Enrichment Test I (UAS Ganjil) *) Tulisan Warna Biru: Jawaban. Sekolah Menengah Pertama Islam Sistem Full Day School

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Enrichment Test I (UAS Ganjil) *) Tulisan Warna Biru: Jawaban. Sekolah Menengah Pertama Islam Sistem Full Day School"

Transkripsi

1 Enrichment Test I (UAS Ganjil) Mathematic: 01 / VIII / III / 1 / 013 Islamic Junior High School of Sabilillah Malang NAME / CLASS :... /.. DAY / DATE :. /.... Sekolah Menengah Pertama Islam Sistem Full Day School Pray First Before Doing Anything PILIHLAH SALAH SATU JAWABAN YANG PALING BENAR! *) Tulisan Warna Biru: Jawaban 1. Suku-suku yang sejenis dari bentuk aljabar 3 + 3y 5y + 5y + 6y adalah... 3 dan 5y dan 6y 3 dan 3y 5 dan 5y. Diketahui kelompok suku sebagai berikut: (i) a 3 dan a (ii) 5a b 3 dan 4a 3 b (iii) 7b 5 dan 7b (iv) 6a 3 b c dan a 3 b c Kelompok suku yang sejenis adalah... (i), (ii) dan (iii) (ii) dan (iv) (i) dan (iii) (iv) saja 3. Suku-suku yang sejenis dari bentuk aljabar y y + 6 y 3 y 5 adalah dengan 4 3 dan 3 3 y dengan 6 y dengan 4 3 dan 1y dengan y 3 3 y dengan 6 y 3 dan 1y dengan y 3 3 y dengan 6 y 3 dan 9 3 dengan 6 y 3 4. Sederhanakan bentuk dari 1 3y y adalah... 9y + 8y 16 7y 9 + 8y 16 + y 5. Bentuk sederhana dari p(7p + 4q) adalah... p + 4p 7p 8pq 7p 3 + 4pq 14p 3 8pq 6. Bentuk sederhana dari: ( + 3 4) adalah Bentuk sederhana dari (y y + 1) + ( 3y + y 5) adalah... 4y + y 4 4y 4 4y y 4 4y 1 8. Jumlah dari dan 3 6 adalah Jumlah dari 3y + 5 dan + y 7 adalah... y 4y + y + 4y 10. Jumlah dari 6 5y z dan 8 + 6y +9z adalah... 11y + 11z 11y 11z + y 7z + y + 7z 11. Kurangkan 6 y dari 7 4y, maka hasilnya adalah... + y + 6y y 6y matematohir.wordpress.com: SMPIS/Pengayaan UAS/Ganjil/VIII/Matematika/013/014 1

2 1. Kurangkan 5 3y + 7 dari 5y 3 4, maka hasilnya adalah y y y y Hasil dari (4 + m)(m 8) adalah... m + 14m 3 m 1m + 3 m 1m 3 m 16m Hasil dari (4 5y) 4( 3y) adalah y 5y 8 8y + 5y 1y + 5y 8 5y + 5y 15. Hasil pemangkatan dari ( + y) 3 adalah y + 6y + y y + 6y + y y + 6y + y y + 6y + y Bentuk faktor a + 15a + 14 adalah... (a + 5)(a + 3) (a + 15)(a + 1) (a + )(a + 7) (a + 1)(a + 14) 17. Bentuk faktor 10 4 adalah... ( + 4)( 6) ( + )( 1) ( 4)( 6) ( 4)( 1) 18. Bentuk faktor adalah... ( 4)( 9) ( 13)( + 36) ( + 4)( 9) ( 7)( 6) 19. Faktor dari adalah... ( +18)( ) ( 9)( 4) ( 18)( + ) ( 9)( + 4) 0. Bentuk faktor adalah... (3 + 9)(3 4) (3 + 5)( 1) ( + 3)(3 4) ( 6)(3 + ) 1. Salah satu faktor dari y. Bentuk Sederhanakan dari 1 y y adalah 6y 6 y 6 p pq 3. Bentuk Sederhanakan dari adalah 4 p 4q p Tidak Terdefinisi p Bentuk sederhana dari ( ) ( 5) ( 5) ( 5) adalah... ( ) ( 5)( ) ( 1) ( 5)( ) matematohir.wordpress.com: SMPIS/Pengayaan UAS/Ganjil/VIII/Matematika/013/014

