UJI PERINGKAT SAMPEL WILCOXON Prisip pegerjaaya sama dega Uji Perigkat Sampel Ma-Whitey, haya fokus kii dialihka sampel dega ukura terkecil. Notasi yag diguaka : ukura sampel ke ukura sampel ke < ukura sampel ke selalu lebih kecil dari sampel ke W jumlah perigkat pada sampel berukura terkecil Nilai Ekspektasi (W) E(W) ( + + ) Stadar Error SE ( + + ) Statistik Uji z W E ( W SE Peetapa uruta, perigkat da H 0 da H sama dega Uji Ma-Whitey Cotoh 3: Berikut adalah data pedapata di kelompok pekerja Tabel 3. Pedapata Karyawa Departeme Q Departeme Z Icome Uruta Ragkig Icome Uruta Rakig (ribu USD/tahu) (ribu USD/tahu) W Dega taraf yata 5% ujilah apakah (perigkat) pedapata di departeme Q lebih kecil dibadigka departeme Z?. H 0 µ H µ < µ 7

8 . Statistik Uji : z 3. Uji Arah 4. Taraf Nyata Pegujia α 5% Daerah Peolaka H 0 z < z z < Nilai statistik Uji : 4 8 W 9 E(W) ( + + ) 4( ) SE ( + + ) z W E ( W SE Kesimpula: z hitug.9 ada di daerah peerimaah 0, H 0 diterima Perigkat Pedapata di kedua departeme sama 5. UJI KORELASI PERINGKAT SPEARMAN Dua Uji terakhir (Ma-Whitey da Wilcoxo) ditujuka utuk sampel yag salig bebas (idepede), sedagka Uji Perigkat Spearma ditujuka utuk peetapa perigkat data berpasaga. Kosep da iterpretasi ilai Korelasi Spearma ( R s ) sama dega kosep Koefisie Korelasi pada Regresi (Liier Sederhaa). 8

9 Notasi yag diguaka: bayak pasaga data d i selisih perigkat pasaga data ke i R s Korelasi Spearma R s 6 di i ( ) Statistik Uji z R S ( ) Peetapa H 0 da H : Terdapat 3 alteratif H 0 da H : (a) H 0 : R 0 (korelasi berilai 0, tidak ada hubuga /tidak ada kecocoka) H : R < 0 (korelasi egatif) Uji arah dega daerah peolaka z < z α (b) H 0 : R 0 (korelasi berilai 0, tidak ada hubuga /tidak ada kecocoka) H : R > 0 (korelasi positif) Uji arah dega daerah peolaka z > z α (c) H 0 : R 0 (korelasi berilai 0, tidak ada hubuga /tidak ada kecocoka) H : R 0 (ada korelasi/ada kecocoka, korelasi tidak sama dega 0) Uji arah dega daerah peolaka yaitu z < z α / da z > z α / Perigkat diberika tergatug kategori peilaia. Jika ada item yag diilai ber-perigkat sama, maka peetapa perigkat seperti dalam Ma-Whitey dapat dilakuka (ambil rata-rata perigkatya!) Cotoh 5: Dua orag pakar (ahli) dimita memberika perigkat kierja pada 0 Bak di Idoesia. Perigkat diberika mulai dari bak terbaik perigkat sedag yag terburuk diberi perigkat 0. Hasilya disajika dalam Tabel 4. 9

10 Tabel 4. Hasil perigkat 0 Bak oleh Pakar d i d i Bak Rakig Pakar I Ragkig Pakar II A 4 3 B C D 7 6 E F - G H I J Σ d i 55 Dega taraf yata 5% ujilah apakah apa korelasi atara perigkat yag diberika kedua pakar?. H 0 : R 0 H : R 0. Statistik Uji : z 3. Uji Arah 4. Taraf Nyata Pegujia α 5% α/.5% Daerah Peolaka H 0 z < z z < -.96 da z > z z > Nilai statistik Uji : R s 6 di i 6 55 ( ) 0 ( 0 ) z R S ( ) ( )

