theresiaveni.wordpress.com NAMA : KELAS :
|
|
|
- Johan Wibowo
- 9 tahun lalu
- Tontonan:
Transkripsi
1 theresiaveiwordpresscom NAMA : KELAS : 1
2 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu usaha tuk meyelesaika persoala tersebut, kita harus dapat membedaka apakah persoala tersebut termasuk barisa aritmetika, barisa geometri, deret aritmetika ataupu deret geometrikemudia, kita dapat meyelesaika persoala tersebut megguaka rumus-rumus yag berlaku Cotoh 1: 1, 3, 5, 7, 9, 1,, 4, 8, 16, cotoh barisa 3, 5, 7, 9, Cotoh : cotoh deret Perhatika barisa berikut: 1 1, 3, 5, 7, 9,, Suku ke Rumus suku ke = 1,, 4, 8, 16, Suku ke Rumus suku ke = Perhatika setiap barisa berikut: a 1, 4, 7, 10, 13, b, 8, 14, 0, c 30, 5, 0, 15, d, 10, 18, 6,
3 theresiaveiwordpresscom 1 Barisa Aritmetika (BA) selisih/beda-ya sama Misalka suatu barisa bilaga adalah 1,, 3, 4,, -1, Barisa bilaga tersebut dikataka barisa aritmetika, jika selisih utuk setiap suku ke- ( ) dega suku sebelumya ( -1 ) adalah sama/tetap (kosta) Selisih tersebut diamaka beda (b) Misalka suku pertama = a, beda b, maka 1,, 3,, a, a + b, a + b,, a+( 1)b Dega demikia, rumus suku ke- barisa aritmetika adalah : = a+ ( -1)b Keteraga: = suku ke - a = suku pertama b = beda/ selisih Beda/selisih barisa aritmetika dapat diperoleh dari : b = -1 1 Tetuka rumus suku ke- ( ) da tetuka 15 ya dari barisa aritmetika: 1, 3, 5, 7, 9,! Tetuka rumus suku ke- ( ) da tetuka 0 ya dari barisa aritmetika: 3, 5, 7, 9,! 3 Tetuka rumus suku ke- ( ) da tetuka 50 ya dari barisa aritmetika:,10,18,6,! 4 Diketahui barisa aritmetika: -, 1, 4, 7,,40 Ada berapa bayak suku yag ada pada barisa tersebut ( - ya ada berapa)? 5 Suatu barisa aritmetika mempuyai suku ke-5 =5 da suku ke-10=45, tetuka suku ke-0! 3
4 theresiaveiwordpresscom Suku Tegah Barisa Aritmetika ( k ) Suku Tegah Barisa BA adalah suku barisa yag letakya di tegah-tegah jika bayak sukuya gajil Rumus suku tegah : k = 1 (a + k - 1) a = suku pertama k 1 = suku terakhir Diket: Barisa aritmetika 3, 5, 7,, 95 Tetuka suku tegah barisa tersebut! Sisipa Barisa Aritmetika Misalka diberika bilaga x da y (x y) kemudia di atara kedua bilaga tersebut disisipka sebayak k bilaga sehigga membetuk barisa aritmetika x,, y k bilaga x, (x + b), (x + b),, (x+kb), y bilaga-bilaga yag disisipka Mecari beda aritmetika tersebut dapat ditetuka sebagai berikut: y (x+kb) = b y x kb = b kb + b = y x (k+1) b = y x b = Jadi, rumus aritmetika-ya yag terbetuk utuk beda sisipa barisa aritmatika: b = Keteraga: b = beda sisipa barisa aritmatika y =suku terakhir x = suku pertama k = bayakya bilaga yag disisipka Di atara bilaga 1 da 49 disisipka 7 bilaga Tetuka: a Beda da rumus suku ke- barisa aritmetika tersebut b Nilai 5 4
5 theresiaveiwordpresscom Deret Aritmetika (DA)/ Deret Hitug Misalka suatu Barisa Aritmetika: 1,, 3, 4,, maka deret aritmetikaya: S adalah jumlah suku pertama, maka S 3 = S 0 = Deret Aritmetika adalah betuk pejumlaha barisa aritmetika Jika 1,, 3,, adalah barisa aritmetika, maka , merupaka deret aritmetika Jumlah suku pertama disimbolka dega S S = , Rumus jumlah suku pertama adalah : S = ( a ) S = a ( 1) b 1 Diketahui barisa aritmetika 3, 5, 7, 9, Tetuka jumlah 50 suku pertama! Dari suatu barisa aritmetika diketahui = 1 da suku 15 = 7 Tetuka jumlah 5 suku pertama dari barisa tersebut! 3 Tetuka jumlah semua bilaga asli atara 1 da 150 yag habis dibagi 5! 4 Tetuka jumlah semua bilaga asli atara 1 da 150 yag habis dibagi 5, tetapi tidak habis dibagi 3! 5
6 theresiaveiwordpresscom Mecari jika diketahui S = S - S -1 1 Diketahui rumus umum jumlah suku pertama suatu barisa aritmetika adalah S = Tetuka suku ke-10! Dalam suatu deret aritmetika diketahui 3 = 8 da 10 = 9 Tetuka jumlah 5 suku pertama! 3 Barisa Geometri Misalka suatu barisa bilaga adalah 1,, 3, 4,, -1, Barisa bilaga tersebut dikataka barisa geometri, jika ilai perbadiga utuk setiap suku ke ( ) dega suku sebelumya ( -1 ) adalah tetap Dega kata lai: Syarat suatu barisa geometri : 3 4 kosta Misal : 1,, 4, 8, 16, 3, Rasioya = r = (suku selajutya diperoleh dega megalika suku sebelumya dega ) 5, 5, 1, Rasioya = r = (suku selajutya diperoleh dega megalika suku sebelumya dega ) Nilai perbadiga itu disebut ratio ( r ), ditulis : r = 1 dimaa r 0 atau r 1 Misalka suku pertama sama dega a, rasio sama dega r, maka : 1,, 3,, a, ar, ar,,ar 1 Dega demikia, rumus suku ke barisa geometri adalah : = ar -1 6
7 theresiaveiwordpresscom Diketahui barisa geometri suku ke adalah 1, suku ke-5 adalah -34 Tetuka suku pertama da rasio! Igat: a m : a = a m a = a Suku tegah barisa geometri Suku Tegah Barisa barisa geometri adalah suku barisa yag letakya di tegah-tegah jika bayak sukuya gajil Rumus suku tegah : k = 1 k1 1 = suku pertama k 1 = suku terakhir Diketahui barisa geometri: 5, 10, 0,, 180 Tetuka suku tegahya da suku ke berapakah suku tegahya! Jawab: Igat: a f(x) = a g(x) f(x) = g(x) Sisipa barisa geometri Misalka diberika bilaga x da y (x y) kemudia di atara kedua bilaga tersebut disisipka sebayak k bilaga sehigga membetuk barisa aritmetika x, xr, xr, xr 3,, xr k, y bilaga-bilaga yag disisipka Jadi, rasio barisa geometri yag terbetuk adalah: r = () = Keteraga: k = bayakya bilaga yag disisipka y = suku terakhir x = suku pertama Atara bilaga da 65 disisipka 4 bilaga sehigga membetuk barisa geometri Tetuka rasio barisa tersebut da barisaya! Jawab: Igat: a m a = a m + a = a 7
8 theresiaveiwordpresscom 4 Deret Geometri Deret geometri adalah betuk pejumlaha suku suku barisa geometri Jika 1,, 3, 4,, -1, adalah barisa geometri, maka , merupaka deret geometri Jumlah suku pertama disimbolka dega (S ) S = 1 + +, -1 + Rumus jumlah suku pertama adalah : S a r 1 S ; jika r 1 atau r ; jika r 1 da r 1 a 1 1 r r 1 da r 1 1 Diketahui barisa geometri: 3, 9, 7, Tetuka: a Suku pertama b Rasio c Rumus suku ke- d Suku ke- 5 e Jumlah suku pertama f Jumlah 5 suku pertama Jawab: Tetuka jumlah 6 suku pertama dari suatu barisa geometri dega 1 = 3 da 4 = 4! 5 Deret Geometri Takhigga Jika suatu deret geometri, S = 1 + +, -1 + dega medekati takhigga, maka deret geometri tersebut dikataka sebagai deret geometri tak higga da di tulis dega S = 1 + +, -1 + r 1, maka, S Jika Jika a r 1 lim r 1, karea r 1 r a, karea r 0 a r 1, maka S lim medekati 1 r 1 r Sehigga,rumus jumlah deret geometri takhigga utuk r 1, r 0adalah : S a 1 r 8
9 theresiaveiwordpresscom 1 Diketahui jumlah deret geometri tak higga adalah 9 da suku pertamaya 6 Tetuka rasio dari deret tersebut! Diketahui jumlah suatu deret geometri tak higga adalah 49 Jika suku pertamaya 7, tetuka rasioya! 3 Sebuah bola dijatuhka dari ketiggia 10 m setiap meyetuh latai, bola aka mematul kembali 4 1 kali ketiggia semula Tetuka pajag litasa bola sampai berheti! 9
DERET TAK HINGGA (INFITITE SERIES)
MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag
Barisan Aritmetika dan deret aritmetika
BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika
BAB 12 BARISAN DAN DERET
BAB 1 BARISAN DAN DERET TIPE 1: Jika dari barisa aritmetika diketahui suku ke-m adalah um u b. m Cotoh: Diketahui barisa aritmetika, suku ke-5 adalah 4 da suku ke-8 adalah 6. Tetuka beda barisa aritmetika
Barisan Dan Deret Arimatika
Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta
SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n
Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada
BARISAN DAN DERET. Materi ke 1
BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH
Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,
Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di
-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih
-- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa
MODUL MATEMATIKA SMA IPA Kelas 11
SMA IPA Kelas BARISAN DAN DERET ARITMATIKA. Betuk umum: a, ( a b), ( a b) ( a b). Rumus suku ke- ( ) a ( ) b a : suku pertama b : beda. Jumlah suku pertama (S ) S ( a ) atau S (a ( ) b) Dega S dapat juga
I. DERET TAKHINGGA, DERET PANGKAT
I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da
BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.
BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku
III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar
BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari
SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL
SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampua memahami kosep pada topik barisa da deret aritmetika da geometri. Peserta didik memilki kemampua
1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu
Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier
Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:
BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif
PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu
Pemateri: Murdau 1 BAGIAN A 1. Carilah dua bilaga yag hasilkali da jumlahya berilai sama!. Carilah dua bilaga yag perbadiga da selisihya berilai sama! 3. Diketahui: ab = 84, bc = 76, ac = 161. Berapakah
MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM
MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,
[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com
http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Setiap pria da waita sukses adalah pemimpipemimpi besar. Mereka berimajiasi tetag masa depa mereka, berbuat sebaik mugki dalam setiap hal,
Sumber: Art & Gallery. 6. Menerapkan konsep barisan dan deret dalam pemecahan masalah
Sumber: Art & Gallery Stadar Kompetesi 6. Meerapka kosep barisa da deret dalam pemecaha masalah Kompetesi Dasar 6. Megidetifikasi pola, barisa, da deret bilaga 6. Meerapka kosep barisa da deret aritmatika
Barisan, Deret, dan Notasi Sigma
Barisa, Deret, da Notasi Sigma B A B 5 A. Barisa da Deret Aritmetika B. Barisa da Deret Geometri C. Notasi Sigma da Iduksi Matematika D. Aplikasi Barisa da Deret Sumber: http://jsa007.tripod.com Saat megedarai
E-learning matematika, GRATIS 1
E-learig matematika, GRATIS Peyusu Editor : Teag Idriyai, S.P ; Taufiq Rahma, S.P : Drs. Keto Susato, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Idra Guawa, S.Si.. Pegertia Barisa da Deret Barisa bilaga adalah
BARISAN DAN DERET TAK BERHINGGA
MATERI KULIAH a 1 Kalkulus Lajut BARISAN DAN DERET TAK BERHINGGA Sahid, MSc. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 010 BARISAN DAN DERET DI SMA: BARISAN & DERET ARITMETIKA
DERET Matematika Industri 1
DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara
BARISAN TAK HINGGA DAN DERET TAK HINGGA
BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi
Hendra Gunawan. 12 Februari 2014
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg
i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.
4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha
Bab. Barisan dan Deret. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)
Bab IV Barisa da Deret 53 Tujua Pembelajara Setelah mempelajari bab ii, diharapka kalia dapat. mejelaska ciri barisa aritmetika da barisa geometri;. merumuska suku ke da jumlah suku deret aritmetika da
Barisan ini adalah contoh dari barisan aritmatika U 1. ialah barisan aritmatika,jika: -U 2. =.= U n
BARIAN DAN DERET A. BARIAN DAN DERET ARITMATIKA I. TJAN etelah mempelaji topik siswa dapat:. Meetuka suku ke suatu bisa itmatika. Meetuka rumus suku ke di bisa itmatika. Meetuka suku pertama da beda suatu
BARISAN DAN DERET. Nurdinintya Athari (NDT)
BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga
BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET
Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...
2 BARISAN BILANGAN REAL
2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu
II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang
II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret
Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut
UKURAN PEMUSATAN DATA
Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN
UNIVERSITAS GUNADARMA POLA, BARISAN DAN DERET BILANGAN BAHAN AJAR. Oleh : Muhammad Imron H. Modul Barisan dan Deret Hal. 1
BAHAN AJAR POLA, BARISAN DAN DERET BILANGAN Oleh : Muhammad Imo H 0 Modul Baisa da Deet Hal. BARISAN DAN DERET A. POLA BILANGAN. Pegetia Baisa Bilaga Baisa bilaga adalah uuta bilaga-bilaga dega atua tetetu.
An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3
BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a
BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA
BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,
SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2...
SOAL-SOAL SPMB 006 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 006 Tiga bilaga membetuk suatu deret geometri aik. Jika jumlahya 6 da hasikaliya 6, maka rasio deretya adalah A. B. C. D. 4 E. 5.
PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27
PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 9 JAKARTA No. Idikator Soal Prediksi Soal Peserta didik dapat meyataka betuk pecaha aljabar yag pembilag da peyebutya berpagkat egatif mejadi
MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.
MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah
MODUL MATEMATIKA. Barisan dan Deret UNIVERSITAS NEGERI MANADO
MODUL MATEMATIKA Barisa da Deret UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA 2007 KATA PENGANTAR Halo...!!! selamat jumpa dalam Modul Matematika SMA. Dalam
BAB 6 NOTASI SIGMA, BARISAN DAN DERET
BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat
ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN
ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN
Definisi Integral Tentu
Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.
BARISAN FIBONACCI DAN BILANGAN PHI
BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal
An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3
SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a
Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1
Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga
STATISTIKA SMA (Bag.1)
SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data
6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi
6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0
terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2
Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama
Distribusi Pendekatan (Limiting Distributions)
Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,
Kalkulus Rekayasa Hayati DERET
Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti
II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <
II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi
Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com
Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas
a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2
BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,, dega: suku petama suku kedua
PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT
Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus
BARISAN DAN DERET. a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2
www.plusido.wodpess.com BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,,
BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor
Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat
MATEMATIKA EKONOMI (Deret)
LOGO MATEMATIKA EKONOMI (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com MATEMATIKA EKONOMI Matematika Ekoomi memberika pemahama ilmu megeai kosep matematika dalam bidag bisis da ekoomi.
Himpunan/Selang Kekonvergenan
oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)
Kompetisi Statistika Tingkat SMA
. Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka
Teorema Nilai Rata-rata
Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi
Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4
Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika
BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1
BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka
Hendra Gunawan. 14 Februari 2014
MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga
LOGO MATEMATIKA BISNIS (Deret)
LOGO MATEMATIKA BISNIS (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com 1 MATEMATIKA BISNIS Matematika Bisis memberika pemahama ilmu megeai kosep matematika dalam bidag bisis. Sehigga suatu
Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga
Modul. (Pertemua s/d ) Deret Takhigga. Deret Tidak Terhigga. Pembicaraa kita sekarag deret pada umumya. Deret yag bayakya suku tak terbatas disebut deret tak higga, otasi : Masalah pokok pada deret tak
HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.
Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =
SILABUS PEMBELAJARAN
SILABUS PEMBELAJARAN Sekolah :... Kelas : IX (Sembila) Mata Pelajara : Matematika Semester : II (dua) BILANGAN Stadar : 5. Memahami sifat-sifat da betuk akar serta pegguaaya dalam pemecaha masalah sederhaa
Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna
Iduksi matematik utuk memecahka problema deret da bilaga bulat betuk kuadrat sempura Oleh: Sutopo Jurusa Fisika FMIPA UM [email protected] Ditulis pada sekitar bula Februari 2011. Diuggah pada 3 Desember
BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.
BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama
KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN
KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.
BARISAN DAN DERET. Bentuk umum suku ke-n barisan aritmatika U n = a + (n 1)b dengan
iap N Matematika BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,, dega: suku
Bab 3 Metode Interpolasi
Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui
1. Ingkaran dari kalimat Jika koruptor tidak dapat ditangkap, maka rakyat tidak percaya kepada aparat hukum adalah...
. Igkara dari kalimat Jika koruptor tidak dapat ditagkap, maka rakyat tidak percaya kepada aparat hukum adalah... A. Jika koruptor dapat ditagkap, maka rakyat percaya kepada aparat hukum B. Jika koruptor
Barisan dan Deret Bilangan
Bab 3 Barisa da Deret Bilaga Sumber: www.lombokgilis.com Setelah mempelajari bab ii, diharapka Ada dapat meerapka kosep barisa da deret dalam pemecaha masalah, yaitu megidetifi kasi pola, barisa, da deret
METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT
METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam
BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)
BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu
Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i
INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval
Barisan dan Deret Bilangan
Bab 3 Barisa da Deret Bilaga Sumber: www.lombokgilis.com Setelah mempelajari bab ii, diharapka Ada dapat meerapka kosep barisa da deret dalam pemecaha masalah, yaitu megidetifikasi pola, barisa, da deret
BARISAN DAN DERET TAK HINGGA
Bab 5 BARISAN DAN DERET TAK HINGGA A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetesi Dasar. Memiliki motivasi iteral, kemampa bekerjasama, kosiste, sikap disipli, rasa percaya diri da sikap tolerasi
B a b 1 I s y a r a t
34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat
METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.
METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai
Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus
-Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.
DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin
DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa
BILANGAN BAB V BARISAN BILANGAN DAN DERET
Maemaika Kelas IX emese Baisa Bilaga da Dee BILANGAN BAB V BARIAN BILANGAN DAN DERET A. Baisa Bilaga. Pegeia Baisa Bilaga Jika bilaga-bilaga diuuka dega aua eeu maka aka dipeoleh suau baisa bilaga. Cooh
Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu
BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab
9 Departemen Statistika FMIPA IPB
Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara
Penyelesaian Persamaan Non Linier
Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode
BAB VII RANDOM VARIATE DISTRIBUSI DISKRET
BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka
Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika
Prosidig Semirata FMIPA Uiversitas Lampug, 0 Model Pertumbuha BeefitAsurasi Jiwa Berjagka Megguaka Deret Matematika Edag Sri Kresawati Jurusa Matematika FMIPA Uiversitas Sriwijaya edagsrikresawati@yahoocoid
BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI
BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas
BAB II TINJAUAN PUSTAKA
3 BAB II TINJAUAN PUSTAKA Pada bab ii aka dituliska beberapa aspek teoritis berupa defiisi, teorema da sifat-sifat yag berhubuga dega aljabar liear, struktur aljabar da teori kodig yag diguaka sebagai
ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si.
ANUITAS 9/19/2012 MK. Aktuaria Darmato,S.Si. 1 OVERVIEW Auitas adl suatu pembayara dalam jumlah tertetu, yag dilakuka setiap selag waktu da lama tertetu, secara berkelajuta. Suatu auitas yg pasti dilakuka
III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah
III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka
Notasi Sigma, Barisan, dan Deret
I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 009 Notasi Sigma, Barisa, da Deret Matriks GY A Y O M AT E M A T AK A R Puji Iryati, M.Sc.Ed. DEPARTEMEN PENDIDIKAN NASIONAL
RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015
RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi
BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga
BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya
1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A.
. Seorag pedagag membeli barag utuk dijual seharga Rp. 0.000,00. Bila pedagag tersebut meghedaki utug 0 %, maka barag tersebut harus dijual dega harga A. Rp. 00.000,00 D. Rp. 600.000,00 B. Rp. 00.000,00