3 5. Bentuk Sederhanakan dari 9 9 adalah Hasil dari bentuk adalah Bentuk sederhana dari adalah Dalam grafik Cartesius, sumbu mendatar merupakan himpunan... Daerah hasil Daerah asal Daerah kawan Range 31. Suatu relasi dari dua himpunan dapat dinyatakan dengan berikut, kecuali... Himpunan pasangan berurutan Diagram Venn Diangan Cartesius Diagram panah 3. P = {1,, 3, 5} dan Q = {, 3, 4, 6, 8, 10}. Jika ditentukan himpunan pasangan berurutan {(1,); (, 4); (3, 6); (5, 10)}, maka relasi dari himpunan P ke himpunan Q adalah... Kuadrat dari Setengah dari Dua kali dari Kurang dari 33. Diketahui relasi A B dengan pasangan berurutan{(, 1), ( 1, ), (0, 3), (1, 4)}. Hubungan yang paling tepat untuk relasi itu adalah... Lebih besar 3 lebih kecil Dua kali 3 lebih besar matematohir.wordpress.com: SMPIS/Pengayaan UAS/Ganjil/VIII/Matematika/013/014 3

4 34. Diagram panah pada gambar di atas menunjukkan hubungan atau relasi... Lebih dari Kuadrat dari Kurang dari Faktor dari 35. Relasi dari himpunan A ke himpunan B pada diagram panah di bawah adalah... faktor dari kurang dari lebih dari satu kurangnya dari 36. Relasi dari P ke Q adalah {(a, 5), (a, 3), (b, ), (c, 1), (c, 3), (d, 4)}. Domain relasi P Q adalah P = {0, 1, 4, 9, 16} P = {1,, 3, 4, 5} Q = {1,, 3, 4, 5} Q = {a, b, c, d} 37. Berikut ini yang merupakan fungsi adalah... Pasangan orang dengan hobinya Orang dipasangkan dengan namanya Orang dipasangkan dengan hari kelahirannya Orang dipasangkan dengan makanan kesukaannya 38. Perhatikan diagram-diagram panah berikut. Yang bukan merupakan fungsi adalah... (i) dan (ii) (i) dan (iii) (ii) dan (iii) (iii) dan (iv) 39. Diketahui himpunan pasangan berurutan: i. { (a, 3), (b, 3), (c, 3), (d, 3) } ii. { (a, ), (b, 3), (c, 1), (d, 4) } iii. { (a, ), (b, 1), (b, 3), (c, 3) } iv. { (1, ), (, 1), (3, 4), (4, 3) } v. { (1, 3), (, 1), (3, ), (4, 4) } vi. { (1, 1), (1, ), (, 3), (, 4) } yang merupakan bukan pemetaan atau korespondensi satu-satu adalah... (i), (ii), (iv) dan (v) (iii) dan (vi) (ii), (iv) dan (v) (iv) dan (v) matematohir.wordpress.com: SMPIS/Pengayaan UAS/Ganjil/VIII/Matematika/013/014 4

5 40. Perhatikan himpunan pasangan terurut berikut ini. 1. {(0, ), (1, 3), (, 4), (3, 5)}. {(0, ), (0, 3), (0, 4), (0, 5)} 3. {(1, ), (, 3), (3, 4), (4, 5), (5, 6)} 4. {(1, ), (, ), (, 3), (3, 4), (4, 5)} Yang merupakan korespondensi satu-satu adalah... 1 dan 3 dan 4 1 dan 4 dan Diketahui: A = {faktor dari 8} B = {faktor prima dari 15} Banyak fungsi yang mungkin dari himpunan A ke himpunan B adalah... 8 cara 4 cara 16 cara 3 cara 4. Banyak korespondensi satu-satu dari himpunan A = { faktor dari 4 } ke B = {0,, 4} adalah Fungsi f : 1 dengan daerah asal {0, 1,, 3, 4} memiliki daerah hasil... { 1,, 5, 8, 11} {1, 3, 5, 8, 11} {0, 3, 6, 9, 1} {, 3, 4, 5, 9, 1} 44. Fungsi f : + 1 dengan daerah asal {, 4, 6, 8} memiliki daerah hasil... {, 4, 6, 8} {1, 3, 5, 7} {3, 5, 7, 9} {, 3, 4, 5} 45. Domain fungsi didefinisikan dengan f: - 1 adalah 3; R { 1, 0, 1, } { 3, 1, 1, 3} { 5, 3, 1, 1, 3, 5} {, 1, 0, 1, } 46. Pada pemetaan f: 3 dengan domain f = 3 7 {0, 4, 10, 18, 8} {0, 4, 8, 1, 16} {0, 4, 8, 16, 3} {0, 4, 9, 16, 5}, kodomainnya adalah.., є bilangan asli, rangenya adalah 47. Fungsi f : 3 dengan daerah asal {0, 1,, 3, 4, 5, 6}. Daerah hasil fungsi f adalah... {0, 1,, 3, 4, 5, 6} {1, 3, 5, 7, 9, 11, 13} { 3, 1, 1, 3, 5, 7, 9} {0,1, 3, 5, 7, 9, 11} 48. Pada fungsi f :, bayangan dari atau f ( ) adalah Diketahui f : a + 5 dengan R. Jika f( ) = 1, maka f() = Nilai suatu fungsi didefinisikan f() = Nilai f( ) adalah Semoga Bermanfaat, Amien tlp: hp: matematohir.wordpress.com: SMPIS/Pengayaan UAS/Ganjil/VIII/Matematika/013/014 5

52. Diketahui fungsi f(x) = mx + n, f( 1) = 1 dan f(1) = 5. Maka nilai m dan n berturut-turut adalah a. 2 dan 3 c. 2 dan 3 b. 2 dan 3 d.

52. Diketahui fungsi f(x) = mx + n, f( 1) = 1 dan f(1) = 5. Maka nilai m dan n berturut-turut adalah a. 2 dan 3 c. 2 dan 3 b. 2 dan 3 d. Enrichment Test II (UAS Ganjil) Mathematic: 0 / VIII / III / / 0 Islamic Junior High School of Sabilillah Malang NAME / CLASS :... /.. DAY / DATE :. /.... Sekolah Menengah Pertama Islam Sistem Full Day

Lebih terperinci

RELASI DAN FUNGSI. 2. Misalkan A = {2,3,4,5} dan B = {2,3,4,5,6}. Buatlah relasi dari A ke B yang

RELASI DAN FUNGSI. 2. Misalkan A = {2,3,4,5} dan B = {2,3,4,5,6}. Buatlah relasi dari A ke B yang RELASI DAN FUNGSI A. Relasi I. Pengertian Relasi Relasi dari himpunan A ke himpunan B adalah hubungan yang memasangkan anggota himpunan A dengan anggota-anggota himpunan B. Misalkan A={Adi, Boni, Chris}

Lebih terperinci

Latihan Soal Persiapan UAS 1 Matematika Kelas 8 SMP 2017/2018 [1]

Latihan Soal Persiapan UAS 1 Matematika Kelas 8 SMP 2017/2018 [1] Latihan Soal Persiapan UAS Matematika Kelas 8 SMP 07/08 [] I. Pilihlah jawaban yang paling tepat. Koefisien dan konstanta dari persamaan adalah. Suku-suku sejenis dari bentuk aljabar adalah... 3. Bentuk

Lebih terperinci

Enrichment Test I (UAS Ganjil) *) Tulisan Warna Biru: Jawaban. Sekolah Menengah Pertama Islam Sistem Full Day School

Enrichment Test I (UAS Ganjil) *) Tulisan Warna Biru: Jawaban. Sekolah Menengah Pertama Islam Sistem Full Day School Enrichment Test I (US Ganjil) Mathematic: 0 / VII / I / / 203 Islamic Junior High School of Sabilillah Malang NME / LSS :... /.. Y / TE :. /.... Sekolah Menengah Pertama Islam Sistem Full ay School Pray

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu.

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu. Silabus Jenjang : SMP dan MTs Mata Pelajaran : Matematika Kelas : VIII Semester : 1 Standar Kompetensi : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan garis lurus. Kompetensi Dasar Materi Ajar

Lebih terperinci

LAMPIRAN VIII BAHAN AJAR I

LAMPIRAN VIII BAHAN AJAR I 177 LAMPIRAN VIII BAHAN AJAR I A. Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus B. Kompetensi Dasar Memahami relasi dan fungsi C. Tujuan Pembelajaran 1. Siswa dapat

Lebih terperinci

BAB 3 FUNGSI. f : x y

BAB 3 FUNGSI. f : x y . Hubungan Relasi dengan Fungsi FUNGSI Relasi dari himpunan P ke himpunan Q disebut fungsi atau pemetaan, jika dan hanya jika tiap unsur pada himpunan P berpasangan tepat hanya dengan sebuah unsur pada

Lebih terperinci

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini.

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. Gambar 1.1 Gambar 1.1 menunjukkan suatu kumpulan anak yang terdiri atas Tino, Atu, Togar, dan Nia berada di sebuah toko alat tulis.

Lebih terperinci

RELASI DAN FUNGSI. b. Diberikan dua himpunan:

RELASI DAN FUNGSI. b. Diberikan dua himpunan: RELASI DAN FUNGSI A. Relasi. Pengertian Relasi Relasi menurut bahasa berarti hubungan. Dalam matematika, relasi atau hubungan menyatakan hubungan antara anggota suatu himpunan dengan anggota himpunan yang

Lebih terperinci

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp. 8400005,

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain Pesan soal-soal matematika untuk SD, SMP dan SMA? Soal ulangan harian, ulangan mid, ulangan semester, soal-soal UAN dll. Tulis

Lebih terperinci

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11 B. Relasi Sebelum mendefinisikan produk Cartesius, terlebih dahulu Anda perlu mengenal pengertian pasangan terurut. Dalam sistem koordinat Cartesius dengan sumbu x dan sumbu y, kita mengetahui bahwa titik

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap

Lebih terperinci

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 3. Fungsi & Model ALZ DANNY WOWOR

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 3. Fungsi & Model ALZ DANNY WOWOR KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 3 Fungsi & Model ALZ DANNY WOWOR 1. Fungsi Sebelum membahas fungsi, akan ditunjukkan pengertian dari relasi yang

Lebih terperinci

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta 1 RELASI Oleh: Mega Inayati Rif ah, S.T., M.Sc. 2 RELASI Relasi adalah suatu aturan yang memasangkan anggota himpunan

Lebih terperinci

KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK

KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK Jenis Sekolah : SMP/MTs Alokasi Waktu : 90 Menit Mata Pelajaran : Matematika Jumlah Soal : 10 butir Kelas/Semester : VIII/2 Bentuk Soal : Uraian Kurikulum

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

Bimbingan Belajar FunMath LATIHAN -1

Bimbingan Belajar FunMath  LATIHAN -1 LATIHAN -1 1. Diketahui: A= {Sukabumi, Bandung, Yogyakarta, medan, Palembang, banjarmasin, makasar} B={Jawa, Sumatera, Kalimantan, Sulawesi, Papua} Jika relasi dari A ke B menyatakan hubungan terdapat

Lebih terperinci

RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi

RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi RELASI DAN FUNGSI A. Pengertian Relasi dan Fungsi Banyak enomena atau kejadian alam yang dapat dihubungkan dengan suatu relasi Sebagai contoh, misalkan diberikan dua himpunan : A = {sepeda, sepeda motor,

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

BAB 2 RELASI DAN FUNGSI

BAB 2 RELASI DAN FUNGSI BAB 2 RELASI DAN FUNGSI 2.1 Pengantar Kejadian dalam dunia nyata ini, umumnya tidak berdiri sendiri. Melainkan berhubungan satu sama lainnya atau ada kaitan antara satu kejadian dengan kejadian yang lainnya.

Lebih terperinci

KISI-KISI ULANGAN HARIAN 2 RELASI DAN FUNGSI. Indikator Penilaian Pengertian relasi. kata-kata

KISI-KISI ULANGAN HARIAN 2 RELASI DAN FUNGSI. Indikator Penilaian Pengertian relasi. kata-kata KISI-KISI ULANGAN HARIAN 2 RELASI DAN FUNGSI No. Standar Kompetensi Kompetensi Dasar Materi 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus 1.3. Memahami relasi dan fungsi 1.3.1.

Lebih terperinci

MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd.

MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd. MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd. Disusun oleh: Kelompok 8 1. Yusie Kristiawan (14144100113)

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL FUNGSI KUADRAT Materi: Fungsi Kuadrat A Kajian ulang tentang fungsi B Fungsi kuadrat dan grafiknya C Menentukan fungsi kuadrat D Menentukan sumu simetri, titik puncak, sifat definit positif atau

Lebih terperinci

TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI EKA REZEKI AMALIA DIAH RAHMAWATI HANIYAH MATKOM II A

TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI EKA REZEKI AMALIA DIAH RAHMAWATI HANIYAH MATKOM II A TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI 06320003 EKA REZEKI AMALIA 06320004 DIAH RAHMAWATI 06320027 HANIYAH 06320029 MATKOM II A JURUSAN MATEMATIKA DAN KOMPUTASI FAKULTAS KEGURUAN DAN

Lebih terperinci

Bab 2. Relasi dan Fungsi. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar

Bab 2. Relasi dan Fungsi. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar Bab 2 Relasi dan Fungsi Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar 1.3 Memhami relasi dan fu ngsi 1.4 Menentukan nilai fungsi. 1.5 Membuat sketsa

Lebih terperinci

3. FUNGSI DAN GRAFIKNYA

3. FUNGSI DAN GRAFIKNYA 3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,

Lebih terperinci

- - FUNGSI SMP - - c. (ii) dan (iii) d. (iii) dan (iv) Soal Pilihan Ganda 1. Perhatikan diagram-diagram panah berikut.

- - FUNGSI SMP - - c. (ii) dan (iii) d. (iii) dan (iv) Soal Pilihan Ganda 1. Perhatikan diagram-diagram panah berikut. - - FUNGSI SMP - - Soal Pilihan Ganda 1. Perhatikan diagram-diagram panah berikut. c. (ii) dan (iii) d. (iii) dan (iv) 2. Perhatikan himpunan pasangan terurut berikut ini. 1. {(0, 2), (1, 3), (2, 4), (3,

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Nama Sekolah : SMP Islam Sabilillah Malang Mata Pelajaran : Matematika Kelas / Semester : VIII / Ganjil Materi Pokok : Operasi Bentuk Aljabar Waktu : 2 x 40 Menit JP Pertemuan

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya BAB I A. SISTEM BILANGAN REAL Sistem bilangan real dan berbagai sifatnya merupakan basis dari kalkulus. Sistem bilangan real terdiri dari himpunan unsur yang dinamakan Bilangan Real yang sering dinyatakan

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

Uji Kemampuan Diri 3 Pilihlah jawaban yang paling tepat!

Uji Kemampuan Diri 3 Pilihlah jawaban yang paling tepat! Uji Kemampuan Diri 3 Pilihlah jawaban yang paling tepat!. Jika p*q artinya kalikan bilangan pertama dengan bilangan kedua, kemudian hasilnya dikurangkan dari bilangan kedua. Hasil dari 8*(-) a. -8 c. -

Lebih terperinci

Faktorisasi Bentuk Aljabar

Faktorisasi Bentuk Aljabar Faktorisasi Bentuk Aljabar Satuan Pendidikan Bidang Study Kelas / Semester : SMP. N 2 Jatipuro : MATEMATIKA : VIII / I 1. STANDAR KOMPETENSI Memahami bentuk aljabar. 2. KOMPETENSI DASAR 1.1 Melakukan operasi

Lebih terperinci

BAB. VI. FUNGSI. Contoh 2. Dari diagram panah diatas tentukan: a. Domain b.kodomain. d.himpunan pasangan berurutan jawab:

BAB. VI. FUNGSI. Contoh 2. Dari diagram panah diatas tentukan: a. Domain b.kodomain. d.himpunan pasangan berurutan jawab: A. FUNGSI I. Pengertian Fungsi Fungsi (pemetaan) yaitu relasi khusus, dimana setiap anggota daerah asal mempunyai pasangan tepat satu dengan anggota daerah kawan A B BAB. VI. FUNGSI Keterangan: A=Daerah

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB II ALJABAR Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya

Lebih terperinci

Produk Cartesius Relasi Relasi Khusus RELASI

Produk Cartesius Relasi Relasi Khusus RELASI Produk Cartesius Relasi Relasi Khusus RELASI Jika A dan B masing-masing menyatkan himpunan yang tidak kosong, maka produk Cartesius himpunan A dan B adalah himpunan semua pasangan terutut (x,y) dengan

Lebih terperinci

BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:

BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar: BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:. Menentukan komposisi fungsi dari dua fungsi. Menentukan invers suatu

Lebih terperinci

LEMBAR KERJA SISWA I

LEMBAR KERJA SISWA I 197 LAMPIRAN IX LEMBAR KERJA SISWA I Tingkat Satuan Pendidikan Mata Pelajaran Kelas/Semester Materi : SMP N 46 Sijunjung : Matematika : VIII/Ganjil : Relasi dan Fungsi Kelompok : Nama Anggota : 1. 2. 3.

Lebih terperinci

FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B.

FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B. FUNGSI Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B. FUNGSI KOMPOSISI Daerah asal alami f : A B adalah semua unsur

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah Mata Pelajaran Kelas Semester : SMP Negeri 3 Magelang : Matematika : VIII (Delapan) : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi,

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS -- FUNGSI KOMPOSISI DAN FUNGSI INVERS. RELASI DAN FUNGSI Relasi himpunan A ke himpunan B yaitu korespondensi/hubungan semua anggota A dengan semua anggota B. Relasi khusus yang menghubungkan setiap anggota

Lebih terperinci

Logika, Himpunan, dan Fungsi

Logika, Himpunan, dan Fungsi Logika, Himpunan, dan Fungsi A. Logika Matematika Logika matematika adalah ilmu untuk berpikir dan menalar dengan menggunakan bahasa serta simbol-simbol matematika dengan benar. 1) Kalimat Matematika Kalimat

Lebih terperinci

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah No RUMUS 1 Bilangan Bulat Sifat penjumlahan bilangan bulat a. Sifat tertutup a + b = c; c juga bilangan bulat b. Sifat komutatif a + b = b + a c. Sifat asosiatif (a + b) + c = a + (b + c) d. Mempunyai

Lebih terperinci

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi A. Fungsi dan Macam-macam Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari

Lebih terperinci

PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015

PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015 PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015 http://matematohir.wordpress.com/ Mata Pelajaran Kelas / Semester : Matematika : VIII / Ganjil Nama : Mathematics

Lebih terperinci

Matematika

Matematika dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain, dengan sebuah

Lebih terperinci

2) Drs. Mustafa, M.Pd., selaku Kepala Dinas Pendidikan Kota Langsa.

2) Drs. Mustafa, M.Pd., selaku Kepala Dinas Pendidikan Kota Langsa. Ucapan Terima Kasih Syukur Alhamdulillah, akhirnya kami dapat menyelesaikan Lembar Kerja Siswa (LKS) Matematika untuk SMP/MTs Kelas VIII Semester 1 dengan bantuan berbagai pihak. Untuk itu, pada kesempatan

Lebih terperinci

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1 1. Diketahui : A = { m, a, d, i, u, n } dan B = { m, e, n, a, d, o } Diagram Venn dari kedua himpunan di atas adalah... D. A B = {m, n, a, d} 2. Jika P = bilangan prima yang kurang dari Q = bilangan ganjil

Lebih terperinci

1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus Menjelaskan pengertian relasi dengan menggunakan kata-kata

1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus Menjelaskan pengertian relasi dengan menggunakan kata-kata 108 LAMPIRAN VI RENCANA PELAKSANAAN PEMBELAJARAN (RPP Kelas Eksperimen) Satuan Pendidikan : SMP Negeri 46 Sijunjung Kelas / Semester : VIII (Delapan)/1 (Ganjil) Mata Pelajaran : Matematika Materi Pokok

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

Wahyu Hidayat, S.Pd., M.Pd.

Wahyu Hidayat, S.Pd., M.Pd. Wahyu Hidayat, S.Pd., M.Pd. FUNGSI Definisi Fungsi Diketahui 2 buah himpunan A dan yang tidak kosong. Suatu fungsi dari A ke, ditulis f : A didefinisikan sebagai suatu aturan yang memasangkan setiap anggota

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan Mata Pelajaran Kelas/Semester Alokasi waktu : SMA Negeri 1 Sukasada : Matematika : X/1 (Ganjil) : 2 x 4 menit (1 pertemuan) I. Standar Kompetensi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas : VIII (Delapan) Semester : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan

Lebih terperinci

A B A B A B a 1 a 1 a 1 b 2 b 2 b 2 c 3 c 3 c 3 d d d. Gambar 1. Gambar 2. Gambar 3. Relasi Fungsi Relasi Bukan Fungsi Relasi Bukan Fungsi

A B A B A B a 1 a 1 a 1 b 2 b 2 b 2 c 3 c 3 c 3 d d d. Gambar 1. Gambar 2. Gambar 3. Relasi Fungsi Relasi Bukan Fungsi Relasi Bukan Fungsi sumbu y F U N G S I Definisi Fungsi Fungsi adalah pemetaan atau kejadian khusus dari suatu relasi. Jika himpunan A dan B memiliki relasi R sedemikian rupa sehingga setiap elemen himpunan A terhubung dengan

Lebih terperinci

MATERI : RELASI DAN FUNGSI KELAS : X. 1. Ada hal penting yang bisa dipetik dari contoh di atas. Misalkan X menyatakan

MATERI : RELASI DAN FUNGSI KELAS : X. 1. Ada hal penting yang bisa dipetik dari contoh di atas. Misalkan X menyatakan MTERI : RELSI DN FUNGSI KELS : X Pemahaman Fungsi Dalam berbagai aplikasi, korespondensi/hubungan antara dua himpunan sering terjadi 4 3 Sebagai contoh, volume bola dengan jari-jari r diberikan oleh relasi

Lebih terperinci

Lampiran 1. Daftar Terjemah

Lampiran 1. Daftar Terjemah 84 Lampiran 1. Daftar Terjemah No BAB Terjemah 1 1 Dan dialah yang menjadikan matahari bersinar dan bulan bercahaya dan ditetapkan_nya manzilah (tempattempat) bagi perjalanan bulan itu, supaya kamu mengetahui

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS. Relasi dan Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari tentang topik Relasi, Fungsi dan Grafik. Pada materi relasi ini selain menggunakan istilah

Lebih terperinci

SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB

SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB 1. Diketahui F(x) = 4x + 3, maka nilai f (-3) = SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB 17-12 -10-9 -8 Kunci Jawaban : C http://www.primemobile.co.id/assets/uploads/materi/mtk09-18-pembhasan1.jpg

Lebih terperinci

BEBERAPA MACAM FUNGSI DALAM ALJABAR

BEBERAPA MACAM FUNGSI DALAM ALJABAR BEBEAA MACAM FUNGI DALAM ALJABA 1. Fungsi Komposisi Dari dua jenis fungsi f dan g kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan

Lebih terperinci

matematika wajib K-13 FUNGSI INVERS K e l a s f -1 Fungsi invers

matematika wajib K-13 FUNGSI INVERS K e l a s f -1 Fungsi invers K- matematika wajib K e l a s X FUNGSI INVERS tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami pengertian invers dan ungsi invers.. Memahami cara

Lebih terperinci

Oleh : Winda Aprianti

Oleh : Winda Aprianti Oleh : Winda Aprianti Relasi Definisi Relasi Relasi antara himpunan A dan himpunan B merupakan himpunan yang berisi pasangan terurut yang mengikuti aturan tertentu (relasi biner). Relasi biner R antara

Lebih terperinci

MODUL MATA PELAJARAN MATEMATIKA

MODUL MATA PELAJARAN MATEMATIKA KERJASAMA DINAS PENDIDIKAN KOTA SURABAYA DENGAN FAKULTAS MIPA UNIVERSITAS NEGERI SURABAYA MODUL MATA PELAJARAN MATEMATIKA Bilangan dan Aljabar untuk kegiatan PELATIHAN PENINGKATAN MUTU GURU DINAS PENDIDIKAN

Lebih terperinci

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B.

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B. Bayangkan suatu fungsi seagai seuah mesin, misalnya mesin hitung. Ia mengamil suatu ilangan (masukan), maka fungsi memproses ilangan yang masuk dan hasil produksinya diseut keluaran. x Masukan Fungsi f

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1

BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1 BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1 BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1 A. Pilihan Ganda 1. Bentuk x + x 48 jika difaktorkan adalah A. (x 6)(x 8) B. (x + 8)(x 6) C. (x 4)(x 1)

Lebih terperinci

BAB I BILANGAN BULAT dan BILANGAN PECAHAN

BAB I BILANGAN BULAT dan BILANGAN PECAHAN File asli diunduh di 8-Spensasi.blogspot.com BAB I BILANGAN BULAT dan BILANGAN PECAHAN A. Bilangan Bulat I. Pengertian Bilangan bulat terdiri atas bilangan bulat positif atau bilangan asli, bilangan nol

Lebih terperinci

Sumber: Dokumen Kemdikbud

Sumber: Dokumen Kemdikbud Bab 3 Fungsi K ata Kunci Relasi Fungsi Diagram Panah Tabel Grafik Rumus Fungsi K D ompetensi asar Menyajikan fungsi dalam berbagai bentuk relasi, pasangan terurut, rumus fungsi, tabel, grafik, dan diagram.

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan Silabus Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMK : MATEMATIKA : XI / TEKNOLOGI, KESEHATAN, DAN PERTANIAN : GANJIL Standar Kompetensi:7. Menerapkan perbandingan, fungsi,, dan identitas

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN 01 (RPP 01)

RENCANA PELAKSANAAN PEMBELAJARAN 01 (RPP 01) RENCN PELKSNN PEMELJRN 01 (RPP 01) Sekolah Mata Pelajaran Kelas/Semester lokasi Waktu : SM Saraswati Singaraja : Matematika : X/Ganjil : 2 x 4 menit I. Standar Kompetensi: 2. Memecahkan masalah yang berkaitan

Lebih terperinci

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS)

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS) LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL SEKOLAH KELAS MATA PELAJARAN SEMESTER BILANGAN Standar Kompetensi KOMPETENSI DASAR 1.1 Melakukan operasi hitung bilangan bulat. : SMP : VII : MATEMATIKA

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrumen

Silabus. Kegiatan Pembelajaran Instrumen NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : XI STANDAR KOMPETENSI : Menerapkan logika matematka dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor KODE KOMPETENSI

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional Tahun 1991 Matematika

Evaluasi Belajar Tahap Akhir Nasional Tahun 1991 Matematika Evaluasi Belajar Tahap Akhir Nasional Tahun 99 Matematika EBTANAS-SMP-9-0 Amir, Adi dan Budi selalu berbelanja ke Toko "Anda". Amir tiap 3 hari sekali, Adi tiap 4 hari sekali dan Budi tiap hari sekali.

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI.

FUNGSI DAN GRAFIK FUNGSI. FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id ekop2003@yahoo.com Materi Fungsi ( deinisi, daerah asal dan daerah hasil ) Fungsi Surjekti, Injekti, Bijekti dan Invers Operasi Pada Fungsi dan Fungsi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan) : Menentukan rumus fungsi jika nilainya diketahui

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan) : Menentukan rumus fungsi jika nilainya diketahui RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah Mata Pelajaran Kelas Semester : SMP Negeri 3 Magelang : Matematika : VIII (Delapan) : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi,

Lebih terperinci

PREDIKSI SOAL UJIAN NASIONAL 2009 MMC 252. Hasbas Hakim. Math Club 252 Jakarta Timur

PREDIKSI SOAL UJIAN NASIONAL 2009 MMC 252. Hasbas Hakim. Math Club 252 Jakarta Timur PREDIKSI SOAL UJIAN NASIONAL 009 MMC 5 Hasbas Hakim Math Club 5 Jakarta Timur STANDAR KOMPETENSI LULUSAN (SKL) 1. Siswa mampu menggunakan konsep operasi hitung dan sifat-sifat bilangan, perbandingan, aritmetika

Lebih terperinci

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.

Lebih terperinci

BAB V PENUTUP. matematika yang diajarkan dengan modelproblem Based Learning dengan. Fungsi di SMP Negeri 10 Kupang Tahun Ajaran 2014/2015.

BAB V PENUTUP. matematika yang diajarkan dengan modelproblem Based Learning dengan. Fungsi di SMP Negeri 10 Kupang Tahun Ajaran 2014/2015. BAB V PENUTUP A. Kesimpulan Berdasarkan hasil analisis data dan pembahasan maka dapat ditarik simpulan bahwa ada perbedaan yang signifikan terhadap prestasi belajar matematika yang diajarkan dengan modelproblem

Lebih terperinci

KUMPULAN SOAL MATEMATIKA SMP KELAS 8

KUMPULAN SOAL MATEMATIKA SMP KELAS 8 KUMPULAN SOAL MATEMATIKA SMP KELAS 8 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co,cc Email: fatkoer@gmail.com 009 Evaluasi Bab 1 Untuk nomor 1 sampai 5 pilihlah

Lebih terperinci

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu BAB IV RELASI DAN FUNGSI Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu relasi, relasi invers, relasi identitas, pengertian fungsi, bayangan invers

Lebih terperinci

KOMPOSISI FUNGSI DAN FUNGSI INVERS

KOMPOSISI FUNGSI DAN FUNGSI INVERS 1 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI.

FUNGSI DAN GRAFIK FUNGSI. FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id Materi Fungsi Fungsi Surjekti, Fungsi Injekti, dan Fungsi Bijekti Operasi Pada Fungsi Fungsi Invers Fungsi Komposisi Graik Fungsi Dalam Sistem Koordinat

Lebih terperinci

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com 1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi

Lebih terperinci

Semester 1 - Edisi v15

Semester 1 - Edisi v15 KTSP Matematika SMP/MTs Kelas VIII-A P a g e Spesial Siswa Yoyo Apriyanto, S.Pd Diktat Matematika SMP/MTs Kelas VII-A Semester - Edisi v + Ringkasan Materi + Soal dan Pembahasan + Soal Uji Kompetensi Siswa

Lebih terperinci

C. Ø D. S. Gambar di atas adalah kubus ABCD.EFGH dan salah satu jaring-jaringnya, maka titik E menempati nomor... A.(I) C.(III) B.

C. Ø D. S. Gambar di atas adalah kubus ABCD.EFGH dan salah satu jaring-jaringnya, maka titik E menempati nomor... A.(I) C.(III) B. 1. Amir, Adi, dan Budi selalu berbelanja ke Toko "Anda", Amir tiap 3 hari sekali. Adi tiap 4 hari sekali, Budi tiap 6 hari sekali. Bila ketiganya mulai berbelanja sama-sama pertama kali tanggal 20 Mei

Lebih terperinci

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) }

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) } 1. Diketahui himpunan P = ( bilangan prima kurang dari 13 ) Banyak himpunan bagian dari P adalah... 5 25 10 32 P = {Bilangan prima kurang dari 13} = {2, 3, 5, 7, 11} n(p) = 5 2. Dari diagram Venn di bawah,

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : LOGIKA HIMPUNAN Kode Mata : DK - 11206 Jurusan / Jenjang : S1 SISTEM INFORMASI Tujuan Instruksional Umum : Agar

Lebih terperinci

Relasi dan Fungsi. Bab. Di unduh dari : Bukupaket.com. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range)

Relasi dan Fungsi. Bab. Di unduh dari : Bukupaket.com. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range) Bab Relasi dan Fungsi A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu: 1. Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP Negeri 3 Singaraja Mata Pelajaran : Matematika Kelas / Semester : VIII / Ganjil Alokasi Waktu : 2 40 menit A. Standar Kompetensi x. Memahami bentuk

Lebih terperinci

SILABUS MATAKULIAH. Kegiatan Pembelajaran 1. mendiskusikan pengertian atau batasan. Pokok Bahasan dan Subpokok Bahasan 1. Pengertian atau batasan

SILABUS MATAKULIAH. Kegiatan Pembelajaran 1. mendiskusikan pengertian atau batasan. Pokok Bahasan dan Subpokok Bahasan 1. Pengertian atau batasan SILABUS MATAKULIAH Matakuliah : Teori Himpunan Kode Matakuliah : SKS/JS : 2/3 Standar Kompetensi : Setelah mengikuti perkuliahan mahasiswa diharapkan: (1) dan operasinya, (2) bilangan dan serta sifat-sifatnya,

Lebih terperinci

BEBERAPA FUNGSI KHUSUS

BEBERAPA FUNGSI KHUSUS BEBERAPA FUNGSI KHUSUS ). Fungsi Konstan ). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan

Lebih terperinci

F U N G S I. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

F U N G S I. Oleh: Dimas Rahadian AM, S.TP. M.Sc. F U N G S I Oleh: Dimas Rahadian AM, S.TP. M.Sc Email: rahadiandimas@yahoo.com JURUSAN ILMU DAN TEKNOLOGI PANGAN UNIVERSITAS SEBELAS MARET SURAKARTA ...KONSEP DASAR Fungsi adalah suatu pemetaan dari satu

Lebih terperinci

BAB I PEMBAHASAN 1. PENGERTIAN RELASI

BAB I PEMBAHASAN 1. PENGERTIAN RELASI BAB I PEMBAHASAN 1. PENGERTIAN RELASI Misalkan relasi pada himpunan A dan B adalah dua himpunan sebarang, suatu relasi dari A ke B adalah himpunan bagian dari A x B yaitu pasangan terurut (a,b) dimana

Lebih terperinci

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci