KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK"

Transkripsi

1 KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK Jenis Sekolah : SMP/MTs Alokasi Waktu : 90 Menit Mata Pelajaran : Matematika Jumlah Soal : 10 butir Kelas/Semester : VIII/2 Bentuk Soal : Uraian Kurikulum Acuan : Kurikulum 2004 Jenis Tes : Sub Sumatif Standar Kompetensi : Menentukan panjang suatu garis dalam segitiga serta dapat menggunakannya dalam pemecahan masalah. No. Kompetensi Dasar 1 Menyatakan bentuk fungsi Indikator Aspek Penalaran Aspek Komunikasi Skor Nomor Soal Memberikan penjelasan 3 1a dengan menggunakan model, fakta, dan hubungan dalam menyelesaikan soal Siswa dapat menuliskan relasi yang mungkin dan menjelaskan alasannya dari dua buah himpunan yang dinyatakan dalam bentuk pasangan berurutan. Siswa dapat menggambarkan diagram Cartesius dari dua buah himpunan yang dinyatakan dalam bentuk pasangan berurutan Siswa dapat memilih pasangan berurutan yang merupakan fungsi kemudian menjelaskannya, jika diberikan beberapa himpunan pasangan berurutan dari suatu relasi. Memberikan penjelasan dengan menggunakan model, fakta, dan hubungan dalam menyelesaikan soal situasi dengan gambar atau grafik (Menggambar) 3 1b 3 2

2 No. Kompetensi Dasar Indikator Aspek Penalaran Aspek Komunikasi Skor Nomor Soal Siswa dapat menentukan domain, kodomain dan range dari suatu relasi yang dinyatakan dengan diagram Cartesius. Menjelaskan idea atau situasi dari suatu gambar atau grafik yang diberikan dengan kata-kata sendiri dalam bentuk tulisan (Menulis) 4 3 Siswa dapat menentukan banyaknya pemetaan yang mungkin dari dua himpunan dengan menggambarkan diagram panah Siswa dapat memilih pasangan himpunan yang menunjukkan korespondensi satu-satu dan menjelaskannya, jika diberikan beberapa pasang diagram panah dari dua himpunan. 2 Nilai Fungsi Siswa dapat menentukan nilai fungsi, jika rumus fungsinya diketahui. Siswa dapat membuat tabel dan grafik fungsi dalam koordinat Cartesius, jika diketahui notasi fungsi dan domainnya. Memberikan penjelasan dengan menggunakan model, fakta, dan hubungan dalam menyelesaikan soal Mengikuti argumenargumen logis Mengikuti argumenargumen logis situasi dengan gambar atau grafik (Menggambar) situasi dengan gambar atau grafik (Menggambar) a,7b

3 No. Kompetensi Dasar Indikator Aspek Penalaran Aspek Komunikasi Skor Nomor Soal Siswa dapat menghitung nilai perubahan fungsi, jika variabel berubah. Mengikuti argumenargumen logis 3 8 Siswa dapat menentukan bentuk fungsi jika nilai dan data fungsi diketahui. Siswa dapat menentukan rumus fungsi dan menyelesaikannya, jika diberikan data dalam bentuk grafik fungsi. Menarik kesimpulan logis situasi ke dalam bentuk model matematika (Ekspresi Matematik) situasi ke dalam bentuk model matematika (Ekspresi Matematik)

4 216 TES KEMAMPUAN PENALARAN & KOMUNIKASI MATEMATIK SISWA SMP/MTS MATA PELAJARAN : MATEMATIKA MATERI POKOK : GARIS-GARIS ISTIMEWA PADA SEGITIGA KELAS/SEMESTER : VIII/2 TAHUN PELAJARAN : 2006/2007 BENTUK TES : URAIAN WAKTU : 80 MENIT Petunjuk 1. Bacalah basmalah terlebih dahulu sebelum mengerjakan soal. 2. Tulis nama dan kelas pada tempat yang telah disediakan. 3. Kerjakan semua soal-soal ini pada tempat yang disediakan. 4. Kerjakan terlebih dahulu soal-soal yang kamu anggap mudah. 5. Berikan alasan atau penjelasan yang lengkap pada setiap penyelesaian soal. 6. Naskah soal dikembalikan kepada pengawas jika waktu penyelesaian soal sudah habis atau sudah selesai dikerjakan. Nama : Kelas : Hari/tgl : 1. Relasi antara dua himpunan A dan B dinyatakan dengan himpunan pasangan berurutan {(1,4),(2,5),(3,6),(4,7),(5,8)}. a. Relasi apakah yang menyatakan hubungan antara himpunan A dan himpunan B di atas? Berikan alasannya. b. Gambarlah diagram Cartesius untuk relasi dari A ke B.