11 7. Kesimpula: z hitug.0 ada di daerah peolaka H 0 H 0 ditolak, H 0 ditolak H diterima Ada korelasi/ada kecocoka pemberia perigkat oleh kedua pakar, Catata akhir: Terdapat bayak ragam perhituga Statistika No-parametrik laiya, mahasiswa sagat diajurka mempelajari sediri berbagai tekik perhituga Statistika No Parametrik tersebut. Selesai

Statistika Non Parametrik

Statistika Non Parametrik . Pedahulua Statistika No Paametik Kelebiha Uji No Paametik: - Pehituga sedehaa da cepat - Data dapat beupa data kualitatif (Nomial atau Odial) - Distibusi data tidak haus Nomal Kelemaha Uji No Paametik:

Lebih terperinci

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian 19 3 METODE PENELITIAN 3.1 Keragka Pemikira Secara rigkas, peelitia ii dilakuka dega tiga tahap aalisis. Aalisis pertama adalah megaalisis proses keputusa yag dilakuka kosume dega megguaka aalisis deskriptif.

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

1 Departemen Statistika FMIPA IPB

1 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351) 1 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Metode Noparametrik Skala Pegukura Metode Noparameterik Uji Hipotesis

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB III METODE PENELITIAN. Dalam melakukan penelitian, terlebih dahulu menentukan desain

BAB III METODE PENELITIAN. Dalam melakukan penelitian, terlebih dahulu menentukan desain BAB III METODE PENELITIAN 3.1 Desai Peelitia Dalam melakuka peelitia, terlebih dahulu meetuka desai peelitia yag aka diguaka sehigga aka mempermudah proses peelitia tersebut. Desai peelitia yag diguaka

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi,

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi, 7 III. METODE PENELITIAN 3.1 Idetifikasi Masalah Variabel yag diguaka dalam peelitia ii adalah variabel X da variabel Y. Variabel X merupaka variabel bebas adalah kepemimpia da motivasi, variabel Y merupaka

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi,

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi, BAB III METODE PENELITIAN 3.1 Metode Peelitia Metode yag diguaka dalam peelitia ii adalah peelitia korelasi, yaitu suatu metode yag secara sistematis meggambarka tetag hubuga pola asuh orag tua dega kosep

Lebih terperinci

1. Uji Dua Pihak. mis. Contoh :

1. Uji Dua Pihak. mis. Contoh : . Uji Dua Pihak H 0 H a : : Cotoh : mis : mea kelas Lab mea kelas tapa lab Ho : Tidak ada perbedaa kemampua hasil belajar biologi siswa atara yag belajar melalui media laboratorium dega yag tidak. Ha :

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

Statistika 2. Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc.

Statistika 2. Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc. Statistika Toik Bahasa: Pegujia Hiotesis Oleh : Edi M. Pribadi, SP., MSc. E-mail: edi_m@staff.guadarma.ac.id. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

PROSIDING ISBN:

PROSIDING ISBN: S-6 Perlukah Cross Validatio dilakuka? Perbadiga atara Mea Square Predictio Error da Mea Square Error sebagai Peaksir Harapa Kuadrat Kekelirua Model Yusep Suparma (yusep.suparma@ upad.ac.id) Uiversitas

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

BAB IV PEMBAHASAN DAN ANALISIS

BAB IV PEMBAHASAN DAN ANALISIS BAB IV PEMBAHASAN DAN ANALISIS 4.1. Pembahasa Atropometri merupaka salah satu metode yag dapat diguaka utuk meetuka ukura dimesi tubuh pada setiap mausia. Data atropometri yag didapat aka diguaka utuk

Lebih terperinci

1. Pendahuluan. Materi 3 Pengujuan Hipotesis

1. Pendahuluan. Materi 3 Pengujuan Hipotesis Materi 3 Pegujua Hiotesis. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu atau lebih oulasi) Kebeara suatu hiotesis diuji dega megguaka statistik samel hiotesis

Lebih terperinci

Pemilihan Model Terbaik

Pemilihan Model Terbaik Pemiliha Model Terbaik Hazmira Yozza Jur. Matematika FMIPA Uiv. Adalas Jadi bayak model yag mugki dibetuk Var. Bebas :,, 3 Model Maa Yag Mampu Mewakili Data 3,, 3, 3,, 3 + model akar, log, hasil kali,

Lebih terperinci

BAB III MATERI DAN METODE. Ettawa Berdasarkan Bobot Lahir dan Bobot Sapih Cempe di Satuan Kerja

BAB III MATERI DAN METODE. Ettawa Berdasarkan Bobot Lahir dan Bobot Sapih Cempe di Satuan Kerja 8 BAB III MATERI DAN METODE Peelitia tetag Pedugaa Keuggula Pejata Kambig Peraaka Ettawa Berdasarka Bobot Lahir da Bobot Sapih Cempe di Satua Kerja Sumberejo Kedal dilakuka di Satua Kerja Sumberejo Kedal.

Lebih terperinci

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE Biostatistics UJI CHI-SQUARE I N T A N Y U S U F H A B I B I E, S. G Z - Ilmu statistik tidak haya membatu kita utuk medeskripsika data secara rigkas, tapi juga dapat diguaka utuk meguji hipotesa. - Hipotesa

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan BAB LANDASAN TEORI. Pegertia Regresi Statistika merupaka salah satu cabag peegtahua yag palig bayak medapatka perhatia da dipelajari oleh ilmua dari hamper semua bidag ilmu peegtahua, terutama para peeliti

Lebih terperinci

BAB 2 LANDASAN TEORI. 1. Menurut gejala yang dihadapi, data dapat dibagi dua: a. Data Dikotomi

BAB 2 LANDASAN TEORI. 1. Menurut gejala yang dihadapi, data dapat dibagi dua: a. Data Dikotomi 5 BAB LANDASAN TEORI. Data Data ialah suatu baha metah yag jika diolah dega baik melalui berbagai aalisis dapat melahirka berbagai iformasi, data dapat berupa agka da dapat berupa lambag atau sifat.. Meurut

Lebih terperinci

BAB IV PEMECAHAN MASALAH

BAB IV PEMECAHAN MASALAH BAB IV PEMECAHAN MASALAH 4.1 Metodologi Pemecaha Masalah Dalam ragka peigkata keakurata rekomedasi yag aka diberika kepada ivestor, maka dicoba diguaka Movig Average Mometum Oscillator (MAMO). MAMO ii

Lebih terperinci

Statistika Inferensia: Pengujian Hipotesis. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pengujian Hipotesis. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pegujia Hipotesis Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : = 0 Butuh pembuktia berdasarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : x 5 Hal itu merupaka

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 31 Flowchart Metodologi Peelitia BAB III METODOLOGI PENELITIAN Gambar 31 Flowchart Metodologi Peelitia 18 311 Tahap Idetifikasi da Peelitia Awal Tahap ii merupaka tahap awal utuk melakuka peelitia yag

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA REGRESI LINIER SEDERHANA REGRESI, KAUSALITAS DAN KORELASI DALAM EKONOMETRIKA Regresi adalah salah satu metode aalisis statistik yag diguaka utuk melihat pegaruh atara dua atau lebih variabel Kausalitas

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1 Lokasi da Waktu Peelitia Peelitia sikap kosume terhadap kopi ista Kopiko Brow Coffee ii dilakuka di Wilaah Depok. Pemiliha dilakuka secara segaja (Purposive) dega pertimbaga

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jeis peelitia Peelitia ii merupaka jeis peelitia eksperime. Karea adaya pemberia perlakua pada sampel (siswa yag memiliki self efficacy redah da sagat redah) yaitu berupa layaa

Lebih terperinci

Makalah ANALISIS REGRESI DAN REGRESI GANDA

Makalah ANALISIS REGRESI DAN REGRESI GANDA 1 Makalah ANALISIS REGRESI DAN REGRESI GANDA Disusu oleh : 1. Rudii mulya ( 41610010035 ). Falle jatu awar try ( 41610010036 ) 3. Novia ( 41610010034 ) Tekik Idustri Uiversitas Mercu Buaa Jakarta 010 Rudii

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata Probabilitas da Statistika da Adam Hedra Brata Dua Peubah Acak dua perubah acah X da Y dega rata-rata da diberika oleh rumus : E(XY) - - - Sifat Sifat Sifat kovariasi utuk X da Y diskrit : f(, ) f(, )

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun 47 BAB IV HASIL DAN PEMBAHASAN Sebagai hasil peelitia dalam pembuata modul Racag Bagu Terapi Ifra Merah Berbasis ATMega8 dilakuka 30 kali pegukura da perbadiga yaitu pegukura timer/pewaktu da di badigka

Lebih terperinci

simulasi selama 4,5 jam. Selama simulasi dijalankan, animasi akan muncul pada dijalankan, ProModel akan menyajikan hasil laporan statistik mengenai

simulasi selama 4,5 jam. Selama simulasi dijalankan, animasi akan muncul pada dijalankan, ProModel akan menyajikan hasil laporan statistik mengenai 37 Gambar 4-3. Layout Model Awal Sistem Pelayaa Kedai Jamoer F. Aalisis Model Awal Model awal yag telah disusu kemudia disimulasika dega waktu simulasi selama 4,5 jam. Selama simulasi dijalaka, aimasi

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat.

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat. L A T I H A N S O A L A N R E G Muhamad Ferdiasyah, S. Stat. *Saya saraka utuk mecoba sediri baru lihat jawabaya **Jawaba saya BELUM TENTU BENAR karea saya mausia biasa. Silaka dikosultasika jika ada jawaba

Lebih terperinci

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling Jural Gradie Vol No Juli 5 : -5 Perbadiga Power of Test dari Uji Normalitas Metode Bayesia, Uji Shapiro-Wilk, Uji Cramer-vo Mises, da Uji Aderso-Darlig Dyah Setyo Rii, Fachri Faisal Jurusa Matematika,

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

III. METODOLOGI PENELITIAN. Menurut Sukardi, (2003:17) Metodologi penelitian adalah cara yang

III. METODOLOGI PENELITIAN. Menurut Sukardi, (2003:17) Metodologi penelitian adalah cara yang 5 III. METODOLOGI PENELITIAN A. Metode Peelitia Meurut Sukardi, (003:7) Metodologi peelitia adalah cara yag dilakuka secara sistematis megikuti atura-atura, direcaaka oleh para peeliti utuk memecahka permasalaha

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 30 III. METODE PENELITIAN A. Metode Dasar Peelitia Metode yag diguaka dalam peelitia adalah metode deskriptif, yaitu peelitia yag didasarka pada pemecaha masalah-masalah aktual yag ada pada masa sekarag.

Lebih terperinci

PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi.

PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi. . Pedahulua PENGUJIAN HIPOTESIS Hipoesis Saisik : peryaaa aau dugaa megeai sau aau lebih populasi. Pegujia hipoesis berhubuga dega peerimaa aau peolaka suau hipoesis. Kebeara (bear aau salahya) suau hipoesis

Lebih terperinci

Inflasi dan Indeks Harga I

Inflasi dan Indeks Harga I PERTEMUAN 1 Iflasi da Ideks Harga I 1 1 TEORI RINGKAS A Pegertia Agka Ideks Agka ideks merupaka suatu kosep yag dapat memberika gambara tetag perubaha-perubaha variabel dari suatu priode ke periode berikutya

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1.Tempat da Waktu Peelitia ii dilakuka di ligkuga Kampus Aggrek da Kampus Syahda Uiversitas Bia Nusatara Program Strata Satu Reguler. Da peelitia dilaksaaka pada semester

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakag Permasalaha Matematika merupaka Quee ad servat of sciece (ratu da pelaya ilmu pegetahua). Matematika dikataka sebagai ratu karea pada perkembagaya tidak tergatug pada

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 22 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di tiga kator PT Djarum, yaitu di Kator HQ (Head Quarter) PT Djarum yag bertempat di Jala KS Tubu 2C/57 Jakarta Barat,

Lebih terperinci

MATERI 14 EVALUASI KINERJA PORTOFOLIO

MATERI 14 EVALUASI KINERJA PORTOFOLIO MATERI 14 EVALUASI KINERJA PORTOFOLIO KERANGKA PIKIR EVALUASI KINERjA PORTOFOLIO (EKP) MENGUKUR TINGKAT RETURN PORTOFOLIO RISK-ADJUSTED PERFORMANCE - INDEKS SHARPE - INDEKS TREYNOR - INDEKS JENSEN dede08m.com

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Lokasi da objek peelitia Lokasi peelitia dalam skripsi ii adalah area Kecamata Pademaga, alasa dalam pemiliha lokasi ii karea peulis bertempat tiggal di lokasi tersebut sehigga

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dengan asumsi bahwa telah diketahui bentuk fungsi regresinya. atau dalam bentuk matriks dapat ditulis dengan:

BAB II TINJAUAN PUSTAKA. dengan asumsi bahwa telah diketahui bentuk fungsi regresinya. atau dalam bentuk matriks dapat ditulis dengan: BAB II TINJAUAN PUSTAKA 2.1 Regresi Parametrik Regresi parametrik merupaka metode statistika yag diguaka utuk megetahui pola hubuga atara variabel prediktor dega variabel respo, dega asumsi bahwa telah

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 1 Seputih Agung. Populasi dalam

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 1 Seputih Agung. Populasi dalam 19 III. METODE PENELITIAN A. Populasi da Sampel Peelitia ii dilaksaaka di SMP Negeri 1 Seputih Agug. Populasi dalam peelitia ii adalah seluruh siswa kelas VII SMP Negeri 1 Seputih Agug sebayak 248 siswa

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 22 BAB III METODE PENELITIAN 3.1. Metode Peelitia Pada bab ii aka dijelaska megeai sub bab dari metodologi peelitia yag aka diguaka, data yag diperluka, metode pegumpula data, alat da aalisis data, keragka

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 3 BAB III METODOLOGI PENELITIAN A. Metode Peelitia Metode yag diguaka dalam peelitia ii adalah metode kuatitatif dega eksperime semu (quasi eksperimet desig). Peelitia ii melibatka dua kelas, yaitu satu

Lebih terperinci

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel. II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel.

Lebih terperinci

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD)

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD) Prosidig Statistika ISSN: 2460-6456 Pegedalia Proses Megguaka Diagram Kedali Media Absolute Deviatio () 1 Haida Lestari, 2 Suliadi, 3 Lisur Wachidah 1,2,3 Prodi Statistika, Fakultas Matematika da Ilmu

Lebih terperinci

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05. MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

III. METODE PENELITIAN. Subjek dari penelitian adalah siswa kelas X.B SMA Muhammadiyah 2 Bandar

III. METODE PENELITIAN. Subjek dari penelitian adalah siswa kelas X.B SMA Muhammadiyah 2 Bandar III. METODE PENELITIAN A. Subjek da Tempat Peelitia Subjek dari peelitia adalah siswa kelas.b SMA Muhammadiyah 2 Badar Lampug Tahu Ajara 2011-2012 dega jumlah siswa 40 orag yag terdiri dari 15 siswa laki-laki

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

BAB IV DESKRIPSI DAN ANALISIS DATA PENELITIAN. intensif, X-unggulan SMA Al-Azhar Menganti Gresik tahun ajaran 2013-

BAB IV DESKRIPSI DAN ANALISIS DATA PENELITIAN. intensif, X-unggulan SMA Al-Azhar Menganti Gresik tahun ajaran 2013- 55 BAB IV DESKRIPSI DAN ANALISIS DATA PENELITIAN A. Deskripsi Data 1. Data Nama Siswa Populasi dalam peelitia ii adalah siswa kelas X-reguler, X- itesif, X-uggula SMA Al-Azhar Megati Gresik tahu ajara

Lebih terperinci

BAB IV METODE PENELITIAN. Provinsi Jawa Barat. Penentuan lokasi ini dilakukan secara sengaja (purposive).

BAB IV METODE PENELITIAN. Provinsi Jawa Barat. Penentuan lokasi ini dilakukan secara sengaja (purposive). 60 BAB IV METODE PENELITIAN 4.1 Lokasi da Waktu Peelitia Peelitia ii dilakuka Kecamata Warugkodag Kabupate Ciajur Provisi Jawa Barat. Peetua lokasi ii dilakuka secara segaja (purposive). Dega mempertimbagka

Lebih terperinci

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian BAB II METODOLOGI PEELITIA 2.1. Betuk Peelitia Betuk peelitia dapat megacu pada peelitia kuatitatif atau kualitatif. Keragka acua dalam peelitia ii adalah metode peelitia kuatitatif yag aka megguaka baik

Lebih terperinci