5 Misalkan himpunan C = D = {1,2,3,4,5}. Di bawah ini adalah himpunan pasangan berurutan yang menyatakan relasi dari C ke D. I. {( 1,1),(2,2),(1,3),(1,4),(1,5)} II. {( 1,1),(2,2),(3,3),(4,4),(5,5)} III. {( 1,3),(2,3),(3,3),(4,3),(5,3)} IV. {( 1,2),(2,3),(3,4),(4,5),(1,5)} Dari keempat himpunan pasangan berurutan di atas, manakah yang merupakan pemetaan (fungsi) dan manakah yang bukan pemetaan? Jelaskan dengan memberikan alasan tiap-tiap jawaban. 3. Dengan memperhatikan relasi yang dinyatakan dengan diagram Cartesius di bawah ini, tentukan daerah asal (domain), daerah kawan (kodomain), dan daerah hasil (range). Y X

6 Buatlah diagram panah untuk semua pemetaan yang mungkin dari E ke F dengan E = {a,b}dan F = {1,2,3}. 5. Di antara diagram-diagram panah berikut, manakah yang menunjukkan korespondensi satu-satu antara himpunan A dan B? Beri alasan jawabanmu. A B A B A B A B C X Y Z A B C X Y Z A B C X Y Z (i) (ii) (iii)

7 Suatu fungsi g ditentukan oleh g(x) = 3x + 1, tentukan nilai a bila g(a) = Diketahui sebuah pemetaan f : x x2 + 1 dari himpunan A = {-2,-1,0,1,2,3}ke himpunan bilangan bulat. a. Buatlah tabel pemetaan tersebut. b. Gambarkan grafik pemetaannya dalam koordinat Cartesius. 8. Hubungan antara jumlah uang yang diterima seorang pedagang buku dengan banyaknya buku yang terjual dinyatakan dengan fungsi y = x (y = jumlah uang dan x = banyaknya buku yang terjual). Tentukan buku yang terjual, jika jumlah uang yang diterima pedagang buku sebanyak Rp21.000,00.

8 Gaji harian seorang pedagang pakaian jadi sebesar Rp20.000,00 ditambah dengan komisi sebanyak Rp2.000,00 untuk setiap pakaian yang terjual. Nyatakan hubungan ini sebagai fungsi, jika y adalah gaji harian pedagang pakaian dan x adalah pakaian yang terjual. Hitunglah gaji pedagang tersebut jika terjual sebanyak 25 pakaian selama 1 minggu. 10. Perhatikan grafik di bawah ini! Y X

9 221 Tuliskan rumus fungsi berdasarkan data yang ada pada grafik di atas. Jika nilai f(x) = 24, tentukanlah nilai x.

RELASI DAN FUNGSI. 2. Misalkan A = {2,3,4,5} dan B = {2,3,4,5,6}. Buatlah relasi dari A ke B yang

RELASI DAN FUNGSI. 2. Misalkan A = {2,3,4,5} dan B = {2,3,4,5,6}. Buatlah relasi dari A ke B yang RELASI DAN FUNGSI A. Relasi I. Pengertian Relasi Relasi dari himpunan A ke himpunan B adalah hubungan yang memasangkan anggota himpunan A dengan anggota-anggota himpunan B. Misalkan A={Adi, Boni, Chris}

Lebih terperinci

RELASI DAN FUNGSI. b. Diberikan dua himpunan:

RELASI DAN FUNGSI. b. Diberikan dua himpunan: RELASI DAN FUNGSI A. Relasi. Pengertian Relasi Relasi menurut bahasa berarti hubungan. Dalam matematika, relasi atau hubungan menyatakan hubungan antara anggota suatu himpunan dengan anggota himpunan yang

Lebih terperinci

BAB 3 FUNGSI. f : x y

BAB 3 FUNGSI. f : x y . Hubungan Relasi dengan Fungsi FUNGSI Relasi dari himpunan P ke himpunan Q disebut fungsi atau pemetaan, jika dan hanya jika tiap unsur pada himpunan P berpasangan tepat hanya dengan sebuah unsur pada

Lebih terperinci

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp. 8400005,

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. penelitian ini adalah untuk mengetahui kemampuan penalaran matematik pada

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. penelitian ini adalah untuk mengetahui kemampuan penalaran matematik pada BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Hasil an Sebagaimana yang telah diuraikan pada bagian pendahuluan, bahwa tujuan penelitian ini adalah untuk mengetahui kemampuan penalaran matematik pada siswa

Lebih terperinci

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini.

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. Gambar 1.1 Gambar 1.1 menunjukkan suatu kumpulan anak yang terdiri atas Tino, Atu, Togar, dan Nia berada di sebuah toko alat tulis.

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah Mata Pelajaran Kelas Semester : SMP Negeri 3 Magelang : Matematika : VIII (Delapan) : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi,

Lebih terperinci

Silabus dan Rencana Pelaksanaan Pembelajaran (RPP)

Silabus dan Rencana Pelaksanaan Pembelajaran (RPP) Ponco Sujatmiko MODEL Silabus dan Rencana Pelaksanaan Pembelajaran (RPP) MATEMATIKA KREATIF Konsep dan Terapannya untuk Kelas VIII SMP dan MTs Semester 1 2A Berdasarkan Permendiknas Nomor 22 Tahun 2006

Lebih terperinci

3. FUNGSI DAN GRAFIKNYA

3. FUNGSI DAN GRAFIKNYA 3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,

Lebih terperinci

KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIS

KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIS 74 KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIS Jenis Sekolah : SMP Alokasi Waktu : 90 Menit Mata Pelajaran : Matematika Jumlah Soal : 8 butir Kelas/Semester : VIII/ Bentuk Soal : Uraian Standar Kompetensi

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain Pesan soal-soal matematika untuk SD, SMP dan SMA? Soal ulangan harian, ulangan mid, ulangan semester, soal-soal UAN dll. Tulis

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan) : Menentukan rumus fungsi jika nilainya diketahui

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan) : Menentukan rumus fungsi jika nilainya diketahui RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah Mata Pelajaran Kelas Semester : SMP Negeri 3 Magelang : Matematika : VIII (Delapan) : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi,

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN 01 (RPP 01)

RENCANA PELAKSANAAN PEMBELAJARAN 01 (RPP 01) RENCN PELKSNN PEMELJRN 01 (RPP 01) Sekolah Mata Pelajaran Kelas/Semester lokasi Waktu : SM Saraswati Singaraja : Matematika : X/Ganjil : 2 x 4 menit I. Standar Kompetensi: 2. Memecahkan masalah yang berkaitan

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

Latihan Soal Persiapan UAS 1 Matematika Kelas 8 SMP 2017/2018 [1]

Latihan Soal Persiapan UAS 1 Matematika Kelas 8 SMP 2017/2018 [1] Latihan Soal Persiapan UAS Matematika Kelas 8 SMP 07/08 [] I. Pilihlah jawaban yang paling tepat. Koefisien dan konstanta dari persamaan adalah. Suku-suku sejenis dari bentuk aljabar adalah... 3. Bentuk

Lebih terperinci

BAB V PENUTUP. matematika yang diajarkan dengan modelproblem Based Learning dengan. Fungsi di SMP Negeri 10 Kupang Tahun Ajaran 2014/2015.

BAB V PENUTUP. matematika yang diajarkan dengan modelproblem Based Learning dengan. Fungsi di SMP Negeri 10 Kupang Tahun Ajaran 2014/2015. BAB V PENUTUP A. Kesimpulan Berdasarkan hasil analisis data dan pembahasan maka dapat ditarik simpulan bahwa ada perbedaan yang signifikan terhadap prestasi belajar matematika yang diajarkan dengan modelproblem

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd.

MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd. MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd. Disusun oleh: Kelompok 8 1. Yusie Kristiawan (14144100113)

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP Negeri 3 Singaraja Mata Pelajaran : Matematika Kelas / Semester : VIII / Ganjil Alokasi Waktu : 2 40 menit A. Standar Kompetensi x. Memahami bentuk

Lebih terperinci

KISI-KISI ULANGAN HARIAN 2 RELASI DAN FUNGSI. Indikator Penilaian Pengertian relasi. kata-kata

KISI-KISI ULANGAN HARIAN 2 RELASI DAN FUNGSI. Indikator Penilaian Pengertian relasi. kata-kata KISI-KISI ULANGAN HARIAN 2 RELASI DAN FUNGSI No. Standar Kompetensi Kompetensi Dasar Materi 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus 1.3. Memahami relasi dan fungsi 1.3.1.

Lebih terperinci

Bimbingan Belajar FunMath LATIHAN -1

Bimbingan Belajar FunMath  LATIHAN -1 LATIHAN -1 1. Diketahui: A= {Sukabumi, Bandung, Yogyakarta, medan, Palembang, banjarmasin, makasar} B={Jawa, Sumatera, Kalimantan, Sulawesi, Papua} Jika relasi dari A ke B menyatakan hubungan terdapat

Lebih terperinci

TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI EKA REZEKI AMALIA DIAH RAHMAWATI HANIYAH MATKOM II A

TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI EKA REZEKI AMALIA DIAH RAHMAWATI HANIYAH MATKOM II A TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI 06320003 EKA REZEKI AMALIA 06320004 DIAH RAHMAWATI 06320027 HANIYAH 06320029 MATKOM II A JURUSAN MATEMATIKA DAN KOMPUTASI FAKULTAS KEGURUAN DAN

Lebih terperinci

Bab 2. Relasi dan Fungsi. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar

Bab 2. Relasi dan Fungsi. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar Bab 2 Relasi dan Fungsi Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar 1.3 Memhami relasi dan fu ngsi 1.4 Menentukan nilai fungsi. 1.5 Membuat sketsa

Lebih terperinci

Lampiran 1. Daftar Terjemah

Lampiran 1. Daftar Terjemah 84 Lampiran 1. Daftar Terjemah No BAB Terjemah 1 1 Dan dialah yang menjadikan matahari bersinar dan bulan bercahaya dan ditetapkan_nya manzilah (tempattempat) bagi perjalanan bulan itu, supaya kamu mengetahui

Lebih terperinci

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta 1 RELASI Oleh: Mega Inayati Rif ah, S.T., M.Sc. 2 RELASI Relasi adalah suatu aturan yang memasangkan anggota himpunan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas : VIII (Delapan) Semester : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan

Lebih terperinci

Rencana Pelaksanaan Pembelajaran (RPP)

Rencana Pelaksanaan Pembelajaran (RPP) Rencana Pelaksanaan Pembelajaran (RPP) Nama Sekolah : SMP N Ayo Belajar 1 Mata Pelajaran : Matematika Kelas/Semester : VIII/ 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan

Lebih terperinci

Produk Cartesius Relasi Relasi Khusus RELASI

Produk Cartesius Relasi Relasi Khusus RELASI Produk Cartesius Relasi Relasi Khusus RELASI Jika A dan B masing-masing menyatkan himpunan yang tidak kosong, maka produk Cartesius himpunan A dan B adalah himpunan semua pasangan terutut (x,y) dengan

Lebih terperinci

Oleh : Winda Aprianti

Oleh : Winda Aprianti Oleh : Winda Aprianti Relasi Definisi Relasi Relasi antara himpunan A dan himpunan B merupakan himpunan yang berisi pasangan terurut yang mengikuti aturan tertentu (relasi biner). Relasi biner R antara

Lebih terperinci

RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi

RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi RELASI DAN FUNGSI A. Pengertian Relasi dan Fungsi Banyak enomena atau kejadian alam yang dapat dihubungkan dengan suatu relasi Sebagai contoh, misalkan diberikan dua himpunan : A = {sepeda, sepeda motor,

Lebih terperinci

Enrichment Test I (UAS Ganjil) *) Tulisan Warna Biru: Jawaban. Sekolah Menengah Pertama Islam Sistem Full Day School

Enrichment Test I (UAS Ganjil) *) Tulisan Warna Biru: Jawaban. Sekolah Menengah Pertama Islam Sistem Full Day School Enrichment Test I (UAS Ganjil) Mathematic: 01 / VIII / III / 1 / 013 Islamic Junior High School of Sabilillah Malang NAME / CLASS :... /.. DAY / DATE :. /.... Sekolah Menengah Pertama Islam Sistem Full

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

BAB II KAJIAN TEORITIS DAN HIPOTESIS TINDAKAN. belajar adalah pola-pola perbuatan, nilai-nilai, pengertianpengertian,

BAB II KAJIAN TEORITIS DAN HIPOTESIS TINDAKAN. belajar adalah pola-pola perbuatan, nilai-nilai, pengertianpengertian, BAB II KAJIAN TEORITIS DAN HIPOTESIS TINDAKAN 2.1 Kajian Teori 2.1.1 Hasil Belajar Hasil belajar adalah pola-pola perbuatan, nilai-nilai, pengertianpengertian, apresiasi, dan keterampilan. Merujuk pemikiran

Lebih terperinci

OPERASI BINER. Yus Mochamad Cholily Program Studi Pendidikan Matematika Universitas Muhammadiyah Malang

OPERASI BINER. Yus Mochamad Cholily Program Studi Pendidikan Matematika Universitas Muhammadiyah Malang OPERASI BINER Yus Mochamad Cholily Program Studi Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com March 4, 2013 1 Daftar Isi 1 Tujuan 3 2 Relasi 3 3 Fungsi 4 4 Operasi Biner

Lebih terperinci

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 3. Fungsi & Model ALZ DANNY WOWOR

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 3. Fungsi & Model ALZ DANNY WOWOR KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 3 Fungsi & Model ALZ DANNY WOWOR 1. Fungsi Sebelum membahas fungsi, akan ditunjukkan pengertian dari relasi yang

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

FUNGSI. range. Dasar Dasar Matematika I 1

FUNGSI. range. Dasar Dasar Matematika I 1 FUNGSI Pada bagian sebelumnya telah dibahas tentang relasi yaitu aturan yang menghubungkan elemen dua himpunan. Pada bagian ini akan dibahas satu jenis relasi yang lebih khusus yang dinamakan fungsi Suatu

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB II ALJABAR Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya

Lebih terperinci

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N 1.1.Himpunan Himpunan (set) adalah kumpulan objek-objek yang terdefenisi dengan baik (well defined). Artinya bahwa untuk sebarang objek x yang diberikan, maka kita selalu akan dapat

Lebih terperinci

LAMPIRAN 1 SURAT IJIN PENELITIAN

LAMPIRAN 1 SURAT IJIN PENELITIAN 30 LAMPIRAN SURAT IJIN PENELITIAN 3 32 LAMPIRAN 2 PERANGKATPEMBELAJARAN 33 Lampiran 2a Silabus Pembelajaran Mata Pelajaran Matematika Kelas VIII Semester II Tahun Pelajaran 205/206.3 Memahami relasi dan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan Mata Pelajaran Kelas/Semester Alokasi waktu : SMA Negeri 1 Sukasada : Matematika : X/1 (Ganjil) : 2 x 4 menit (1 pertemuan) I. Standar Kompetensi

Lebih terperinci

BAB 2 RELASI DAN FUNGSI

BAB 2 RELASI DAN FUNGSI BAB 2 RELASI DAN FUNGSI 2.1 Pengantar Kejadian dalam dunia nyata ini, umumnya tidak berdiri sendiri. Melainkan berhubungan satu sama lainnya atau ada kaitan antara satu kejadian dengan kejadian yang lainnya.

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini adalah Penelitian Tindakan Kelas (PTK) yang dilaksanakan di

III. METODE PENELITIAN. Penelitian ini adalah Penelitian Tindakan Kelas (PTK) yang dilaksanakan di 21 III. METODE PENELITIAN A. Setting Penelitian Penelitian ini adalah Penelitian Tindakan Kelas (PTK) yang dilaksanakan di SMP Negeri 1 Raman Utara. Sekolah tersebut berlokasi di Jalan Bali Indah 11 A

Lebih terperinci

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS)

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS) LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL SEKOLAH KELAS MATA PELAJARAN SEMESTER BILANGAN Standar Kompetensi KOMPETENSI DASAR 1.1 Melakukan operasi hitung bilangan bulat. : SMP : VII : MATEMATIKA

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS. Relasi dan Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari tentang topik Relasi, Fungsi dan Grafik. Pada materi relasi ini selain menggunakan istilah

Lebih terperinci

Logika, Himpunan, dan Fungsi

Logika, Himpunan, dan Fungsi Logika, Himpunan, dan Fungsi A. Logika Matematika Logika matematika adalah ilmu untuk berpikir dan menalar dengan menggunakan bahasa serta simbol-simbol matematika dengan benar. 1) Kalimat Matematika Kalimat

Lebih terperinci

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya BAB I A. SISTEM BILANGAN REAL Sistem bilangan real dan berbagai sifatnya merupakan basis dari kalkulus. Sistem bilangan real terdiri dari himpunan unsur yang dinamakan Bilangan Real yang sering dinyatakan

Lebih terperinci

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan

Lebih terperinci

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11 B. Relasi Sebelum mendefinisikan produk Cartesius, terlebih dahulu Anda perlu mengenal pengertian pasangan terurut. Dalam sistem koordinat Cartesius dengan sumbu x dan sumbu y, kita mengetahui bahwa titik

Lebih terperinci

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI FUNGSI 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi Definisi Fungsi Suatu fungsi f atau pemetaan f dari himpunan A ke himpunan B adalah suatu

Lebih terperinci

MODUL MATEMATIKA. Turunan UNIVERSITAS NEGERI MANADO

MODUL MATEMATIKA. Turunan UNIVERSITAS NEGERI MANADO MODUL MATEMATIKA Turunan UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA 2008 1 KATA PENGANTAR Modul pembelajaran ini di rancang untuk membimbing peserta didik

Lebih terperinci

Matematika

Matematika dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain, dengan sebuah

Lebih terperinci

Relasi dan Fungsi. Bab. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range) A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

Relasi dan Fungsi. Bab. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range) A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab Relasi dan Fungsi A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu: 1. menghayati pola hidup disiplin, kritis, bertanggungjawab, konsisten

Lebih terperinci

KOMPOSISI FUNGSI DAN FUNGSI INVERS

KOMPOSISI FUNGSI DAN FUNGSI INVERS 1 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B.

FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B. FUNGSI Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B. FUNGSI KOMPOSISI Daerah asal alami f : A B adalah semua unsur

Lebih terperinci

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com 1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

PENDAHULUAN. 1. Himpunan

PENDAHULUAN. 1. Himpunan PENDAHULUAN 1. Himpunan Definisi 1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu himpunan biasanya

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan : MA Muhammadiyah 1 Paciran Mata Pelajaran : Matematika-Wajib Kelas/ Semester : X/1 Materi Pokok : Relasi dan Fungsi ( relasi ) Alokasi Waktu :

Lebih terperinci

RENCANA KEGIATAN PEMBELAJARAN (RPP) : Fungsi Komposisi dan Fungsi Invers. 1.1 Menghayati dan mengamalkan ajaran agama yang dianutnya.

RENCANA KEGIATAN PEMBELAJARAN (RPP) : Fungsi Komposisi dan Fungsi Invers. 1.1 Menghayati dan mengamalkan ajaran agama yang dianutnya. RENCANA KEGIATAN PEMBELAJARAN (RPP) Satuan Pendidikan Mata Pelajaran Kelas/Semester Materi Alokasi Waktu : MA MA ARIF HASAN MUNADI KARANGAN : Matematika : XI IPS/2 : Fungsi Komposisi dan Fungsi Invers

Lebih terperinci

F U N G S I A R U M H A N D I N I P R I M A N D A R I

F U N G S I A R U M H A N D I N I P R I M A N D A R I F U N G S I A R U M H A N D I N I P R I M A N D A R I DEFINISI Fungsi adalah suatu aturan yang memetakan setiap anggota himpunan A pada tepat satu anggota himpunan B. Dimana: Himpunan A disebut domain

Lebih terperinci

Relasi dan Fungsi. Bab. Di unduh dari : Bukupaket.com. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range)

Relasi dan Fungsi. Bab. Di unduh dari : Bukupaket.com. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range) Bab Relasi dan Fungsi A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu: 1. Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap

Lebih terperinci

LEMBAR AKTIVITAS SISWA FUNGSI KOMPOSISI DAN INVERS FUNGSI Yang bukan merupakan fungsi nomor: Contoh: 1. y = f(x) g(x) 2. y = f(x) Syarat: f(x) 0

LEMBAR AKTIVITAS SISWA FUNGSI KOMPOSISI DAN INVERS FUNGSI Yang bukan merupakan fungsi nomor: Contoh: 1. y = f(x) g(x) 2. y = f(x) Syarat: f(x) 0 Nama Siswa Kelas LEMBAR AKTIVITAS SISWA FUNGSI KOMPOSISI DAN INVERS FUNGSI Yang bukan merupakan fungsi nomor: : : Kompetensi Dasar (KURIKULUM 2013): 3.2 Memahami konsep fungsi dan menerapkan operasi aljabar

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/2 Alokasi Waktu: 6 jam Pelajaran (3 Pertemuan) A. Standar Kompetensi Menentukan komposisi dua fungsi dan invers

Lebih terperinci

*Tambahan Grafik Fungsi Kuadrat

*Tambahan Grafik Fungsi Kuadrat *Tambahan Grafik Fungsi Kuadrat GRAFIK FUNGSI KUADRAT Langkah-langkah menggambar grafik: 1. Tentukan pembuat nol fungsi y=0 atau f(x)=0 2. Tentukan sumbu simetri x = -b/2a 3. Tentukan titik puncak P (x,y)

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:

BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar: BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:. Menentukan komposisi fungsi dari dua fungsi. Menentukan invers suatu

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : VIII (Delapan) Mata Pelajaran : Matematika Semester : I (satu) ALJABAR Standar : 1. Memahami bentuk aljabar, relasi,, dan persamaan garis lurus Indikator Kegiatan

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

Fungsi Grafik Fungsi. Kalkulus 1. Fungsi dan Grafik Fungsi. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Fungsi Grafik Fungsi. Kalkulus 1. Fungsi dan Grafik Fungsi. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Fungsi dan Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Fungsi Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu

Lebih terperinci

Sumber: Dokumen Kemdikbud

Sumber: Dokumen Kemdikbud Bab 3 Fungsi K ata Kunci Relasi Fungsi Diagram Panah Tabel Grafik Rumus Fungsi K D ompetensi asar Menyajikan fungsi dalam berbagai bentuk relasi, pasangan terurut, rumus fungsi, tabel, grafik, dan diagram.

Lebih terperinci

KTSP Perangkat Pembelajaran SMP/MTs, KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) Mapel Matematika kls VII s/d IX. 1-2

KTSP Perangkat Pembelajaran SMP/MTs, KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) Mapel Matematika kls VII s/d IX. 1-2 KTSP Perangkat Pembelajaran SMP/MTs, PERANGKAT PEMBELAJARAN STANDAR KOMPETENSI DAN KOMPETENSI DASAR Mata Pelajaran Satuan Pendidikan Kelas/Semester : Matematika. : SMP/MTs. : VII s/d IX /1-2 Nama Guru

Lebih terperinci

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,

Lebih terperinci

Matematika

Matematika Fungsi dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Fungsi Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain,

Lebih terperinci

SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB

SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB 1. Diketahui F(x) = 4x + 3, maka nilai f (-3) = SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB 17-12 -10-9 -8 Kunci Jawaban : C http://www.primemobile.co.id/assets/uploads/materi/mtk09-18-pembhasan1.jpg

Lebih terperinci

FUNGSI DAN LIMIT FUNGSI

FUNGSI DAN LIMIT FUNGSI 2 FUNGSI DAN LIMIT FUNGSI 2.1 Fungsi dan Grafiknya Definisi Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap x anggota A dengan tepat satu y anggota B. A disebut

Lebih terperinci

untuk mempelajari matematika lebih lanjut. Untuk menunjang kemampuankemampuan tersebut diharapkan Anda dapat menguasai beberapa kompetensi khusus

untuk mempelajari matematika lebih lanjut. Untuk menunjang kemampuankemampuan tersebut diharapkan Anda dapat menguasai beberapa kompetensi khusus ix S Tinjauan Mata Kuliah elamat bertemu, selamat belajar, dan selamat berdiskusi dalam mata kuliah Matematika Dasar 1. Mata kuliah PEMA4102/Matematika Dasar 1 dengan bobot 3 sks ini sering pula dinamakan

Lebih terperinci

FUNGSI MATEMATIKA SISTEM INFORMASI 1

FUNGSI MATEMATIKA SISTEM INFORMASI 1 FUNGSI MATEMATIKA SISTEM INFORMASI 1 PENGERTIAN FUNGSI A disebut daerah asal (domain) dari f dan B disebut daerah hasil (Kodomain) dari f. Nama lain untuk fungsi adalah pemetaan atau transformasi. A Fungsi

Lebih terperinci

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3

Lebih terperinci

Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. 1 FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B. Jika f adalah fungsi dari A ke B kita

Lebih terperinci

BAB 3 FUNGSI. 1. Pengertian Fungsi. dengan satu dan hanya satu elemen B; f disebut fungsi dari A ke B, ditulis f : A

BAB 3 FUNGSI. 1. Pengertian Fungsi. dengan satu dan hanya satu elemen B; f disebut fungsi dari A ke B, ditulis f : A BAB 3 FUNGSI 1. Pengertian Fungsi Fungsi f adalah suatu aturan padanan yang menghubungkan tiap objek x dalam satu himpunan, yang disebut daerah asal, dengan sebuah nilai unik f(x) dari himpunan kedua.

Lebih terperinci

Materi Kuliah Matematika Komputasi FUNGSI

Materi Kuliah Matematika Komputasi FUNGSI Materi Kuliah Matematika Komputasi FUNGSI Misalkan A dan B himpunan. FUNGSI Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam

Lebih terperinci

Fungsi Komposisi dan Fungsi Invers

Fungsi Komposisi dan Fungsi Invers Bab 6 Sumber: Let s Learn about Korea, 00 Fungsi Komposisi dan Fungsi Invers Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, siat, dan aturan ungsi komposisi dalam pemecahan masalah;

Lebih terperinci

BAB I PEMBAHASAN 1. PENGERTIAN RELASI

BAB I PEMBAHASAN 1. PENGERTIAN RELASI BAB I PEMBAHASAN 1. PENGERTIAN RELASI Misalkan relasi pada himpunan A dan B adalah dua himpunan sebarang, suatu relasi dari A ke B adalah himpunan bagian dari A x B yaitu pasangan terurut (a,b) dimana

Lebih terperinci

Himpunan. Modul 1 PENDAHULUAN

Himpunan. Modul 1 PENDAHULUAN Modul 1 Himpunan Dra. Kusrini, M.Pd. PENDAHULUAN D alam Modul 1 ini ada 3 kegiatan belajar, yaitu Kegiatan Belajar 1, Kegiatan Belajar 2, dan Kegiatan Belajar 3. Dalam Kegiatan Belajar 1, Anda akan mempelajari

Lebih terperinci

BAB IV HASIL PENELITIAN. Tabel 4 Hasil Pekerjaan Siswa

BAB IV HASIL PENELITIAN. Tabel 4 Hasil Pekerjaan Siswa BAB IV HASIL PENELITIAN A. Deskripsi Subyek Penelitian Penelitian dilaksanakan di SMA Theresiana Salatiga Semester 1 pada Tahun Ajaran 2011/ 2012 yang terletak di jalan Cemara II Salatiga. Subyek penelitian

Lebih terperinci

RELASI DAN FUNGSI. Nur Hasanah, M.Cs

RELASI DAN FUNGSI. Nur Hasanah, M.Cs RELASI DAN FUNGSI Nur Hasanah, M.Cs Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan

Lebih terperinci

Pengantar Analisis Real

Pengantar Analisis Real Modul Pengantar Analisis Real Dr Endang Cahya, MA, MSi P PENDAHULUAN ada Modul ini disajikan beberapa topik pengantar mata kuliah Analisis Real, yang terbagi dalam beberapa kegiatan belajar yang harus

Lebih terperinci

KUMPULAN SOAL MATEMATIKA SMP KELAS 8

KUMPULAN SOAL MATEMATIKA SMP KELAS 8 KUMPULAN SOAL MATEMATIKA SMP KELAS 8 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co,cc Email: fatkoer@gmail.com 009 Evaluasi Bab 1 Untuk nomor 1 sampai 5 pilihlah

Lebih terperinci

RELASI. Cece Kustiawan, FPMIPA, UPI

RELASI. Cece Kustiawan, FPMIPA, UPI RELASI 1. Pasangan Berurutan 2. Fungsi Proposisi dan Kalimat Terbuka 3. Himpunan Jawaban dan Grafik Relasi 4. Jenis-jenis Relasi 5. Domain dan Range suatu Relasi Pasangan Berurutan (cartesian Product)

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi A. Fungsi dan Macam-macam Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP Negeri 3 Singaraja Mata Pelajaran : Matematika Kelas / Semester : VIII / Ganjil Alokasi Waktu : 2 40 menit A. Standar Kompetensi. Memahami bentuk

Lebih terperinci

PEMBAHASAN. Fungsi adalah relasi khusus yang memasangkan setiap anggota suatu himpunan dengan tepat satu anggota himpunan lain.

PEMBAHASAN. Fungsi adalah relasi khusus yang memasangkan setiap anggota suatu himpunan dengan tepat satu anggota himpunan lain. PEMHSN 1. Fungsi ( pemetaan ) Fungsi adalah relasi khusus yang memasangkan setiap anggota suatu himpunan dengan tepat satu anggota himpunan lain. Fungsi dalam matematika adalah mengacu adanya reaksi binar

Lebih terperinci

Wahyu Hidayat, S.Pd., M.Pd.

Wahyu Hidayat, S.Pd., M.Pd. Wahyu Hidayat, S.Pd., M.Pd. FUNGSI Definisi Fungsi Diketahui 2 buah himpunan A dan yang tidak kosong. Suatu fungsi dari A ke, ditulis f : A didefinisikan sebagai suatu aturan yang memasangkan setiap anggota

Lebih terperinci

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B.

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B. Bayangkan suatu fungsi seagai seuah mesin, misalnya mesin hitung. Ia mengamil suatu ilangan (masukan), maka fungsi memproses ilangan yang masuk dan hasil produksinya diseut keluaran. x Masukan Fungsi f

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci