2) Drs. Mustafa, M.Pd., selaku Kepala Dinas Pendidikan Kota Langsa.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "2) Drs. Mustafa, M.Pd., selaku Kepala Dinas Pendidikan Kota Langsa."

Transkripsi

1

2 Ucapan Terima Kasih Syukur Alhamdulillah, akhirnya kami dapat menyelesaikan Lembar Kerja Siswa (LKS) Matematika untuk SMP/MTs Kelas VIII Semester 1 dengan bantuan berbagai pihak. Untuk itu, pada kesempatan ini kami ingin mengucapkan terima kasih yang sebesar-besarnya kepada: 1) Direktorat Pembinaan Pendidik dan Tenaga Kependidikan Pendidikan Dasar, Dirjen. Pendidikan Dasar, Kementerian Pendidikan Dan Kebudayaan, yang telah memberikan bantuan dana Pengembangan karir PTK Dikdas: MGMP SMP tahun 2012 guna terselenggaranya penyusunan LKS Matematika ini. 2) Drs. Mustafa, M.Pd., selaku Kepala Dinas Pendidikan Kota Langsa. 3) Hardani, S.Pd., selaku Ketua MGMP Matematika tingkat SMP Wilayah Timur Kota Langsa, 4) Intan Yuliani, S.Pd., selaku Sekretaris MGMP Matematika tingkat SMP Wilayah Timur Kota Langsa, 5) Muhammad Yusuf, S.Pd., selaku bendahara MGMP Matematika tingkat SMP Wilayah Timur Kota Langsa, 6) Yenny Suzana, M.Pd., selaku pembimbing dalam penyusunan dan penyelesaian LKS Matematika ini, 7) Segenap peserta sebagai Tim Penyusun LKS pada Workshop Pengembangan Karir Pendidik dan Tenaga Kependidikan (PTK) Pendidikan Dasar (Dikdas) MGMP Matematika Matriks tingkat SMP Wilayah Timur Kota Langsa tahun 2012, dan 8) Semua pihak yang telah membantu dalam penyelesaian Lembar Kerja Siswa (LKS) Matematika ini yang tidak dapat disebutkan satu persatu. Semoga LKS Matematika ini dapat memberi manfaat bagi siswa, guru, dosen, dan praktisi di bidang pendidikan, serta bermanfaat bagi masyarakat luas pada umumnya. Atas bantuan yang telah Bapak/Ibu berikan mendapat balasan yang setimpal dari Allah S.W.T. Amiin. Langsa, Juli 2012 Tim Penyusun

3 KATA PENGANTAR Puji syukur kami panjatkan kehadirat Allah SWT karena berkat rahmat dan hidayah- Nya, sehingga kami dapat menyelesaikan penulisan Lembar kerja Siswa (LKS) Matematika untuk SMP/MTs Kelas VIII Semester 1 yang merupakan salah satu produk hasil Workshop Pengembangan Karir Pendidik dan Tenaga Kependidikan (PTK) Pendidikan Dasar (Dikdas) MGMP Matematika Matriks tingkat SMP Wilayah Timur Kota Langsa tahun LKS Matematika ini merupakan wujud kerja Guru dalam mengembangkan karir guna menjadi Guru yang profesional. LKS Matematika ini disusun untuk menuntun siswa agar menemukan sendiri suatu konsep dalam matematika, dengan cara yang lebih mudah dipahami dan kontekstual. Dengan adanya LKS Matematika ini diharapkan siswa dapat berperan aktif dalam proses pembelajaran. Secara keseluruhan, LKS Matematika ini terdiri dari 5 BAB, dan masing-masing BAB terbagi menjadi beberapa kegiatan Pembelajaran. Kami menyadari bahwa dalam penyusunan LKS Matematika ini masih jauh dari kesempurnaan. Untuk itu, kritik dan saran demi perbaikan lebih lanjut sangat kami harapkan. Mudah-mudahan LKS matematika ini dapat memberi manfaat bagi siswa, guru, dan praktisi pendidikan. Langsa, Juli 2012 Tim Penyusun KATA PENGANTAR i

4

5 DAFTAR ISI o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran o Pembelajaran DAFTAR ISI ii

6

7 BAB 1 FAKTORISASI BENTUK ALJABAR Pembelajaran 1.1 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Melakukan operasi aljabar. Indikator = 1. Menjelaskan pengertian koefisien, variabel, konstanta, suku satu, suku dua dan suku tiga dalam variabel sama atau berbeda. 2. Menyederhanakan bentuk aljabar suku satu, suku dua dan suku banyak. Tujuan Pembelajaran = Siswa dapat menyederhanakan bentuk aljabar suku satu, suku dua dan suku banyak. Bentuk Aljabar Pada buku kelas VII telah dibahas tentang pengertian aljabar, koefisien, konstanta, variabel, suku dan faktor. 2a + 5 merupakan bentuk aljabar. Dari bentuk aljabar tersebut, 2 disebut... a disebut... 5 disebut... Perhatikan bentuk-bentuk aljabar berikut: 1) 3a disebut bentuk aljabar suku satu (suku tunggal) 2) 3k + 5 disebut bentuk aljabar suku dua (binom), yaitu: suku pertama 3k dan suku kedua 5 3) 6x 2 + 4xy - y disebut bentuk aljabar suku..., yaitu: suku pertama..., suku kedua... dan suku ketiga... 4) 7a 2 b - 6a 2-5a + 3b disebut bentuk aljabar suku..., yaitu:...,...,... dan... Jadi, suku merupakan kumpulan bilangan-bilangan yang dipisahkan oleh... Operasi Penjumlahan dan Pengurangan Perhatikan uraian berikut ini. Mutia memiliki 9 buku tulis dan 3 buku gambar. Jika buku tulis dinyatakan dengan x dan buku gambar dinyatakan dengan y maka banyaknya buku mutia adalah 9x+3y. Selanjutnya, jika Mutia diberi kakaknya 2 buku tulis dan 4 buku gambar maka banyaknya buku mutia sekarang adalah: 11x + 7y Hasil ini diperoleh dari (9x + 3y) + (2x + 4y). 9x + 3y dan 2x + 4y merupakan bentuk aljabar. Pada bentuk aljabar, suku-suku yang dapat dijumlahkan dan dikurangkan hanyalah suku-suku sejenis saja. Suku-suku sejenis adalah suku-suku dengan variabel dan pangkat variabel yang sama. BAB 1 FAKTORISASI BENTUK ALJABAR 1

8 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Langkah-langkah untuk menyederhanakan bentuk aljabar suku satu, suku dua, dan suku banyak yaitu: 1) Kelompokkan suku-suku sejenis 2) Jumlahkan atau kurangkan koefisien suku-suku yang sejenis tersebut. Sederhanakanlah bentuk aljabar berikut ini! 1) 2x + 3y + 3x y Penyelesaian : Kelompokkan suku-suku sejenis 2x + 3y + 3x y = 2x y = ( ) x + (3 1)... Jumlahkan atau kurangkan koefisien suku-suku yang sejenis tersebut, menjadi: 2x + 3y + 3x y = 5x +... y 2) 6a 2-2a 2 + 2a - 7a = (6 2)... + (... 7) a = 4a Selain dengan cara di atas, penjumlahan dan pengurangan pada bentuk aljabar dapat dihitung dengan metode bersusun ke bawah. 3) Jumlahkan 4x 2 5x + 4 dan 3x 2 + 2x 6, dengan metode bersusun : 4x 2 5x + 4 3x 2 + 2x ) Kurangkan 2p 5 dari 10p + 11 Penyelesaian: 10p + 11 (2p - 5) = 10p p + 5 =... 2p = ) Tentukan variabel dan koefisien dari masing-masing variabel dan banyak suku bentuk aljabar berikut: a) 3a 7b c) 3p 2 5pq + 3q b) 2x 2 y + 5xy d) 5y (y 2 + 3) LKS MATEMATIKA KELAS VIII SEMESTER 1

9 Memahami lebih baik daripada sekadar membaca 2) Sederhanakan bentuk aljabar berikut: a) 10a 7b + 3a + 2b b) 2p2 5q + 4p2 5q 3) a). Jumlahkanlah bentuk aljabar 3x 2 + 7xy - y dan 3x 2-2xy + 5y b) Jumlahkan dengan metode bersusun bentuk aljabar 4x + 2y 3z dan 2x 7y 6z c) Kurangkanlah: (8m + 4) dari (9m + 12) d) Kurangkanlah -2y 2 + 4y + 5 dari 10y 2 12y + 7 4) Arman mempunyai 5 buah robot dan 8 buah mobil-mobilan. Jika Arman diberi 2 buah robot oleh ibu dan 3 mobil-mobilannya ia berikan kepada Arif, berapa sisa robot dan mobil Arman! Nyatakan dalam bentuk aljabar. 5) Bu Winda membeli 4 kg tepung, 3 kg wortel dan 6 kg tomat. Karena terlalu lama disimpan 2kg tepung, 1 kg wortel dan 2 kg tomat ternyata busuk. Tentukan tepung, wortel, dan tomat yang tersisa! Nyatakan dalam bentuk aljabar. Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 1 FAKTORISASI BENTUK ALJABAR 3

10 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 1.2 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Melakukan operasi aljabar. Indikator = Menyelesaikan operasi perkalian dan pembagian dari suku satu dan suku dua Tujuan Pembelajaran = Siswa dapat menyelesaikan operasi perkalian dan pembagian pada bentuk aljabar Perkalian suku satu dengan suku dua Perkalian suku satu dengan suku dua dapat dilakukan dengan menggunakan sifat distributif berikut: a(x + y) = ax + ay a(x y) = ax ay Tentukanlah hasil perkalian 4 (2a + 3) Penyelesaian : 4 (2a + 3) = (4 x...) + (4 x...) = Perkalian suku dua dengan suku dua Perkalian suku dua dengan suku dua dapat diselesaikan dengan menggunakan 3 cara yaitu: o Cara 1 : Menggunakan kartu Adapun langkah langkah kegiatan perkalian suku dua dengan suku dua dengan menggunakan kartu adalah sebagai berikut: 1) Persiapkan dua jenis kartu dengan warna yang berbeda, misalkan kartu berwarna putih dan biru. 2) Kemudian guntinglah kartu berwarna tersebut dengan ukuran 6 x 6, 6 x 3 dan 3 x 3 sebanyak 20 lembar untuk masing masing kartu. 3) Untuk kartu putih : Kartu dengan ukuran 6 x 6 dimisalkan dengan x 2. Kartu dengan ukuran 6 x 3 dimisalkan dengan x. Kartu dengan ukuran 3 x 3 dimisalkan dengan 1. 4) Untuk kartu Biru : Kartu dengan ukuran 6 x 6 dimisalkan dengan -x 2. Kartu dengan ukuran 6 x 3 dimisalkan dengan x. Kartu dengan ukuran 3 x 3 dimisalkan dengan -1. dan x 2 x 1 -x 2 -x -1 Selesaikanlah : ( x + 3) ( x - 2 ) 4 LKS MATEMATIKA KELAS VIII SEMESTER 1

11 Memahami lebih baik daripada sekadar membaca Penyelesaian : (x + 3) (x - 2) x -2 x 3 Jadi, ( x + 3) ( x - 2) = x 2 + 3x =... + x -... o Cara 2: Menggunakan Sifat Distribusi Selesaikanlah (x + 3) (x - 2) Penyelesaian : ( x + 3) ( x - 2) = x (x - 2) +...(x - 2) = x = x Secara umum perkalian bentuk aljabar suku dua dengan suku dua dapat ditulis dengan menggunakan skema : = a( ) + b( ) = ac + ad Pembagian Bentuk Aljabar Pembagian dari dua atau lebih bentuk aljabar dalam bentuk yang sederhana adalah jika bentukbentuk aljabar tersebut memiliki faktor-faktor yang sama. 1) 2) 1) Sederhanakanlah bentuk perkalian suku satu dengan suku dua pada bentuk aljabar berikut ini: a) 3 (a + 2) b) 2x (x 5) BAB 1 FAKTORISASI BENTUK ALJABAR 5

12 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 2) Sederhanakanlah bentuk perkalian suku dua dengan suku dua berikut dengan 3 cara yaitu: cara skema, tabel dan kartu. a) ( x + 1 ) ( x + 4 ) b) ( x 3 ) ( x 2 ) c) ( 2x + 3 ) ( x 1 ) ) Sederhanakanlah: a) 10ab : 2b b) 64x 2 y 2 : 4xy Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 6 LKS MATEMATIKA KELAS VIII SEMESTER 1

13 Memahami lebih baik daripada sekadar membaca Pembelajaran 1.3 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Melakukan operasi aljabar. Indikator = Menyelesaikan operasi pangkat dari suku satu dan suku dua Tujuan Pembelajaran = Siswa dapat menyelesaikan operasi pangkat dari suku satu dan suku dua Perpangkatan suku satu Pangkat dari suatu bentuk aljabar adalah perkalian bentuk aljabar dengan dirinya sendiri, sebanyak pangkat yang tertera pada bentuk aljabar tersebut. Dengan kata lain pangkat merupakan perkalian berulang. 2 2 = 2 x 2 a 3 =... x... x... (3a) 2 = (3a) x... (3a + 5) 2 = (3a + 5) ( ) (a + b) 2 = ( ) ( ) (p + q) 3 = (...) (...) (...) Bentuk aljabar di atas disebut perpangkatan suku dua. Tuliskan contoh lain dari perpangkatan suku dua: Perpangkatan suku dua Dari contoh di atas, tentukanlah: (a + b) 2 = (a + b) (a + b) = a 2 + ab + ab + b 2 = a (a + b) 3 = (a + b) (a + b) 2 = (a + b) (a 2 + 2ab + b 2 ) = a a 2 b + ab 2 + a 2 b b 3 = a Jika dilihat dari kegiatan diatas dan seterusnya maka akan diperoleh pola dari koefisien-koefisien (a + b) n yang disebut koefisien binomial. Koefisien dari perpangkatan suku dua seperti pada contoh di atas dapat direpresentasikan dalam bilangan segitiga pascal, yaitu sebagai berikut: BAB 1 FAKTORISASI BENTUK ALJABAR 7

14 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 1 (a + b) 0 = (a + b) 1 = a + b (a + b) 2 = 1a 2 + 2ab + 1b (a + b) 3 = 1a 3 + 3a 2 b + 3ab 2 + 1b (a + b) 4 = 1a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + 1b 4... dst Selesaikanlah perpangkatan suku dua berikut ini: 1) (2a + 4) 2 = (2a) 2 + 2(...)(...) + (...) 2 = 4a ) (p 2q) 3 = 1p 3 + 3(p) 2 (...) + 3p (...) 2 + 1(-2q) 3 Latihan = p3 + (-6p 2 q) (-8q 3 ) = p 2 q + 12pq ) Tentukan hasil pemangkatan bentuk aljabar berikut: a) (4x) 2 b) (-5p 2 q) 3 2) Tentukan hasil dari: a) ( 2 q + 3 ) 2 b ) (a- 2 b ) 2 b) ( x + 2 ) 3 8 LKS MATEMATIKA KELAS VIII SEMESTER 1

15 Memahami lebih baik daripada sekadar membaca 3) Bu Asni mempunyai kebun berbentuk persegi, dengan panjang sisinya (X+5). a) Nyatakan luas kebun Bu Asni! b) Apakah luas kebun Bu Asni merupakan bentuk perpangkatan? c) Jika merupakan bentuk perpangkatan, perpangkatan suku berapakah luas kebun Bu Asni? d) Nyatakan luas kebun Bu Asni dengan menggunakan operasi penjumlahan dan pengurangan. Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 1 FAKTORISASI BENTUK ALJABAR 9

16 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 1.4 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Melakukan operasi aljabar. Indikator = a). Memfaktorkan suku bentuk aljabar sampai dengan suku tiga b). Pemfaktoran selisih dua kuadrat Tujuan Pembelajaran = Siswa dapat memfaktorkan Faktor-faktor Suku Aljabar Berapakah faktor persekutuan dari 6 dan 8? penyelesaian: Faktor- faktor 6 : 1, 2,...,... Faktor- faktor 8 : 1, 2,...,... Faktor persekutuan dari 6 dan 8 adalah 1 dan 2. Oleh karena itu 1 < 2 maka 2 dikatakan sebagai faktor persekutuan terbesar (FPB) dari 6 dan 8. Faktorisasi Bentuk ax ± b Cara untuk memfaktorkan bentuk aljabar ax ± b adalah sebagai berikut : 1) Carilah faktor persekutuan setiap suku 2) Bagilah bentuk aljabar tersebut dengan faktor persekutuan terbesar dari setiap sukunya. Faktorkanlah bentuk aljabar 6b + 8 Penyelesaian : carilah faktor persekutuan dari 6b dan 8, kamu telah mengetahui bahwa FPB dari 6 dan 8 adalah 2, kemudian bagilah setiap suku dengan FPB tersebut: dan Dengan demikian, pemfaktoran dari 6b+8 adalah 2(3b + 4) atau 6b+8=2(3b + 4). Faktorisasi bentuk selisih dua kuadrat Bentuk x 2 y 2 dinamakan bentuk selisih dua kuadrat. Faktorisasi bentuk x 2 y 2 adalah sebagai berikut: x 2 y 2 = ( x + y ) ( x y ) untuk membuktikan persamaan diatas, coba kamu perhatikan uraian berikut : ( x + y ) ( x y ) = ( x + y ) x + ( x + y ) ( -y ) = x xy... = x 2 y 2 10 LKS MATEMATIKA KELAS VIII SEMESTER 1

17 Memahami lebih baik daripada sekadar membaca Faktorkanlah: 4p 2 25 Penyelesaian: 4p 2 25 = (2p) 2 (5) 2 = (2p +...) (... 5) 1) Faktorkanlah bentuk-bentuk aljabar suku dua berikut! a) 8a 2 b) x x 2) Faktorkanlah bentuk-bentuk aljabar suku tiga berikut! a) 10 m mn 35 m b) x x ) Faktorkan selisih dan kuadrat berikut! b) 25x 2 16y 2 b) 16c 2 9a 2 c) 4x 2 9y 2 Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 1 FAKTORISASI BENTUK ALJABAR 11

18 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 1.5 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Melakukan operasi aljabar. Indikator = a). Pemfaktoran bentuk kuadrat b). Pemfaktoran bentuk ax + bx + c jika a 1 Tujuan Pembelajaran = Siswa dapat memfaktorkan Pemfaktoran bentuk kuadrat o Pemfaktoran bentuk x 2 + 2xy + y 2 dan x 2-2xy + y 2 Pada bab lalu kamu sudah mempelajari perkalian dua suku seperti; (a + b) (a + b) = a(a + b) + b(a + b) = a 2 + ab + ab + b 2 = a 2 + 2ab + b 2 Sekarang jika dibalik, didapat: a 2 + 2ab + b 2 = (a + b)(a + b) a 2 + 2ab + b 2 = (a + b) 2 Bentuk diatas disebut bentuk... sempurna. o Pemfaktoran tiga suku 1) faktorkan a a +25 Penyelesaian: a a +25 = (a) 2 + 2a(5) = (a + 5) 2 (x + y) 2 = (x + y) (x + y) = x (x + y) + y (x + y) = x xy +... = xy + y 2 Perkalian yang diuraikan diatas disebut pengkuadratan suku dua dan hasilnya x 2 + 2xy + y 2 disebut suku tiga bentuk kuadrat sempurna, yang mana bila difaktorkan dan disederhanakan maka kembali kebentuk semula, yakni suku dua yang dikuadratkan (x + y) 2 2) Faktorkanlah x 2 + 6x + 9 Penyelesaian: karena ( x 6) = 3 2, maka x 2 + 6x + 9 = x 2 + 6x +3 2 = (x + 3) (x + 3) = (x +...) 2 atau 12 LKS MATEMATIKA KELAS VIII SEMESTER 1

19 Memahami lebih baik daripada sekadar membaca menggunakan hukum distributif, diperoleh: x 2 + 6x + 9 = x 2 + 2(3x) = x +... = x (x +...) +3 (x +...) = (x +...) (x +...) = (x + 3) 2 Pemfaktoran bentuk ax 2 + bx + c o Memfaktorkan bentuk ax 2 + bx + c jika a = 1 Faktorisasi bentuk ax 2 + bx + c adalah (x + p) (x + q) dengan b = p + q dan c = p x q Coba kamu perhatikan bentuk aljabar berikut: (x + 2) (x + 5) = (x + 2) x + (x +2) 5 = x = x + 10 Koefisien suku kedua pada bentuk aljabar diatas yaitu 7 merupakan hasil penjumlahan dua konstanta, yaitu: 2 dan 5. Adapun suku ketiga yaitu: 10 merupakan hasil perkalian dua konstanta yaitu: 10 = 2 x 5 Faktorkanlah bentuk x 2 + 8x + 15 Penyelesaian: x 2 + 8x + 15 = x 2 + (p + q)x + pq = (x + p) (x + q) Tentukan nilai p dan q terlebih dahulu: p + q = 8 p x q = 15 sehingga diperoleh nilai p = 3 dan q = 5 (karena = 8 dan 3x5 =...) Jadi, x 2 + 8x + 15 = (x +...) ( ) o Memfaktorkan bentuk ax 2 + bx + c, jika a 1 Setelah kamu mempelajari pemfaktoran bentuk ax 2 + bx + c untuk a = 1, sekarang muncul pertanyaan bagaimana memfaktorkan bentuk ax 2 + bx + c, jika a 1. Untuk menjawab pertanyaan tersebut, amatilah contoh soal dibawah ini. Faktorkanlah 3x x + 10 = 0 Penyelesaian: 3x x + 10 = 0 a = 3, b = 13, c = 10 p + q = 13 p x q = a x c = 3 x 10 p = 3 dan q =10 dengan menggunakan hukum distributif, diperoleh: 3x x + 10 = 3x 2 + 3x +10x +10 = 3x ( ) +... (x +...) = ( ) (x +...) = ( ) (3x +...) BAB 1 FAKTORISASI BENTUK ALJABAR 13

20 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 1) Tentukanlah faktor dari bentuk aljabar berikut ini! a) x 2 + 7x + 12 b) x 2-6x + 8 b) x 2-8x 9 d) x 2 - x 2 2) Tentukanlah faktor dari bentuk aljabar berikut ini! a) 2x 2 + 5x + 3 b) 6a2 + 7a + 2 Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 14 LKS MATEMATIKA KELAS VIII SEMESTER 1

21 Memahami lebih baik daripada sekadar membaca Pembelajaran 1.6 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Melakukan operasi aljabar. Indikator = a). Menyelesaikan operasi penjumlahan dan pengurangan bentuk pecahan dengan penyebut suku satu dan suku dua b). Menyelesaikan operasi perkalian dan pembagian bentuk pecahan dengan penyebut suku satu dan suku dua Tujuan Pembelajaran = Siswa dapat menyelesaikan operasi hitung bentuk pecahan aljabar dengan penyebut suku satu dan suku dua Penjumlahan dan pengurangan bentuk pecahan aljabar Pada penjumlahan dan pengurangan pecahan, penyebutnya harus sama. Jika penyebut-penyebutnya berbeda harus disamakan dahulu dengan cara mencari Kelipatan Persekuuan ter-kecil (KPK) dari penyebut-penyebutnya. a b c d ad bc bd a b c d ad bc bd 1) Sederhanakan penjumlahan bilangan pecahan berikut! Penyelesaian: ) Sederhanakan penjumlahan dan pengurangan bilangan pecahan berikut! 5 2 3x 5x Penyelesaian: x 5x 15x 15x 15x KPK dari 3x dan 5x adalah 15x 3) Sederhanakan penjumlahan dan pengurangan bilangan pecahan berikut! 5 2 3x 5x Penyelesaian: x x ( x 3) KPK dari 2 dan 3 adalah x 2x x... 6 BAB 1 FAKTORISASI BENTUK ALJABAR 15

22 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Perkalian dan pembagian bentuk pecahan aljabar o Perkalian bentuk pecahan aljabar Misalnya, bentuk pecahan aljabar a/b dan c/d dengan b 0 dan d 0 a c... dengan b 0 dan d 0 b d bd Coba kamu kerjakan: 1) 2) 3 7 = =... a a 2 3 Selesaikan perkalian bentuk pecahan aljabar: p q Penyelesaian: 2 3 p q q o pembagian bentuk pecahan aljabar Misalnya, bentuk pecahan aljabar a/b dan c/d dengan b 0, c 0 dan d 0 a c a dengan b 0 dan d 0 b d... c... Coba kamu kerjakan: 3 2 1) ) x y Selesaikan perkalian bentuk pecahan aljabar Penyelesaian: 3x 2 3x... 4 x x... 3x 2 4 x 16 LKS MATEMATIKA KELAS VIII SEMESTER 1

23 Memahami lebih baik daripada sekadar membaca Selesaikan penjumlahan dan pengurangan bilangan pecahan berikut! a) 1 1 e) a 2a 5a 7b 2 5 b) x 2 y x f) 4 5 3b 7ab c) 2a 5 a 7 g) 6 3 3p 5 2 pq 2 2q 3q d) a 1 2 a 3a 2 5a 1) Tentukan hasil perkalian bentuk pecahan aljabar berikut: a) a 6b 5b b) 7b 3pq 4 pr 2 2r 9q 2) Tentukan hasil pembagian bentuk pecahan aljabar berikut. a) 2a 3 b) m m 3 7b 2b m 1 m 1 Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 1 FAKTORISASI BENTUK ALJABAR 17

24 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 18 LKS MATEMATIKA KELAS VIII SEMESTER 1 Pembelajaran 1.7 Menyelesaikan operasi pangkat pada bentuk pecahan aljabar Sederhanakan bentuk pecahan aljabar b b b a Penyelesaian: b a b a b a b a Menyelesaikan operasi pangkat pada bentuk pecahan aljabar Pecahan aljabar dapat disederhanakan dengan mengalikan pembilang dan penyebut dari pecahan itu dengan suatu bilangan yang sama yaitu, KPK dari masing- masing penyebutnya. Sederhanakan pecahan aljabar berikut Penyelesaian: ) Sederhanakanlah bentuk pecahan aljabar berikut! a) b a b a Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Melakukan operasi aljabar. Indikator = a). Menyelesaikan operasi pangkat bentuk pecahan aljabar b). Menyederhanakan bentuk pecahan aljabar Tujuan Pembelajaran = Siswa dapat menyelesaikan operasi hitung bentuk pecahan aljabar dengan penyebut suku satu dan suku dua

25 Memahami lebih baik daripada sekadar membaca b) 3 2 a 2a 2 3b b 3 c) 2x 3y 10 4 x y 6 2 3x y 5 2 2) Sederhanakanlah pecahan bersusun berikut! a) c) 2 1 x x 2 2 x b) 1 1 x 1 1 x Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 1 FAKTORISASI BENTUK ALJABAR 19

26 BAB 2 RELASI DAN FUNGSI Pembelajaran 2.1 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Memahami Relasi dan Fungsi Indikator = 1. Menjelaskan pengertian relasi dan fungsi 2. Menyatakan masalah sehari-hari yang berkaitan dengan relasi dan fungsi ke dalam diagram panah, himpunan pasangan berurutan dan diagram Cartesius Tujuan Pembelajaran = 1. Siswa dapat menjelaskan pengertian relasi dan fungsi 2. Siswa dapat menyatakan masalah sehari-hari yang berkaitan dengan relasi dan fungsi kedalam diagram panah,himpunan pasangan berurutan dan diagram cartesisus. Relasi Perhatikan permasalahan berikut! Bu Ani mempunyai empat orang anak yaitu Rina, Siska Dedi dan Tomi. Masing masing anak mempunyai makanan kegemaran yang berbeda. Rina gemar makan bakso, Siska gemar makan sate dan bakso, sedangkan Dedi dan Toni gemar makan mie goreng. Jika anak anak bu Ani di kelompokkan dalam suatu himpunan A, maka kita dapat menuliskannya sebagai berikut: A = {...,...,...,...} jenis makanan yang digemari anak-anak bu Ani dikelompokkan dalam suatu himpunan B, maka kita dapat menuliskannya sebagai berikut: B = {...,...,...} himpunan anak-anak buk ani mempunyai hubungan dengan himpunan jenis makanan yaitu kegemaran Dari permasalahan di atas, maka kita dapat menyimpulkan bahwa: relasi dari himpunan A ke himpunan B adalah : hubungan Menyatakan Relasi Relasi yang menghubungkan himpunan yang satu dengan himpunan lainnya dapat disajikan dalam beberapa cara, yaitu diagram panah, diagram Cartesius, dan himpunan pasangan berurutan. 20 LKS MATEMATIKA KELAS VIII SEMESTER 1

27 Belajar adalah investasi berharga untuk masa depan o Diagram panah Apabila permasalahan Bu Ani seperti dinyatakan dengan diagram panah, maka kita dapat merepresentasikan sebagai berikut: o Himpunan Pasangan Berurutan Apabila diagram panah pada nomor (1) dinyatakan dengan pasangan berurutan maka dapat ditulis sebagai berikut: Himpunan pasangan berurutan = {(Rina,...), (..., bakso), (...,...), (...,...), (...,...)} o Diagram Cartesius Dari himpunan pasangan berurutan pada no (2) apabila dinyatakan dalam diagram Cartesius, maka grafiknya dapat digambar disamping. 1) Tuliskan sebuah contoh relasi yang terjadi dalam kehidupan sehari-hari dan nyatakan dalam diagram panah, himpunan pasangan berurutan dan diagram Cartesius: 2) Himpunan P = {6, 10, 14, 22, 26} dan Q = {7, 11, 13, 3, 5}, tentukan: a) Relasi yang mungkin dari himpunan P ke himpunan Q b) Nyatakan relasi tersebut dalam diagram panah, diagram Cartesius, dan himpunan pasangan berurutan! BAB 2 RELASI DAN FUNGSI 21

28 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 3) Perhatikan diagram Cartesius berikut! Ceritakanlah dengan bahasa kamu tentang diagram Cartesius disamping! ) Relasi dari A = {a, e, i, o, u} ke B = {b, c, d, f, g, h} dinyatakan sebagai R = {(a,b), (a,c), (e,f), (i,d ), (o,g), (o,h), (u,h)}. Nyatakan relasi tersebut ke dalam bentuk diagram panah dan diagram Cartesius 5) Tentukan relasi yang memenuhi dari diagram tersebut, kemudian nyatakan dalam diagram panah dan himpunan pasangan berurutan. Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 22 LKS MATEMATIKA KELAS VIII SEMESTER 1

29 Belajar adalah investasi berharga untuk masa depan Pembelajaran 2.2 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Memahami Relasi dan Fungsi Indikator = 1. Menjelaskan pengertian pemetaan/fungsi 2. Menyatakan masalah sehari-hari yang berkaitan dengan pemetaan/fungsi ke dalam diagram panah, himpunan pasangan berurutan dan diagram Cartesius 3. Menyebutkan domain, kodomin dan range suatu fungsi Tujuan Pembelajaran = 1. Siswa dapat menjelaskan pengertian pemetaan/fungsi 2. Siswa dapat menyatakan masalah sehari-hari yang berkaitan dengan pemetaan/fungsi kedalam diagram panah, himpunan pasangan berurutan dan diagram Cartesius. 3. Siswa dapat Menyebutkan domain, kodomin dan range suatu fungsi Pengertian Fungsi Kamu sudah mengetahui atau memahami relasi, untuk memahami pengertian fungsi atau pemetaan. Perhatikan beberapa contoh relasi berikut. dari contoh contoh relasi diatas, Gambar (1) dan Gambar (2) merupakan fungsi atau pemetaan. Gambar (2) dan Gambar (4) bukan merupakan fungsi. Coba kamu jelaskan perbedaan relasi dan fungsi: Relasi adalah : Fungsi adalah : Menyatakan fungsi Fungsi dapat dinyatakan dalam: diagram panah, himpunan pasangan berurutan, dan diagram Cartesius BAB 2 RELASI DAN FUNGSI 23

30 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh o Diagram panah Pada relasi diatas: himpunan A={...,...,... } disebut daerah asal (domain) himpunan B={...,...,... } disebut daerah kawan (kodomain) Sedangkan range atau daerah hasil adalah {...,...,... } o Himpunan Pasangan Berurutan Diagram panah pada nomor (1) dinyatakan dengan pasangan berurutan maka dapat ditulis sebagai: o Diagram Cartesius Himpunan pasangan berurutan pada no (2) apabila dinyatakan dalam diagram Cartesius, maka grafiknya dapat digambar disamping: 1) Perhatikan gambar (i), (ii), dan (iii), manakah yang merupakan fungsi (pemetaan) dan bukan fungsi, serta berikan alasannya! Penyelesaian i) ii) iii) 2) Bentuklah kelompok yang terdiri atas 2 orang, Cari dan amati kejadian-kejadian di lingkungan sekitarmu. Tulislah hal-hal yang termasuk fungsi sebanyak 2 buah. Lalu sajikan hasil temuanmu dalam diagram panah, diagram Cartesius, dan himpunan pasangan berurutan. 24 LKS MATEMATIKA KELAS VIII SEMESTER 1

31 Belajar adalah investasi berharga untuk masa depan 3) Perhatikan diagram panah pada Gambar disamping. Tentukanlah: (i) domain; (ii) kodomain; (iii) range; Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 2 RELASI DAN FUNGSI 25

32 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 2.3 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Memahami Relasi dan Fungsi Indikator = Menentukan banyaknya pemetaan dua himpunan A dan B. Tujuan Pembelajaran = Siswa dapat menetukan banyaknya pemetaan dua himpunan A dan B Untuk menentukan banyaknya pemetaan yang mungkin dari dua himpunan, kerjakan kegiatan berikut: 1) Jika himpunan A = {a,b} maka n(a) = 2 2) Misalkan A = {a,b} maka n(a) = B = {p,q} maka n(b) = Himpunan B = {p} maka n(b)= 1 carilah banyaknya pemetaan yang mungkin terjadi dari A ke B. n(a)=2 dan n(b)=1 Buat diagram panah pemetaan yang mungkin dari A ke B Banyak pemetaan dari himpunan A ke himpunan B yang mungkin terjadi = 1 cara. banyak pemetaan dari himpunan A ke himpunan B yang mungkin terjadi =... 3) Misalkan A = {a,b} maka n(a) = B = {p,q, r} maka n(b) = Buat diagram panah pemetaan yang mungkin dari A ke B banyak pemetaan dari himpunan A ke himpunan B yang mungkin terjadi =... 4) Misalkan A = {a,b,c} maka n(a) = B = {p} maka n(b) = 26 LKS MATEMATIKA KELAS VIII SEMESTER 1

33 Belajar adalah investasi berharga untuk masa depan Buat diagram panah pemetaan yang mungkin dari A ke B banyak pemetaan dari himpunan A ke himpunan B yang mungkin terjadi =... dari hasil diatas, isilah tabel berikut dan analisalah untuk mendapatkan nilai yang lain! n(a) n(b) Banyak pemetaan dari A ke B Kuadrat k l Berdasarkan tabel di atas dapat di simpulkan bahwa: jika n(a) = a dan n(b) = b maka banyak semua pemetaan yang mungkin dari A ke B adalah... 1) Diketahui himpunan A={a,b,c,d,e} dan himpunan B={p, q}. Berapakah banyak pemetaan yang terjadi dari himpunan A ke himpunan B tersebut? 2) dari soal nomor (1) tentukan pula banyaknya pemetaan darihimpunan B ke himpunan A. 3) P={huruf vokal} dan Q={bilangan asli kurang dari 4}.tentukan banyaknya pemetaan yang mungkin dari himpunan P ke himpunan Q! Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 2 RELASI DAN FUNGSI 27

34 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 2.4 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Memahami Relasi dan Fungsi. Indikator = 1. Mempresentasikan suatu fungsi dalam notasi. 2. Menghitung nilai fungsi. Tujuan Pembelajaran = 1. Siswa dapat mempresentasikan suatu fungsi dalam notasi. 2. Siswa dapat menghitung nilai fungsi. Notasi Fungsi Fungsi dinotasikan dengan huruf kecil, seperti f, g, atau h. Pada fungsi f memetakan x anggota himpunan A ke y anggota himpunan B, dinotasikan dengan f:x f (x) Perhatikan gambar berikut. Pada Gambar disamping menunjukkan: fungsi himpunan A ke himpunan B menurut aturan f :x 2x + 1. x merupakan anggota domain f. Fungsi f :x... berarti fungsi f memetakan x ke... Oleh karena itu, bayangan x oleh fungsi f adalah... Jadi, dapat dikatakan bahwa f (x) =... adalah rumus untuk fungsi f. Jika fungsi f :x 2x+1 dengan x anggota domain f, rumus fungsi f adalah: f (x) =... 1) Fungsi f : x 4x+1 rumus fungsinya adalah... 2) Fungsi g : x rumus fungsinya adalah... 3) Fungsi h : x 2x 2-1 rumus fungsinya adalah LKS MATEMATIKA KELAS VIII SEMESTER 1

35 Belajar adalah investasi berharga untuk masa depan Menghitung Fungsi Perhatikan contoh berikut ini. Y= f(x) = x + 2 x adalah variabel bebas dan y adalah variabel terikat. Pada materi yang akan kamu terima sekarang adalah menghitung nilai fungsi. Menghitung nilai fungsi berarti mensubstitusikan nilai variabel bebas ke dalam rumus fungsi sehingga diperoleh nilai variabel bergantungnya. Perhatikan soal berikut dan cobalah diskusikan cara menyelesaikannya dengan temanmu. 1) Pemetaan f:g R ditentukan oleh f(x)=x +2 dengan G={-1,0,1,2,3,4} dan R adalah himpunan bilangan real. maka daerah hasil dari f adalah... Penyelesaian: f(x) = x + 2 Substitusikan setiap anggota domain G ke rumus fungsi f(x) didapat: f(-1) = (...) + 2 f (2) =... =... f(0) = (...) +... f (3) =... =... f (1) =... f (4) =... Daerah hasil dari f adalah {... } Bayangan -1 oleh K adalah... 2) Jika f(x) = -3 maka nilai x adalah... Penyelesaian: f(x) = 3 x + 2 = -3 x =... 3) Fungsi f pada R ditentukan oleh formula f(x) = ax + b dan diketahui f(4) = 6 dan f(2) = -2. Tentukan bentuk fungsi f. Penyelesaian: f(x) = ax + b f(4) = 6 a (...) + b = 6 f(2) = -2 a (...) + b = -2 (-) = 6... = =... Substitusikan a =... Ke persamaan 2a + b = -2 maka akan diperoleh: 2 (...) + b = -2 b =... Karena a =... dan b =... BAB 2 RELASI DAN FUNGSI 29

36 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Jadi fungsi f adalah f(x) = ax + b = Suatu pemetaan K ditentukan oleh K : x 3x 1 dengan x anggota bilangan real. Tentukan: a) Bayangan 2 oleh K b) k untuk x = -4 c) r sehingga k(r) = 7 Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 30 LKS MATEMATIKA KELAS VIII SEMESTER 1

37 Belajar adalah investasi berharga untuk masa depan Pembelajaran 2.5 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Memahami Relasi dan Fungsi Indikator = Menentukan bentuk fungsi jika nilai dan data fungsi diketahui Tujuan Pembelajaran = Siswa dapat menentukan bentuk fungsi jika nilai dan data fungsi diketahui. Suatu fungsi dapat ditentukan rumusnya jika nilai data diketahui. Bagaimanakah caranya? Untuk menjawabnya, pelajarilah contoh soal berikut. Fungsi h pada himpunan bilangan Real ditentukan oleh rumus h(x) = a x + b, dengan a dan b bilangan bulat. Jika h ( 2) = 4 dan h (1) = 5, tentukan: a) nilai a dan b, b) rumus fungsi tersebut. Penyelesaian: h(x) = ax + b a) Oleh karena h( 2) = 4,maka h( 2) = a (...) + b = 4...a + b = persamaan (1) h(1) = 5 maka h(1) = a (...) + b = b = 5 Substitusikan persamaan (2) ke persamaan (1), diperoleh:...a + b = 4...a + (...) = 4...a + 5 a = 4 3a + 5 = 4 3a = 9 a = 3 Substitusikan nilai a =3 ke persamaan (2), diperoleh : b = 5 a b = 5... b =... b = persamaan (2) Jadi, nilai a sama dengan 3 dan nilai b sama dengan... b) Oleh karena nilai a = 3 dan nilai b =... rumus fungsinya adalah h(x) =... x +... BAB 2 RELASI DAN FUNGSI 31

38 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 1) Fungsi f ditentukan oleh f(x) = ax + b. Jika f(2) = 12 dan f( 3) = 23, tentukanlah: a) nilai a dan b, b) rumus fungsi tersebut. 2) Diketahui R(x) = ax + b, jika R(-2) = -4 dan R(-6) = 12 tulislah bentuk fungsi R. Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 32 LKS MATEMATIKA KELAS VIII SEMESTER 1

39 Belajar adalah investasi berharga untuk masa depan Pembelajaran 2.6 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus. Kompetensi Dasar = Membuat sketsa grafik fungsi aljabar sederhana pada sistem koordinat Cartesius Indikator = 1. Menentukan koordinat suatu titik pada koodinat Cartesius 2. Membuat gambar grafik pada koordinat coordinat Cartesius dari persamaan yang ditentukan Tujuan Pembelajaran = 1. Siswa dapat menggambar titik coordinat Cartesius dan menentukan titik koordinat pada koordinat Cartesius 2. Membuat gambar grafik pada koordinat coordinat Cartesius dari persamaan yang ditentukan Menggambar grafik fungsi Sebelum kamu membuat grafik fungsi pada kooradinat Cartesius, terlebih dahulu kamu memahami: 1) unsur unsur yang ada pada koordinat Cartesius 2) Menggambarkan titik koordinat Cartesius 1) Jawablah pertanyaan dibawah ini. a) Dari gambar disamping, garis horizontal (mendatar) disebut dengan sumbu... dan garis tegak (...) disebut sumbu Y b) Sumbu mendatar (... disebut absis Sumbu tegak (y) disebut..., sedangkan Pasangan absis dan ordinat (...) disebut koordinat c) Perhatikan koordinat titik P merupakan pasangan 3 dan 4 ditulis (, ), 3 disebut dan 4 disebut d) Koordinat titik A (, ), dan koordinat titik B (, ) 2) Diketahui koordinat titik P (3,4), Q (-3,4) dan titik R (2,-3), gambarkanlah titik tersebut pada koordinat Cartesius. BAB 2 RELASI DAN FUNGSI 33

40 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 3) Diketahui suatu fungsi f(x) = 2x + 1 dimana x bilangan Real, Gambar grafik fungsi tersebut. Penyelesaian: Untuk mengambar grafik grafik fungsi, tentukan daerah asal misal {1,2,3,4, dan 5}, Langkah 1: Tentukan titik koordinat. (dapat disajikan bentuk tebel) X dalam 2x (x,y).. (3,7).. Langkah 2: Gambarkan titik koordinat pada gambar disamping Langkah 3: Hubungkan titik pada koordinat Cartesius pada langkah 2, untuk memperoleh grafiknya 4) Apabila suatu fungsi f yang dirumuskan sebagai f(x) = 2x 3 dengan daerah asal A={-2, -1, 0, 1, 2}. a) Tentukanlah dareah hasil atau range dari fungsi f(x) = 2x 3 b) Tentukanlah letak titik-titik tersebut pada koordinat Cartesius. c) Gambarlah suatu garis yang melalui titik-titik tersebut. Penyelesaian: a) Daerah hasil atau range dari f(x) = 2x 3 adalah f(-2) = 2(...) 3 =... f(-1) =... f(0) =... f(1) =... f(2) =... Daerah hasil atau range = (...,...,...) nilai fungsi yang diperoleh dari f(x) = 2x 3 dapat disajikan pada tabel berikut ini: x x (x, y) (-2,...) (...,...) (0, -3) (...,...) (...,...) b) Letak titik-titik pada poin (a) dapat digambarkan pada koordinat Cartesius berikut ini: 34 LKS MATEMATIKA KELAS VIII SEMESTER 1

41 Belajar adalah investasi berharga untuk masa depan c) Untuk menggambar garis dari fungsi f(x) = 2x 3 yaitu dengan menghubungkan titik-titik yang diperoleh pada poin (b) e) Apabila suatu fungsi g : x 3x + 2 dengan daerah asal A = {x1 x 5, x bilangan real}. a) Tentukanlah dareah hasil atau range dari fungsi g tersebut. b) Tentukanlah letak titik-titik tersebut pada koordinat Cartesius. c) Gambarlah suatu garis yang melalui titik-titik tersebut. Penyelesaian: a) Daerah hasil atau range dari g adalah g(1) =... g(2) =... g(3) =... g(4) =... g(5) =... nilai fungsi yang diperoleh dari g(x) = 3x + 2 dapat disajikan pada tabel berikut ini: x (x, y) (...,...) (...,...) (...,...) (...,...) (...,...) b) Letak titik-titik pada poin (a) dapat digambarkan pada koordinat Cartesius berikut ini: c) Untuk menggambar garis dari fungsi f(x) = 2x 3 yaitu dengan menghubungkan titik-titik yang diperoleh pada poin (b) BAB 2 RELASI DAN FUNGSI 35

42 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 1) Apabila suatu fungsi f yang dirumuskan sebagai f(x)=3x 2 dengan daerah asal A={-2, -1, 0, 1, 2}. a) Tentukanlah dareah hasil atau range dari fungsi f(x) = 3x 2 b) Tentukanlah letak titik-titik tersebut pada koordinat Cartesius. c) Gambarlah suatu garis yang melalui titik-titik tersebut. 2) Diketahui suatu fungsi g dengan rumus g(x) = -5x + 1 dengan daerah asal A = {xl-5 x 5, x bilangan real}. a) Tentukan daerah hasil fungsi g. b) Gambarlah grafik fungsi g pada koordinat Cartesius. c) Berupa apakah grafik fungsi g? 3) Diketahui suatu fungsi f dengan daerah asal A = {-2, 2, 5, 7} dengan rumus fungsi f(x)=2x+3 a) Tentukan f(-2), f(2), f(5) dan f(7). Kesimpulan apa yang dapat kamu peroleh? b) Buatlah tabel fungsi di atas. c) Tentukan daerah hasilnya. d) Gambarlah grafik fungsi dalam koordinat Cartesius. 36 LKS MATEMATIKA KELAS VIII SEMESTER 1

43 Belajar adalah investasi berharga untuk masa depan 4) Diketahui suatu fungsi g dengan daerah asal P = { x l x 3, x bilangan real} dengan rumus fungsi g(x) = 3x + 4. a) Buatlah tabel fungsi di atas dengan mengambil beberapa nilai x. b) Tentukan daerah hasilnya. c) Gambarlah grafik fungsi dalam koordinat Cartesius ) Perhatikan grafik fungsi f pada koordinat Cartesius berikut. a) Tentukan daerah hasil fungsi f. b) Tentukan nilai fungsi f untuk x = 0, x = 1, x = 2, x = 3 dan x = 4. c) Pola apakah yang kamu peroleh? d) Tentukan rumus fungsi f berdasarkan (b)? BAB 2 RELASI DAN FUNGSI 37

44 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 6) Diketahui suatu fungsi f dengan rumus f(x)=3x 1 dengan daerah asal k {-3, -1, 1, 3, 5, 7} a) Buatlah tabel nilai fungsi f. b) Tentukan daerah hasil fungsi f. c) Gambarlah grafik fungsi tersebut. Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 38 LKS MATEMATIKA KELAS VIII SEMESTER 1

45 BAB 3 PERSAMAAN GARIS LURUS Pembelajaran 3.1 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar = Menentukan gradien, persamaan dan grafik garis lurus. Indikator = 1. Mengenal persamaan garis lurus dalam membangun bentuk dan variabel. 2. Menggambar grafik pada bidang Cartesius Tujuan Pembelajaran = 1. Siswa mengerti persamaan garis lurus dalam membangun bentuk dan variabel. 2. Siswa dapat menggambar grafik pada bidang Cartesius Sistem koordinat Cartesius Pada materi sebelumnya, kamu telah mempelajari sistem Cartesius, untuk mengingat kembali perhatikan gambar di bawah ini. Gambar diatas merupakan denah perkemahan pramuka dan daerah yang harus mereka jelajahi untuk kegiatan mencari jejak. Dapatkah kamu melengkapi cerita berikut ini? Para kelompok pramuka tersebut terbagi menjadi empat kelompok. Masing-masing kelompok menempati satu tenda, yaitu tenda 1 pada koordinat (2,0), tenda 2 di (...,...), tenda 3 di (...,...), dan tenda 4 di (...,...). Koordinasi setiap kegiatan dilakukan di posko utama, yaitu di (...,...). BAB 3 PERSAMAAN GARIS LURUS 39

46 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Sebelum kegiatan mencari jejak dilakukan, mereka diingatkan untuk mengikuti setiap petunjuk yang diberikan di setiap pos, yaitu pos 1 di (...,...), pos 2 di (...,...), dan pos 3 di (...,...). Mereka juga dilarang masuk ke hutan, yaitu di (...,...) karena sangat berbahaya. Selain itu, mereka juga harus berhati-hati saat melewati tanah lapang yang cukup luas di (...,...), pemakaman di (...,...), dan sungai di (...,...). Para anggota pramuka itu juga harus berusaha mencari adan memecahkan teka-teki yang disembunyikan di (...,...). Dari kegiatan diatas, kamu tentunya sudah semakin lancar membaca koordinat Cartesius. Menggambar garis lurus pada bidang Cartesius Jika diketahui sebuah pemetaan f(x)=2x dengan daerah asal 0x3; xxr. Tentu kamu telah dapat menggambar grafik fungsinya bukan! x x (x,y) Dalam permasalahan tersebut, persamaan f(x)=2x dapat diubah menjadi y=2x. Untuk menggambar sebuah garis, kamu dapat mengikuti langkah berikut ini: 1) Tentukan minimal dua titik yang memenuhi persamaan tersebut. Pilihlah titik yang memudahkan dalam perhitungan. 2) Buatlah tabel untuk mempermudah perhitungan. 3) Gambarkan titik tersebut pada bidang koordinat Cartesius. 4) Hubungkan titik-titik tersebut. Agar kamu lebih memahaminya, lakukanlah kegiatan berikut ini. Menggambar garis dengan persamaan y=mx 1) Gambarkan grafik y = 3x Penyelesaian: Langkah 1 x =... y = 3... y =... x =... y = 3... y =... langkah 2 Langkah 3 x y (x,y) 40 LKS MATEMATIKA KELAS VIII SEMESTER 1

47 Sukses itu dapat terjadi karena persiapan, kerja keras dan mau belajar dari kegagalan 2) Gambarkan grafik y = -4x Penyelesaian: x =... y = y =... x =... y = y =... x y (x,y) 3) Gambarkan grafik y = x Penyelesaian: x =... y =... y =... x =... y =... y =... x y (x,y) Apakah grafik garis y = 3x, y = -4x dan y = x melewati titik pangkal (0,0)? Jawab :... Jika koefisien x dari persamaan garis di atas dilambangkan dengan m, maka persamaan garis yang melewati titik pangkal O (0,0) dan titi (x,y) adalah: y = x Menggambar garis dengan persamaan y=mx+c 1) Gambarkan grafik y = 3x+1 Penyelesaian: x =... y =... y =... x =... y =... y =... x y (x,y) BAB 3 PERSAMAAN GARIS LURUS 41

48 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 2) Gambarkan grafik y = 4x-2 Penyelesaian: x =... y =... y =... x =... y =... y =... x y (x,y) Apakah grafik garis y = 3x+1 dan y = 4x-2 melewati titik pangkal (0,0)? Jawab :... Garis y = 3x+1 memotong sumbu y di titik (...,... ) Garis y = 4x-1 memotong sumbu y di titik (...,... ) Dari kegiatan diatas, apa yang dapat kamu simpulkan? Jika koefisien x = m dan berpotongan dengan sumbu y = c, maka persamaan garis tersebut adalah: y =... x +... memotong sumbu y di titik ( 0,... ) Gambarlah grafik garis lurus yang memenuhi persamaan berikut: 1) y = x 2) y = -3x 3) y = -x + 5 4) y = x LKS MATEMATIKA KELAS VIII SEMESTER 1

49 Sukses itu dapat terjadi karena persiapan, kerja keras dan mau belajar dari kegagalan Menentukan Persamaan Garis yang digambar pada Bidang Koordinat Cartesius Pada pembelajaran yang lalu, kamu telah mempelajari cara menggambar grafik garis jika persamaannya diketahui. Sekarang, kamu akan mempelajari hal yang sebaliknya, yaitu menentukan persamaan garis jika gambar garisnya diketahui. Untuk itu, analisa gambar tersebut! Apakah garis melalui titik (0,0) YA TIDAK persamaan persamaan y = mx y = mx + c Pilih salah satu titik selain (0,0) untuk menentukan nilai m Pilih 2 titik sembarang untuk menentukan nilai m dan c Untuk lebih memahaminya, lakukanlah kagiatan berikut ini. 1) Tetukan persamaan garis dari gambar dibawah ini. Langkah-langkah: Apakah garis melalui titik (0,0)? Jawab:... Maka persamaan garisnya adalah: y =... Ambil satu titik pada garis. misalkan ( 4,... ) maka: x =... y =... substitusikan nilai x dan nilai y y = m x... = m (... ) m =... jadi persamaan garisnya adalah y =... BAB 3 PERSAMAAN GARIS LURUS 43

50 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 2) Tetukan persamaan garis dari gambar dibawah ini. Langkah-langkah: Apakah garis melalui titik (0,0)? Jawab:... Maka persamaan garisnya adalah: y =... Titik potong dengan sumbu y dititik ( 0,... ) maka c =... Titik potong pada sumbu x adalah: dititik (..., 0 ) maka: x =... y =... substitusikan nilai x, nilai y dan nilai c y = m x + c... = m (... ) +... m =... jadi persamaan garisnya adalah y = ) Tentukan persamaan garis a, b, dan c pada gambar dibawah ini. 44 LKS MATEMATIKA KELAS VIII SEMESTER 1

51 Sukses itu dapat terjadi karena persiapan, kerja keras dan mau belajar dari kegagalan 2) Tentukan persamaan garis a, b, dan c pada gambar dibawah ini. 3) Gambar garis yang melalui titik pangkal (0,0) dan titik (4,-3). Tentukanlah persamaan garisnya. 4) Gambar garis yang melalui titik P (0,2) dan Q (2,0). Kemudian, tentukanlah persamaan garisnya. Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 3 PERSAMAAN GARIS LURUS 45

52 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 3.2 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar = Menentukan gradien, persamaan dan grafik garis lurus. Indikator = 1. Menjelaskan pengertian gradien. 2. Menggambar suatu garis yang melalui titik pusat dan titik lain yang diketahui pada koordinat Cartesius. 3. Menentukan gradien dari suatu garis yang melalui titik pusat dan titik lain yang diketahui pada koordinat Cartesius. Tujuan Pembelajaran = 1. Menjelaskan pengertian gradien. 2. Menggambar suatu garis yang melalui titik pusat dan titik lain yang diketahui pada koordinat Cartesius. 3. Menentukan gradien dari suatu garis yang melalui titik pusat dan titik lain yang diketahui pada koordinat Cartesius. Pengertian Gradien Pernahkah kamu melalui jalan yang naik dan turun seperti halnya di daerah pegunungan? Lereng gunung memiliki kemiringan tanah yang tidak sama, ada yang curam ada juga yang landai. Oleh karena itu, pembangunan suatu jalan yang menanjak dan berkelok-kelok seperti di pegunungan diperlukan perhitungan tertentu agar kendaraan mudah melewatinya. Salah satu perhitungan matematika yang harus diperhatikan dalam pembangunan jalan seperti itu adalah kemiringannya. Tingkat kemiringan inilah yang disebut gradien. Untuk memahami persoalan tersebut, maka perhatikanlah gambar disamping (kanan atas)! Apabila tanjakan mobil pada gambar yang tampak seperti permasalahan di atas kita sajikan pada grafik pada Gambar disamping (kanan bawah)! Kemiringan jalan merupakan perbandingan garis tegak (vertikal) dengan garis mendatar (horizontal). a) Tentukan panjang garis tegak dengan cara menghitung banyaknya petak satuan. Jadi, banyak petak satuan pada garis tegak adalah.. b) Tentukan panjang garis mendatar dengan cara menghitung banyaknya petak satuan. Jadi, banyak petak satuan pada garis mendatar adalah 46 LKS MATEMATIKA KELAS VIII SEMESTER 1

53 Sukses itu dapat terjadi karena persiapan, kerja keras dan mau belajar dari kegagalan Sehingga diperoleh kemiringan jalan adalah panjang garis tegak panjang garis mendatar Kemiringan jalan disebut gradien, maka gradiennya adalah Pada grafik Cartesius berikut terdapat garis OA, garis OB dan garis OC. Tentukanlah gradien masingmasing garis tersebut! panjang garis tegak OA komponen y - 3 a) Gradien garis OA = panjang garis mendatar OA komponen b) Gradien garis OB =... panjang garis mendatar OB komponen... komponen x c) Gradien garis OC = Berdasarkan perhitungan gradient garis diatas dapat disimpulkan 1) Gradient positif menyatakan kemiringan garis ke kanan 2) Gradient negative menyatakan kemiringan garis ke Gradien suatu garis yang melalui titik O(0,0) dan titik (x,y) komponen y m komponen... m y atau... BAB 3 PERSAMAAN GARIS LURUS 47

54 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Gradien Garis y = mx Perhatikan gambar di bawah ini! Garis-garis pada gambar di samping melalui titik pangkal koordinat. Hubungan antara persamaan garis dengan gradiennya ditunjukkan pada table berikut. Persamaan Garis Gradien y = x = y = 2x = Y =. = Dari tabel di atas terlihat ba hwa koefisien x dari suatu persamaan garis ternyata merupakan... garis itu. Misalkan: Persamaan garis y = x mempunyai gradien dan persamaan garis y = 2x mempunyai gradien., Sehingga dengan demikian dapat diambil suatu kesimpulan: Persamaan garis y = mx mempunyai gradien... gradien Garis y = mx + c Perhatikan gambar disamping! Dari gambar di atas terlihat sketsa grafik persamaan garis: y = 4x + 3 dan y = 2x 4 Perhatikan table berikut Persamaan Garis Gradien Titik potong y = 3x + 3 m = =... (..., 3 ) y = 2x 4 m = =... (...,...) dengan demikian dapat diambil suatu kesimpulan : Persamaan garis y = mx+c mempunyai gradien... dan memotong sumbu y titik (0,... ) 48 LKS MATEMATIKA KELAS VIII SEMESTER 1

55 Sukses itu dapat terjadi karena persiapan, kerja keras dan mau belajar dari kegagalan Gradien Garis ax + by + c = 0 Dalam menentukan gradien garis yang berbentuk ax + by + c = 0, maka kita harus mengubahnya ke dalam bentuk y = mx + c ax + by + c = 0 by = - ax c y = x Berdasarkan penjabaran di atas dapat kita lihat bahwa gradien dari bentuk persamaan garis ax + by + c = 0 adalah m = - dan memotong sumbu y di (0, - c ) Tentukan gradien garis 3x+ 6y + 10 = 0 Penyelesaian : 3x + 6y + 10 = 0 berarti a =..., b = 6 dan c =... Jadi, gradien m = - = - = - Ingat kembali menentukan letak suatu titik pada koordinat Cartesius! 1) Tentukanlah letak titik-titik P (0,0), Q(4,2), R(0,3), S(-3,1), T(-5,-2) a) Gambarkan suatu garis yang melalui titik PQ, PR, PS, dan PT. b) Tentukalah gradien dari garis PQ, PR, PS, dan PT. Penyelesaian : BAB 3 PERSAMAAN GARIS LURUS 49

56 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 2) Tentukan gradien garis yang melalui titik pusat dan titik. a) P(2,6) b) Q(4,-8) 3. Tentukan gradien dari masing-masing persamaan garis berikut. a) 2x 6y + 7 = 0 b) -3x 6y 4 = 0 4. Tentukan gradien garis berikut. a) Y= 8x b) Y-7x = 0 c) Y=-5x-2 d) X+2y= 0 e) 3x-y= 0 Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 50 LKS MATEMATIKA KELAS VIII SEMESTER 1

57 Sukses itu dapat terjadi karena persiapan, kerja keras dan mau belajar dari kegagalan Pembelajaran 3.3 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar = Menentukan gradien, persamaan dan grafik garis lurus. Indikator = 1. Menentukan gradien suatu garis yang melalui dua titik yang diketahui. 2. Menentukan gradien suatu garis yang sejajar sumbu x dan y 3. Menentukan gradien garis apabila diketahui kedudukan dua buah garis: a. Saling sejajar b. Saling tegak lurus. Tujuan Pembelajaran = 1. Siswa dapat menentukan gradien suatu garis yang melalui dua titik yang diketahui 2. Siswa dapat menentukan gradien suatu garis yang sejajar sumbu x dan y 3. Siswa dapat menentukan gradien suatu garis apabila diketahui kedudukan dua buah garis: a. Saling sejajar b. Saling tegak luruspada koordinat Cartesius. Menentukan gradient yang melalui dua titik kerjakanlah kegiatan berikut: 1) Tentukanlah letak titik A(-3,1) dan titik B(2,4) pada koordinat Cartesius a) Gambarkan garis yang melalui titik A dan titik B tersebut b) Tentukanlah gradien dari garis tersebut. Penyelesaian: m AB komponen komponen y x y y 4... B A ( 3) m BA komponen komponen y y y 1... A B x Apakah yang dapat kamu simpulkan tentang gradien garis AB dan gradien garis BA? Jika titik A(x 1,x 2 ) dan B(x 1,y 2 ) maka gradien yang melalui dua titik adalah Gradient m= y 2 y 1 x 2 x 1 BAB 3 PERSAMAAN GARIS LURUS 51

58 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Gradien Garis yang Sejajar Sumbu x Diskusikan dengan temanmu bila gradien suatu garis adalah 0, bagaimanakah kedudukan garis tersebut? Gradien Garis yang Sejajar Sumbu y Diskusikan dengan temanmu bila gradien suatu garis tidak didefenisikan, bagaimanakah kedudukan garis tersebut? Gradien Garis-garis yang Saling Sejajar. Perhatikan gambar disamping. Garis AB dan garis CD merupakan garis-garis yang saling sejajar. Gradien pada garis-garis sejajar juga dapat kamu tentukan dengan menggunakan rumus yang sama pada masingmasing garis tersebut! gradien garis AB = Gradian garis CD = m AB = m CD = =... = LKS MATEMATIKA KELAS VIII SEMESTER 1

59 Sukses itu dapat terjadi karena persiapan, kerja keras dan mau belajar dari kegagalan Dari contoh gambar di atas, ternyata kedua garis mempunyai gradien yang..., sehingga dapat diambil kesimpulan bahwa : Garis-garis yang sejajar memiliki gradien yang... Atau, Jika garis-garis memiliki gradien yang... Maka pastilah garis-garis tersebut saling... Gradien Garis-garis yang Saling Tegak Lurus Pada gambar di samping, garis p dan garis q saling tegak lurus. Sehingga untuk menentukan gradien pada garis tegak lurus dapat kamu tentukan dengan menggunakan rumus yang sama dengan cara mengambil dua titik pada masing-masing garis tersebut. gradien garis m P = m TR Gradian garis m q = m TS = = = = m p x m q = x =... Dari kedua contoh pada gambar di atas, ternyata hasil kali gradien-gradiennya adalah, sehingga dapat diambil kesimpulan bahwa: Hasil kali gradien-gradien garis-garis yang saling tegak lurus adalah... 1) Suatu garis p bergradien - 4. Tentukan gradien garis q bila garis q: a) Sejajar dengan garis p b) Tegak lurus dengan garis p 2) Suatu garis melalui titik P(-6,8) dan Q(4,-7). a) Hitunglah. b) Jika garis k tegak lurus dengan PQ, tentukan gradien garis k. BAB 3 PERSAMAAN GARIS LURUS 53

60 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 3) Tentukan persamaan garis yang melalui titik a) A( 2, 3) dan sejajar garis y = x 5 b) E(2, 4) dan sejajar garis x = 3y ) Tentukan persamaan garis yang melalui titik (2, 5) dan tegak lurus dengan garis berikut: a) 2x + y + 5 = 0 b) 1 y x Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 54 LKS MATEMATIKA KELAS VIII SEMESTER 1

61 Sukses itu dapat terjadi karena persiapan, kerja keras dan mau belajar dari kegagalan Pembelajaran 3.4 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar = Menentukan gradien, persamaan dan grafik garis lurus. Indikator = Menentukan persamaan garis lurus jika: a. Melalui dua titik. b. Melalui satu titik dengan gradien tertentu Tujuan Pembelajaran = Siswa dapat menentukan persamaan garis lurus jika: a. Melalui dua titik. b. Melalui satu titik dengan gradien tertentu Menentukan Persamaan Garis jika diketahui gradien m dan suatu titik pada garis Misalkan persamaan garis y =mx + c dan P 1 (x 1, y 1 ) pada garis tersebut. Untuk x = x 1 dan y =y 1 diperoleh: y 1 = m x 1 + c atau c = y 1 c = y 1 disubstitusikan pada y = mx + c menjadi: y = mx + (y 1 -.) y = m x m x 1 +. diperoleh rumus : y y 1 = m (x x 1 ) Tulislah persamaan garis yang memiliki gradien 2 dan memotong titik (4, 10)! Penyelesaian: Untuk menjawab soal tersebbut, dapat di kerjakan dengan dua cara berbeda, yaitu: Cara 1 gradien garis adalah- 2 ; m=-2 ; x 1 = 4 ; dan y 1 = 10, maka digunakan rumus : y y 1 = m(x x 1 ) y y y y = -2(x ) =..+ = = Jadi persamaan garis yang dimaksud adalah y =... Cara 2 gradien garis adalah 2, sehingga nilai m = -2 Titik (4, 10) diperoleh x=4 dan y= 10. substitusikan pada persamaan y=mx + c untuk mengetahui nilai c y = mx + c = -2( ) + c 10 = + c c = Persamaan Garis yang Melalui Dua Titik Sebarang (x 1, y 1 ) dan (x 2, y 2 ) Dengan memperhatikan bahwa gradien yang melalui titik A(x 1,y 1 ) dan B(x 2,y 2 ) adalah: m AB y y 2 1 x x 2 1 BAB 3 PERSAMAAN GARIS LURUS 55

62 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Maka persamaan garis yang melalui titik A dan B adalah: y - y 1 y 2 x 2 y 1 x 1 x Atau dapat disimpulkan bahwa: x 1 Tentukan persamaan garis yang melalui titik (3, 5) dan ( 2, 3). Penyelesaian: Dengan menggunakan rumus, substitusikan titik (3,-5) dan (-2,-3) ke persamaan: y y x x 1 1 y y x x y... x = = = = =... y =... 1) Tentukan persamaan garis berikut ini. a) Garis bergradien 4 dan melalui titik (0,-7) b) Garis bergradien 3 dan melalui titik (0,-5) LKS MATEMATIKA KELAS VIII SEMESTER 1

63 Sukses itu dapat terjadi karena persiapan, kerja keras dan mau belajar dari kegagalan 2) Tentukan persamaan garis yang melalui titik: a) D(3, 0) dan bergradien ½ b) C(7, 1) dan bergradien 1/ ) Tentukan persamaan garis yang melalui titik-titik berikut: a) A(3, 2) dan B( 1, 3) b) Q( 5, 0) dan R(3, 4) c) K(7, 3) dan L( 2, 1) Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 3 PERSAMAAN GARIS LURUS 57

64 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 3.5 Standar Kompetensi = Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar = Menentukan gradien, persamaan dan grafik garis lurus. Indikator = Menggambar grafik garis lurus jika: c. Melalui dua titik. d. Melalui satu titik dengan gradien tertentu e. Persamaan garisnya diketahui Tujuan Pembelajaran = Siswa dapat menggambar grafik garis lurus jika: c. Melalui dua titik. d. Melalui satu titik dengan gradien tertentu e. Persamaan garisnya diketahui Pada materi sebelumnya kita telah belajar tentang menentukan gradien dari suatu garis lurus dalam berbagai bentuk. Pada materi kita akan mempelajari cara menggambar grafik garis lurus jika: Grafik Garis Lurus melalui Dua Titik. Gambarlah grafik garis lurus yang melalui titik (1,6) dan (3,2) Penyelesaian : Menggambar grafik garis lurus melalui dua titik dapat dilakukan secara langsung dengan menentukan letak titik-titiknya terlebih dahulu. Setelah itu, kita tarik suatu garis lurus yang menghubungkan kedua titik tersebut. Perhatikan gambar disamping! Melalui satu titik dengan gradien tertentu Gambarlah grafik garis lurus yang mempunyai gradien melalui titik (0,4) 58 LKS MATEMATIKA KELAS VIII SEMESTER 1

65 Sukses itu dapat terjadi karena persiapan, kerja keras dan mau belajar dari kegagalan Penyelesaian : Cara menggambar grafik garis lurus melalui satu titik dengan gradien tertentu, terlebih dahulu kita harus menentukan nilai x dan y dari gradien tersebut. m = =, berarti diperoleh: nilai x =... dan nilai y =... Kemudian letakkan nilai titik x dan y tersebut pada koordinat Cartesius yang dihitung melalui titik yang telah ditentukan, setelah itu hubungkan titik tersebut dengan titik yang telah ditentukan sebelumnya. Perhatikan gambar disamping! Persamaan garisnya diketahui Gambarlah grafik garis lurus yang mempunyai persamaan garis y = 2x 6 Penyelesaian: Persamaan garis y = 2x 6 memotong sumbu x di (0, ) memiliki Gradien m: m=... sehingga: y =... dan x =... Kemudian, letakkan nilai titik x dan y tersebut pada koordinat Cartesius yang dihitung melalui titik yang telah ditentukan. Setelah itu, hubungkan titik tersebut dengan titik yang telah ditentukan sebelumnya. Kemudian, buatlah grafik garis lurus pada gambar disamping! BAB 3 PERSAMAAN GARIS LURUS 59

66 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 1) Gambarlah grafik garis lurus yang melalui titik (-3,-2) dan (5,7)! 2) Gambarlah grafik garis lurus yang mempunyai gradien - dan melalui titik (2,3)! 3) Gambarlah grafik garis lurus yang mempunyai persamaan garis y = 3x 6 Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 60 LKS MATEMATIKA KELAS VIII SEMESTER 1

67 BAB 4 SISTEM PERSAMAAN LINIER DUA VARIABEL Pembelajaran 4.1 Standar Kompetensi = Memahami Sistem Persamaan linier Dua Variabel (SPLDV) dan Menggunakannya dalam pemecahan masalah. Kompetensi Dasar = Menyelesaikan Sistem Persamaan Linier Dua Variabel (SPLDV) Indikator = 1. Membedakan PLDV dan SPLDV - 2. Menyelesaikan Sistem Persamaan Linier Dua Variabel dengan menggunakan metode grafik Tujuan Pembelajaran = Siswa dapat membedakan PLDV dan SPLDV Siswa dapat menyelesaikan SPLDV dengan menggunakan metode grafik Persamaan Linear Satu Variabel Di Kelas VII, kamu telah mempelajari materi tentang persamaan linear satu variabel. Masih ingatkah kamu apa yang dimaksud dengan persamaan linear satu variabel? Coba kamu perhatikan bentuk-bentuk persamaan berikut. x + 5 = 6 2r = y = 14 8p + 6 = 24 Bentuk-bentuk persamaan tersebut memiliki satu variabel dan berpangkat satu. Bentuk persamaan seperti inilah yang dimaksud dengan linear satu variabel. Persamaan Linier Dua Variabel (PLDV) Coba kamu perhatikan bentuk-bentuk persamaaan berikut. Sebutkan variabel dari masing-masing persamaan: 2x + 3y = 14 12m n = 30 p + q + 3 = 10 12m n = 30 r + 65 = 10 memiliki variabel dan masing-masing variabel berpangkat memiliki variabel dan masing-masing variabel berpangkat memiliki variabel dan masing-masing variabel berpangkat memiliki variabel dan masing-masing variabel berpangkat memiliki variabel dan masing-masing variabel berpangkat 4a + 5b = b memiliki variabel dan masing-masing variabel berpangkat Persamaan-persamaan tersebut memiliki dua variabel. Bentuk inilah yang dimaksud dengan Persamaan Linear Dua Variabel (PLDV). BAB 4 SISTEM PERSAMAAN LINIER DUA VARIABEL 61

68 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Jadi, Persamaan Linear Dua Variabel merupakan persamaan yang memiliki... variabel tunggal dan masing-masing berpangkat... Cobalah tuliskan persamaan linear dua variabel yang lain! 1) 2) 3) Sistem Persamaan Linier Dua Variabel (SPLDV) Sistem persamaan linear dua variabel merupakan gabungan dua PLDV yang membentuk satu kesatuan (sistem) Misalkan : x + y = 4 2x y = 6 Atau bisa juga ditulis dalam bentuk : x + y = 4 dan 2x y = 6 Cobalah tuliskan sistem persamaan linear dua variabel yang lain! 1) 2) 3) Berdasarkan jawaban kamu di atas, tuliskan secara umum Sistem Persamaan Linear Dua Variabel:... x + b... = p c y = q Cobalah bedakan PLDV dengan SPLDV dan tulislah perbedaannya! Penyelesaian: Untuk menentukan himpunan penyelesaian dari system persamaan linear dua variabel dapat dilakukan dengan empat metode, yaitu metode grafik, metode substitusi, metode eliminasi,dan metode campuran (substitusi dan eliminasi). Menyelesaikan SPLDV dengan Metode Grafik Penentuan himpunan penyelasaian SPLDV dengan metode grafik adalah sebagai berikut: 1) Gambarkan masing-masing garis yang dinyatakan oleh persamaan 2) Tentukan koordinat titik potong kedua garis yang merupakan penyelesaian dari sitem persamaan linear 62 LKS MATEMATIKA KELAS VIII SEMESTER 1

69 Lebih baik belajar satu halaman per hari daripada belajar satu buku tapi cuma sehari Tentukan himpunan penyelesaian dari system persamaan 2x + y = 4 dan 2x + 3y = 8 dengan metode grafik. Penyelesaian: Gambarkan masing-masing persamaan: 2x + y = 4 tentukan titik potong kedua sumbu! (i) Jika memotong sumbu x, maka y =... Sehingga 2x +... = 4 2x =... x =... Jadi titik potong dengan sumbu x adalah (...,... ) (ii) Jika memotong sumbu y, maka x =... Sehingga y = 4 y =... Jadi titik potong dengan sumbu y adalah (...,... ) (iii) Hubungkan kedua titik tersebut. 2x + 3y = 8 tentukan titik potong kedua sumbu! (i) Jika memotong sumbu x, maka y =... Sehingga 2x +... = 4 2x =... x =... Jadi titik potong dengan sumbu x adalah (...,... ) (ii) Jika memotong sumbu y, maka x =... Sehingga y = 8 y =... Jadi titik potong dengan sumbu y adalah (...,... ) (iii) Hubungkan kedua titik tersebut. kedua garis berpotongan di titik (, ) maka himpunan penyelesaiannya adalah (, ) Tentukanlah himpunan penyelesaian dari Sistem Persamaan Linier Dua Variabel di bawah ini dengan menggunakan metode grafik! 1) -x + 3y = -4 x - y = 10 BAB 4 SISTEM PERSAMAAN LINIER DUA VARIABEL 63

70 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 2) 2 y = 2 x + 4 -y = x LKS MATEMATIKA KELAS VIII SEMESTER 1

71 Lebih baik belajar satu halaman per hari daripada belajar satu buku tapi cuma sehari 3) 4x 9 = 6y 9x y = 0 Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 4 SISTEM PERSAMAAN LINIER DUA VARIABEL 65

72 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 4.2 Standar Kompetensi = Memahami Sistem Persamaan linier Dua Variabel (SPLDV) dan menggunakannya dalam pemecahan masalah. Kompetensi Dasar = Menyelesaikan Sistem Persamaan Linier Dua Variabel (SPLDV) Indikator = Menyelesaikan Sistem Persamaan Linier Dua Variabel dengan menggunakan metode substitusi Tujuan Pembelajaran = Siswa dapat menyelesaikan SPLDV dengan menggunakan metode substitusi Menyelesaikan SPLDV dengan Metode Substitusi Setelah kita belajar cara menentukan himpunan penyelesaian SPLDV menggunakan metode grafik, sekarang kita akan mempelajari cara menentukan himpunan penyelesaian SPLDV menggunakan metode substitusi. Langkah-langkah pengerjaan dengan menggunakan metode substitusi untuk mencari himpunan penyelesaian dari SPLDV adalah sebagai berikut. Ubahlah salah satu persamaan ke dalam bentuk x =... atau y =... Masukkan (substitusi) nilai x atau y yang diperoleh ke dalam persamaan yang kedua x atau y yang diperoleh kemudian disubstitusikan ke dalam salah satu persamaan untuk memperoleh nilai variabel lainnya yang belum diketahui (x atau y). Tentukan himpunan penyelesaian dari SPLDV di bawah ini dengan metode substitusi 2x + y = 4 Penyelesaian: 2x + 3y = 8 Langkah I pilih salah satu dari persamaan (yang sederhana). paling Langkah II Substitusikan pers. (3) ke pers. (2), maka diperoleh: 2x + y = pers. (1) 2x + 3( - ) = 8 2x + 3y = pers. (2) Ubah persamaan dalam bentuk y 2x + y = 4 2x - = 8 ( - )x = 8 - x = y = pers. (3) Langkah III Substitusi nilai x ke persamaan (3), diperoleh y = Jadi himpunan penyelesaian adalah (, ) 66 LKS MATEMATIKA KELAS VIII SEMESTER 1

73 Lebih baik belajar satu halaman per hari daripada belajar satu buku tapi cuma sehari Tentukanlah himpunan penyelesaian dari sistem persamaan linier dua variabel di bawah ini dengan menggunakan metode substitusi! 1) a + b = 4 2a b= 11 2) 3p + 4q -7 = 0 2p + q -3 = ) a - 10 = 2b -2 = 4a + 6b Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 4 SISTEM PERSAMAAN LINIER DUA VARIABEL 67

74 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 4.3 Standar Kompetensi = Memahami Sistem Persamaan linier Dua Variabel (SPLDV) dan Menggunakannya dalam pemecahan masalah. Kompetensi Dasar = Menyelesaikan Sistem Persamaan Linier Dua Variabel (SPLDV) Indikator = Menyelesaikan Sistem Persamaan Linier Dua Variabel dengan menggunakan metode eliminasi dan campuran Tujuan Pembelajaran = Siswa menyelesaikan Sistem Persamaan Linier Dua Variabel dengan menggunakan metode eliminasi dan campuran Menyelesaikan SPLDV dengan metode Eliminasi Apakah kamu pernah mendengar kata eliminasi sebelumnya? Eliminasi artinya menghilangkan, maksudnya dengan cara menghilangkan salah satu variabel akan mendapatkan nilai dari variabel lainnya. Langkahlangkahnya adalah sebagai berikut: 1) Koefisien dari variabel yang akan dihilangkan harus sama 2) Jumlahkan atau kurangkan kedua persamaan yang diketahui agar koefisien dari variabel yang akan dihilangkan bernilai nol Tentukan himpunan penyelesaian dari SPLDV di bawah ini dengan metode eliminasi: 5x +2 y = - 4 x + y = 6 Penyelesaian: 5x +2 y = -4 x + y = 6 Langkah I Eliminasi variabel y maka koefisien dari y harus sama (untuk mencari nilai x)... x = y = x +...y = = x +... = = Langkah II Eliminasi variabel x maka koefisien dari x harus sama (untuk Mencari nilai y) x = x = y = x +...y = = y = = Jadi himpunan penyelesaian dari sistem persamaan linier (...,...) y = LKS MATEMATIKA KELAS VIII SEMESTER 1

75 Lebih baik belajar satu halaman per hari daripada belajar satu buku tapi cuma sehari Tentukanlah himpunan penyelesaian dari sistem persamaan linier dua variabel di bawah ini dengan menggunakan metode eliminasi! 1) 2x + 3y = -6 x 4y = -3 2) Y = x + 4 -y = 2x 2 3) x = 3y - 7 y = 2x ) 3x 9 = y x 1 + y = 0 BAB 4 SISTEM PERSAMAAN LINIER DUA VARIABEL 69

76 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Menyelesaikan SPLDV dengan metode Campuran Dalam pengerjaan soal persamaan linear dua variabel, terkadang kita menemukan kesulitan jika menggunakan metoda eliminasi untuk menentukan himpunan penyelesaiannya. Oleh karena itu, kita dapat menggunakan metode campuran, yaitu menentukan salah satu variabel x atau y dengan menggunakan metode eliminasi. Hasil yang diperoleh dari x atau y kemudian disubstitusikan ke salah satu persamaan linear dua variabel tersebut. Tentukan himpunan penyelesaian dari SPLDV menggunakan metode campuran! x + 2y = 7 dan 2x + 3y = 10 Penyelesaian : Mengeliminasi variabel x (untuk mencari y) y = 7 (...)...x +... =... 2x +... = 10 (...) y =... Substitusi y =... ke persamaan 2x + 3y = 10 2x + 3y = 10 2x + 3(...) = 10 2x +... =......x =... x =... y =... Jadi, himpunan penyelesaian dari sistem persamaan tersebut adalah {(...,...)}. Tentukan himpunan penyelesaian dari sistem persamaan berikut menggunakan metode campuran! 1) x + y = 6; x,y R 3x y = 10; x,y R 3) x + 2y = 3; x,y R 4x + 6y = 4; x,y R 2) 2x + 4y = 6; x,y R 2x + 3y = 2; x,y R 4) 3x 5y = 9; x,y R 4x 7y = 13; x,y R 70 LKS MATEMATIKA KELAS VIII SEMESTER 1

77 Lebih baik belajar satu halaman per hari daripada belajar satu buku tapi cuma sehari Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 4 SISTEM PERSAMAAN LINIER DUA VARIABEL 71

78 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 4.4 Standar Kompetensi = Memahami sistem persamaan linear dua variabel (SPLDV) dan menggunakannya dalam pemecahan masalah. Kompetensi Dasar = Membuat model matematika dari masalah yang berkaitan dengan SPLDV. Indikator = Membuat model matematika dari masalah sehari-hari yang berkaitan dengan SPLDV. Tujuan Pembelajaran = Siswa dapat membuat model matematika dari masalah sehari-hari yang berkaitan dengan SPLDV. Dalam kehidupan sehari-hari banyak masalah yang berkaitan dengan SPLDV. Untuk menyelesaikan masalah yang melibatkan dua variabel yang belum diketahui nilainya, kamu dapat menggunakan model matemtika, yaitu mengubah penulisan masalah dalam kalimat matematika. Ani dan Ina membeli buku dan pensil di toko yang sama. Ani membeli 4 buku dan 3 pensil dengan harga Rp 2.500,-. Ina membeli 2 buku dan 7 pensil dengan harga Rp 2.900,-. Buatlah pernyataan diatas kedalam model matematika! Penyelesaiaan: Misalkan: Satu buah buku = b Satu buah pensil = p Maka model matematikanya dapat ditulis sebagai berikut: 4 buku dan 3 pensil dengan harga Rp model matematikanya: 4b + 3 = buku dan 7 pensil dengan harga Rp model matematikanya: + 7p = Buatlah model matematika dari permasalahan berikut ini! 1) Harga 4 ekor ayam dan 3 ekor itik Rp ,-, sedangkan harga 3 ekor ayam dan 5 ekor itik Rp ,- 2) Rina membeli 5 buku tulis dan 3 buku gambar seharga Rp ,-. Budi membeli 7 buku tulis dan 5 buku gambar seharga Rp ,-. 72 LKS MATEMATIKA KELAS VIII SEMESTER 1

79 Lebih baik belajar satu halaman per hari daripada belajar satu buku tapi cuma sehari 3) Jumlah dua bilangan cacah adalah 112 dan selisih kedua bilangan tersebut adalah 36. 4) Sebuah persegi panjang diketahui kelilingnya adalah 60 meter dan panjangnya adalah 6 meter lebihnya dari lebar. 5) Jumlah uang Andi ditambah 3 kali uang Budi adalah Rp ,-. Sedangkan 2 kali uang Andi ditambah 4 kali uang Budi adalah Rp ,- Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 4 SISTEM PERSAMAAN LINIER DUA VARIABEL 73

80 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 4.5 Standar Kompetensi = Memahami sistem persamaan linear dua variabel (SPLDV) dan menggunakannya dalam pemecahan masalah. Kompetensi Dasar = Menyelesaikan model matematika dari masalah yang berkaitan dengan SPLDV dan penafsirannya. Indikator = Menyelesaikan model matematika dari masalah yang berkaitan dengan SPLDV dan penafsirannya. Tujuan Pembelajaran = Siswa dapat menyelesaikan model matematika dari masalah yang berkaitan dengan SPLDV dan penafsirannya. Masih ingatkah kamu cara membuat model matematika dari masalah sehari-hari yang berkaitan dengan SPLDV? Didik membeli 3 buah buku tulis dan 4 buah pensil seharga Rp 4.400, sedangkan Bagus membeli 5 buah buku tulis dan 3 buah pensil seharga Rp Tentukanlah harga buku tulis dan pensil tersebut dan berapa Rupiahkah yang harus dibayar oleh Robi jika ia membeli 6 buah buku tulis dan 2 buah pensil? Penyelesaian: Misalkan: Buku tulis = x Pensil = y Tentukanlah model matematikanya: pers. (1) pers. (2) Tentukan penyelesaian dari persamaan diatas: Dari persamaan (1) dan (2) selesaikan dengan menggunakan metode campuran. 3x +...= ( 5) y = y = ( 3) y =... - Substitusi y =... ke persamaan (1) 3x + 4y = x + 4(...) = x +... = x = x =... x = x = Sehinga nilai x adalah dan nilai y adalah 11 y =... y = y = LKS MATEMATIKA KELAS VIII SEMESTER 1

81 Lebih baik belajar satu halaman per hari daripada belajar satu buku tapi cuma sehari jadi, harga buku tulis = Rp dan harga pensil = Rp Maka, harga 6 buah buku tulis dan 2 buah pensil = 6 ( ) + 2 ( ) = ( ) + ( ) = 1) Susan membeli 5 buah apel dan 10 buah mangga dengan harga Rp , sedangkan Robert membeli 3 buah apel dan 5 buah mangga dengan harga Rp Berapakah yang harus dibayar oleh Diki jika ia membeli 2 buah apel dan 7 buah mangga? 2) Harga 4 buah penggaris dan 5 buah jangka adalah Rp Harga 7 buah penggaris dan 3 buah jangka adalah Rp Tentukanlah harga sebuah penggaris dan sebuah jangka. 3) Keliling suatu persegi panjang adalah 60 meter. Panjangnya adalah 6 meter lebihnya dari lebar. Tentukan panjang dan lebar persegi panjang tersebut! BAB 4 SISTEM PERSAMAAN LINIER DUA VARIABEL 75

82 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 4) Banyak siswa putra dan putri adalah 48 anak. Siswa putra lebih banyak dari pada siswa putri. Selisih putra dan putri adalah 4 anak. Tentukan banyak masing-masing siswa! 5) Umur Rudi 8 tahun lebih tua dari saudara perempuannya, Maria. Empat tahun yang lalu, tiga kali umur Maria sama dengan dua kali umur Rudi. Berapakah umur mereka sekarang? Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 76 LKS MATEMATIKA KELAS VIII SEMESTER 1

83 BAB 5 TEOREMA PYTHAGORAS Pembelajaran 5.1 Standar Kompetensi = Menggunakan teorema pythagoras Dalam Pemecahan Masalah Kompetensi Dasar = Menggunakan Teorema Pythagoras untuk menentukan panjang sisi segitiga siku-siku Indikator = 1. Menentukan kuadrat suatu bilangan 2. Menentukan akar kuadrat suatu bilangan 3. Menghitung luas dan panjang sisi persegi 4. Membuktikan teorema Pythagoras Tujuan Pembelajaran = Siswa dapat membuktikan teorema pythagoras Kuadrat dan akar kuadrat suatu bilangan Mari ingat kembali tentang kuadrat suatu bilangan! 1) 1 2 = 1 x 1 = 1 2) 3 2 =... x... =... 3) 16 2 =... x... =... 4) ( ) = x =... 5) =... x... =... Masih ingatkah kamu cara menentukan akar kuadrat dari suatu bilangan? akar kuadrat dari bilangan 25 ditulis = 5, karena 5 2 = 25 Tentukan akar kuadrat dari bilangan berikut: 1) = karena = 2) = karena = 3) = karena = 4) = karena = Luas dan panjang sisi persegi Ingatkah kamu pengertian persegi? Persegi adalah bangun datar BAB 5 TEOREMA PYTHAGORAS 77

84 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Untuk menentukan luas persegi dapat dilakukan dengan menghitung banyaknya persegi satuan yang membentuk persegi besar. Hitunglah luas setiap persegi dibawah ini dalam satuan! 1 satuan 4 satuan... satuan... satuan Gambar 1. Hitunglah panjang sisi setiap persegi dibawah ini dalam satuan! 1 satuan 2 satuan... satuan... satuan Gambar 2. Bandingkan luas (Gambar 1) dan panjang sisi persegi (Gambar 2), o jika luas 1 satuan, maka panjang sisi 1 1 = 1 2 o jika luas 4 satuan, maka panjang sisi 2 4 = 2 2 o jika luas... satuan, maka panjang sisi =... 2 o jika luas... satuan, maka panjang sisi =... 2 atau o jika panjang sisi 1 satuan, maka luas o jika panjang sisi 2 satuan, maka luas o jika panjang sisi... satuan, maka luas o jika panjang sisi... satuan, maka luas 1 1 = 4 2 = = = Apa yang dapat kamu simpulkan? luas persegi merupakan... dari panjang sisi persegi. Panjang sisi persegi merupakan... dari luas persegi. Dari kesimpulan di atas, jawablah pertanyaan dibawah ini 1) Berapakah panjang sisi persegi jika diketahui luasnya sebagai berikut a) 100 satuan =... b) 144 satuan = LKS MATEMATIKA KELAS VIII SEMESTER 1

85 Orang yang luar biasa itu sederhana dalam ucapan, tetapi hebat dalam tindakan 2) Berapakah luas persegi jika diketahui panjang sisinya sebagai berikut a) 9 satuan =... b) 15 satuan =... Menemukan Teorema Pythagoras Alat/ bahan : penggaris,gunting,lem o Langkah Kerja 1) Gambarkan sebuah segitiga siku-siku dengan ukuran sisi siku-sikunya 4 satuan dan 3 satuan 2) Gambarkan persegi pada kedua sisi siku-siku yang berukuran 4 dan 3 satuan. hitunglah luas masing-masing persegi. Luas persegi pada sisi siku-siku I =... satuan Luas persegi pada sisi siku-siku II =... satuan 3) Ukurlah panjang sisi miring pada segitiga tersebut dengan menggunakan penggaris, kemudian gambarlah ukuran panjang sisi miring tersebut pada kertas kerja. 4) Dari langkah (3) gambarlah persegi, kemudian gunting persegi tersebut. 5) Tempelkan persegi yang telah diperoleh pada langkah (4) pada sisi miring segitiga di atas. Diperoleh luas persegi pada sisi miring =... satuan Perhatikan luas persegi pada sisi miring dengan luas persegi pada sisi siku-siku I dan luas persegi pada sisi siku-siku II Luas persegi pada sisi miring = luas persegi pada sisi siku-siku I +... Dari kegiatan diatas, dapat disimpulkan:... = Jadi, pada setiap segitiga siku-siku, Luas persegi pada sisi miring = c 2 maka panjang sisi miring = c Luas persegi pada sisi siku-siku I = a 2 maka panjang sisi siku-siku I =... BAB 5 TEOREMA PYTHAGORAS 79

86 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Luas persegi pada sisi siku-siku II = b 2 maka panjang sisi siku-siku II =... Luas persegi pada sisi miring = luas persegi pada sisi siku-siku I +... c 2 = Atau, Kuadrat sisi miring =... + Kuadrat sisi siku-siku II Dari hasil kegiatan di atas, pembuktian teorema pythagoras dapat direpresentasikan sebagai berikut: a b c c 2 = a b 2 = a 2 = Kesimpulan : Kuadrat sisi miring sama dengan jumlah kuadrat sisi siku-sikunya 1) Hitunglah: a) 6 2 =... c) 15 2 =... b) ( ) =... d) 2,4 2 =... 2) Carilah akar kuadrat dari: a) 144 =... c) 2,56 =... b) 900 =... 3) Berapakah panjang sisi persegi jika diketahui luasnya sebagai berikut a) 36 satuan =... c) 225 satuan =... b) 64 satuan =... 4) Berapakah luas persegi jika diketahui panjang sisinya sebagai berikut a) 11 satuan =... c) 27 satuan =... b) 20 satuan = LKS MATEMATIKA KELAS VIII SEMESTER 1

87 Orang yang luar biasa itu sederhana dalam ucapan, tetapi hebat dalam tindakan 5) Gunakan teorema pythagoras untuk menyatakan persamaan-persamaan yang berlaku pada segitiga berikut: a) a c b b) e f d i... c) g h d) A C B... Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 5 TEOREMA PYTHAGORAS 81

88 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 5.2 Standar Kompetensi = Menggunakan teorema pythagoras dalam pemecahan masalah Kompetensi Dasar = Menggunakan Teorema Pythagoras untuk menentukan panjang sisi segitiga siku-siku Indikator = Menghitung panjang sisi segitiga siku-siku jika 2 sisi lain diketahui Tujuan Pembelajaran = Siswa dapat menggunakan teorema pythagoras untuk menghitung panjang sisi segitiga siku-siku jika 2 sisi lainnya diketahui Pada pertemuan sebelumnya, kamu sudah menemukan teorema pythagoras, yaitu: Kuadrat sisi miring adalah... a c c 2 = a b Marilah kita menerapkan teorema pythagoras untuk menghitung panjang sisi segitiga siku-siku. 1. Gunakanlah teorema pythagoras untuk menghitung nilai x. Penyelesaian: x 2 = x x 2 = x 2 =... x = x = Diketahui segitiga KLM dengan sudut siku-siku di K. Jika panjang sisi KL sebesar 7 cm, dan LM sebesar 25 cm, a. Gambarlah segitiga KLM b. Hitunglah panjang sisi KM. Penyelesaian: a. b. KM 2 = LM KM 2 = KM 2 = - KM 2 = KM = KM = 82 LKS MATEMATIKA KELAS VIII SEMESTER 1

89 Orang yang luar biasa itu sederhana dalam ucapan, tetapi hebat dalam tindakan 1) Gunakanlah teorema pythagoras untuk menghitung nilai x. a) 8 x b) x c) x ) Hitunglah nilai y pada setiap segitiga berikut ini. a) y y b) 20 4y y ) Diketahui segitiga PQR dengan sudut siku-siku di P. Jika panjang sisi PQ sebesar 12 cm, dan QR sebesar 13 cm, a) Gambarlah segitiga tersebut. b) Tentukan panjang sisi PR BAB 5 TEOREMA PYTHAGORAS 83

90 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 4) Panjang hipotenusa suatu segitiga siku-siku adalah 15 cm, sedangkan panjang sisi siku-sikunya adalah sebesar 12 cm dan x cm. Berapakah nilai x? 5) Pada gambar di bawah, diketahui panjang sisi AB sebesar 12 cm, sisi BC sebesar 25 cm. Tentukan panjang sisi AD. Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 84 LKS MATEMATIKA KELAS VIII SEMESTER 1

91 Orang yang luar biasa itu sederhana dalam ucapan, tetapi hebat dalam tindakan Pembelajaran 5.3 Standar Kompetensi = Menggunakan teorema pythagoras Dalam Pemecahan Masalah Kompetensi Dasar = Menggunakan Teorema Pythagoras untuk menentukan panjang sisi segitiga siku-siku Indikator = 1. menentukan jenis-jenis segitiga jika panjang ketiga sisinya diketahui. 2. menentukan triple pythagoras. Tujuan Pembelajaran = 1. siswa dapat menentukan jenis-jenis segitiga jika panjang ketiga sisinya diketahui. 2. siswa dapat menentukan triple pythagoras. Jenis Segitiga jenis-jenis segitiga ditinjau dari besar sudutnya yang telah dipelajari yaitu, 1) Segitiga siku-siku adalah, segitiga yang besar salah satu sudutnya... 2) Segitiga... adalah, segitiga yang salah satu sudutnya ) Segitiga... adalah, segitiga... Untuk menentukan jenis segitiga dari kebalikan teorema pythagoras, kerjakanlah kegiatan berikut Alat/bahan : Lidi, isolasi. o Kegiatan 1 1) Ambillah 3 buah lidi yang panjangnya masing-masing sebesar 6 cm, 8 cm, dan 10 cm. 2) Bentuklah sebuah segitiga dan tempelkan pada LKS ditempat yang telah tersedia. BAB 5 TEOREMA PYTHAGORAS 85

92 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 3) Jenis segitiga apakah yang terbentuk? Yaitu: segitiga... 4) Misalkan sisi terpanjang = c maka nilai c =... dan c 2 =... sisi kedua = b maka nilai b =... dan b 2 =... sisi ketiga = a maka nilai a =... dan a 2 =... a 2 + b 2 = =... Maka, c 2... a 2 + b 2 (isilah tanda,, atau ) Jenis segitiga apa yang dapat kamu simpulkan dari hasil kegiatan di atas? Jenis segitiga dari hasil kegiatan di atas adalah..., karena memiliki hubungan c 2... a 2 + b 2 o Kegiatan 2 1) Ambillah 3 buah lidi yang panjangnya masing-masing sebesar 8 cm, 12 cm, dan 13 cm. 2) Bentuklah sebuah segitiga dan tempelkan pada LKS ditempat yang telah tersedia. 3) Jenis segitiga apakah yang terbentuk? Yaitu: segitiga... 5) Misalkan sisi terpanjang = c maka nilai c =... dan c 2 =... sisi kedua = b maka nilai b =... dan b 2 =... sisi ketiga = a maka nilai a =... dan a 2 =... a 2 + b 2 = = LKS MATEMATIKA KELAS VIII SEMESTER 1

93 Orang yang luar biasa itu sederhana dalam ucapan, tetapi hebat dalam tindakan Maka, c 2... a 2 + b 2 (isilah tanda,, atau ) Jenis segitiga apa yang dapat kamu simpulkan dari hasil kegiatan di atas? Jenis segitiga dari hasil kegiatan di atas adalah..., karena memiliki hubungan c 2... a 2 + b 2 o Kegiatan 3 1) Ambillah 3 buah lidi yang panjangnya masing-masing sebesar 6 cm, 8 cm, dan 12 cm. 2) Bentuklah sebuah segitiga dan tempelkan pada LKS ditempat yang telah tersedia. 3) Jenis segitiga apakah yang terbentuk? Yaitu: segitiga... 6) Misalkan sisi terpanjang = c maka nilai c =... dan c 2 =... sisi kedua = b maka nilai b =... dan b 2 =... sisi ketiga = a maka nilai a =... dan a 2 =... a 2 + b 2 = =... Maka, c 2... a 2 + b 2 (isilah tanda,, atau ) Jenis segitiga apa yang dapat kamu simpulkan dari hasil kegiatan di atas? Jenis segitiga dari hasil kegiatan di atas adalah..., karena memiliki hubungan c 2... a 2 + b 2 BAB 5 TEOREMA PYTHAGORAS 87

94 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Triple Pythagoras Dengan memperhatikan kuadrat sisi terpanjang dan jumlah kuadrat 2 sisi lain, kamu dapat menentukan jenis segitiga. Perhatikan pasangan dari 3 bilangan berikut! Manakah yang membentuk segitiga siku-siku? 1) 6, 8, 10 Penyelesaian: 10 2 = = =... Karena, pasangan bilangan 6, 8, 10 membentuk jenis segitiga... dan disebut triple pythagoras. 2) 3, 5, 6 Penyelesaian: 6 2 = = =... Karena, pasangan bilangan 3, 5, 6 tidak membentuk segitiga siku-siku, dan bukan tripel pythagoras Kesimpulan: Tripel Pytagoras adalah tiga bilangan asli Sebutkanlah 2 pasang triple pythagoras yang lain: 1) karena = + 2) karena = + 1) Tentukan jenis segitiga jika diketahui panjang sisi-sisinya sebagai berikut: a) 9 cm, 12 cm, 15 cm b) 5 cm, 8 cm, 12 cm c) 9 cm, 13 cm, 17 cm d) 8 cm, 15 cm, 20 cm LKS MATEMATIKA KELAS VIII SEMESTER 1

95 Orang yang luar biasa itu sederhana dalam ucapan, tetapi hebat dalam tindakan e) 7 cm, 24 cm, 25 cm 2) Tentukan apakah pasangan-pasangan bilangan berikut termasuk triple pythagoras atau bukan. a) 12, 16, c) 6, 8, e) 8, 15, 17 b) 7, 8, 11 d) 5, 3, 2 3) Pada segitiga ABC diketahui panjang AB=10 cm, BC=24 cm, dan AC=26 cm. a) Tunjukkan bahwa segitiga ABC tersebut segitiga siku-siku. b) Tentukan letak sudut siku-siku dari segitiga ABC tersebut? Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua BAB 5 TEOREMA PYTHAGORAS 89

96 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Pembelajaran 5.4 Standar Kompetensi = Menggunakan teorema pythagoras Dalam Pemecahan Masalah Kompetensi Dasar = Memecahkan masalah pada bangun datar yang berkaitan dengan teorema pythagoras Indikator = Menghitung perbandingan sisi-sisi segitiga siku-siku istimewa (salah satu sudutnya 30 0, 45 0, 60 0 ) Tujuan Pembelajaran = Siswa dapat menentukan perbandingan sisi-sisi segitiga siku-siku istimewa. Segitiga dengan sudut 45 0 o Perbandingan sisi-sisi segitiga siku-siku dengan sudut 45 0 Berikut Langkah kerja untuk menemukan perbandingan segitiga yang sudutnya 45 0 : 1) Gambarlah sebuah persegi ABCD pada tempat yang tersedia 2) Misalkan panjang sisi persegi adalah a 3) Hubungkan garis diagonal AC 4) Ada berapa buah segitiga yang terbentuk? Sebutkanlah nama segitiga yang terbentuk! segitiga... dan segitiga... 5) Berapakah besar sudut BAC yang terbentuk? BAC =... 6) Gambarkan kembali segitiga ABC yang terbentuk dari langkah (4) dan tulis besar sudut-sudut yang terbentuk. Gambar: Dengan menggunakan teorema pythagoras tentukan panjang sisi AC. AC 2 = AB AC 2 = a AC 2 =... AC = AC = a 90 LKS MATEMATIKA KELAS VIII SEMESTER 1

97 Orang yang luar biasa itu sederhana dalam ucapan, tetapi hebat dalam tindakan Dengan demikian perbandingan panjang sisi segitiga siku-siku ABC adalah: AB : BC : AC = a :... : a AB : BC : AC = : 1 :... Diketahui segitiga ABC dengan panjang sisi AB adalah 7 cm, tentukan panjang sisi AC seperti pada gambar di bawah ini! Penyelesaian: AB : AC = 1 :.. 7 :..= :. =. AC =.. Segitiga dengan sudut 60 0 dan 30 0 Untuk menemukan perbandingan segitiga yang sudutnya 60 0 ikuti langkah kerja berikut ini. 1) Gambarlah sebuah segitiga sama sisi ABC pada tempat yang tersedia,dengan panjang sisi 2a 2) Kemudian bagi dua segi tiga tersebut dengan menarik garis tinggi CD 3) Ada berapa buah segitiga siku-siku yang terbentuk? Sebutkanlah nama segitiga yang terbentuk! segitiga... dan segitiga... 4) Berapakah besar sudut BAC yang terbentuk? DBC =... 5) Gambarkan kembali segitiga DBC yang terbentuk dari langkah 4) dan tulis besar sudut-sudut yang terbentuk. Dengan menggunakan Teorema Pythagoras tentukan panjang BC CD 2 = CD 2 = CD 2 =... CD 2 =... Dengan demikian perbandingan panjang sisi segitiga siku-siku DBC adalah: BD : CD : BC =... :... : 2a BD : CD : BC =... :... :... BAB 5 TEOREMA PYTHAGORAS 91

98 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 1) Hitunglah panjang sisi yang belum diketahui. a)... b) c) ) Diketahui segitiga ABC siku-siku di C dan besar sudut BAC = 30 0 jika panjang AB= 8cm. Hitunglah panjang AC dan BC. 3) Diketahui segitiga PQR siku-siku di Q dengan panjang sisi PR adalah cm. Jika besar sudut QPR=45 0, tentukan panjang PQ dan QR. Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 92 LKS MATEMATIKA KELAS VIII SEMESTER 1

99 Orang yang luar biasa itu sederhana dalam ucapan, tetapi hebat dalam tindakan Pembelajaran 5.5 Standar Kompetensi = Menggunakan teorema pythagoras Dalam Pemecahan Masalah Kompetensi Dasar = Memecahkan masalah pada bangun datar yang berkaitan dengan teorema pythagoras Indikator = Menghitung panjang diagonal pada bangun datar dengan menggunakan teorema pythagoras. Tujuan Pembelajaran = Siswa dapat menerapkan teorema pythagoras pada bangun datar. Pada kondisi tertentu, teorema pythagoras dapat digunakan dalam perhitungan bangun datar. Sebuah persegi ABCD mempunyai panjang sisi 8 cm, tentukanlah: a) Sketsa gambarnya. b) Tentukan panjang diagonal. Penyelesaian: a. b. Salah satu diagonalnya AC AC 2 = AC 2 =... AC =... AC =... 1) Perhatikan gambar persegi panjang ABCD dibawah ini. Jika diketahui ukuran panjang dan lebar persegi panjang bertuurut-turut adalah 15 cm dan 8 cm, maka tentukanlah: a) Luas persegi panjang ABCD b) Panjang diagonal BD. Penyelesaian: 2) Perhatikan trapesium ABCD pada gambar disamping. Diketahui panjang alas trapesium adalah 7 cm, panjang sisi adalah 4 cm dan tinggi trapesium adalah 4 cm. tentukanlah: a) Panjang sisi miring AD. b) Keliling trapesium ABCD. c) Luas Trapesium ABCD. BAB 5 TEOREMA PYTHAGORAS 93

100 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh Penyelesaian: 3) Gambar disamping adalah bangun datar layang-layang PQRS. Jika diketahui panjang QS=52 cm, maka tentukanlah: a) Panjang ST b) Panjang PQ c) Luas layang-layang PQRS Penyelesaian: Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 94 LKS MATEMATIKA KELAS VIII SEMESTER 1

101 Orang yang luar biasa itu sederhana dalam ucapan, tetapi hebat dalam tindakan Pembelajaran 5.6 Standar Kompetensi = Menggunakan teorema pythagoras Dalam Pemecahan Masalah Kompetensi Dasar = Menggunakan Teorema Pythagoras untuk menentukan panjang sisi segitiga siku-siku Indikator = Menerapkan teorema pythagoras dalam pemecahan masalah Tujuan Pembelajaran = Siswa dapat menerapkan teorema pythagoras dalam pemecahan masalah Dalam kehidupan sehari-hari banyak sekali masalah-masalah yang dapat dipecahkan menggunakan teorema Pythagoras. Untuk mempermudah perhitungan, alangkah baiknya jika permasalahan tersebut direpresentasikan dalam bentuk gambar. Coba kamu perhatikan dan pelajari contoh-contoh soal berikut! Sebuah tangga bersandar pada tembok. Jarak antara kaki tangga dengan tembok 2 meter dan jarak antara tanah dan ujung atas tangga 8 meter. Hitunglah panjang tangga! 1) Representasikan permasalahan di atas dan gambarkanlah. 2) Gunakan teorema Pythagoras untuk menghitung panjang sisi BC... 1) Sebuah televisi memiliki lebar layar 15 cm dan tinggi layar 8 cm. Tentukanlah: a) panjang diagonal layar televisi tersebut. b) keliling layar televisi tersebut. c) luas layar televisi tersebut. 2) Dua buah tiang berdampingan berjarak 24 m. Jika tinggi tiang masing-masing adalah 22 m dan 12 m, hitunglah panjang kawat penghubung antara ujung tiang tersebut. BAB 5 TEOREMA PYTHAGORAS 95

102 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 3) Sebidang sawah berbentuk persegi panjang berukuran 40 m x 9 m. Sepanjang keliling dan kedua diagonalnya akan dibuat pagar dengan biaya Rp per meter. Hitunglah: a) panjang pagar. b) biaya pembuatan pagar. 4) Amat akan menanam pohon di sekeliling kebunnya yang berbentuk seperti gambar disamping. Jarak antara pohon yang satu dengan yang lain adalah 2 m. a) Tentukan panjang AB b) Tentukan keliling Kebun c) Berapa banyak pohon yang dapat di tanam? Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 96 LKS MATEMATIKA KELAS VIII SEMESTER 1

103 Orang yang luar biasa itu sederhana dalam ucapan, tetapi hebat dalam tindakan Pembelajaran 5.7 Standar Kompetensi = Menggunakan teorema pythagoras dalam pemecahan masalah Kompetensi Dasar = Menggunakan Teorema Pythagoras untuk menentukan panjang sisi segitiga siku-siku Indikator = Menghitung panjang diagonal ruang dan diagonal bidang pada bangun ruang Tujuan Pembelajaran = Siswa dapat menghitung panjang diagonal ruang dan diagonal bidang pada bangun ruang Selain dimanfaatkan pada segitiga siku-siku, teorema Pythagoras juga dapat digunakan pada bangun ruang untuk mencari panjang diagonal bidang dan diagonal ruang. Hal ini dikarenakan diagonal bidang dan diagonal ruang merupakan sisi miring bagi sisi bidangnya. Diketahui kubus ABCD.EFGH dengan panjang AB= 15 cm. Hitunglah: a) Panjang diagonal bidang AC. b) Panjang Diagnal ruang AG. Penyelesaian Kubus merupakan bangun ruang yang semua sisinya sama panjang, oleh karena itu panjang AB = 15 cm dan Panjang BC=15 cm. 1) Pada limas T.PQRS di samping, alas limas berbentuk persegi dengan panjang sisi8 cm, sedangkan panjang TO =12 cm a) Hitunglah panjang TU b) Hitung luas Δ TQR BAB 5 TEOREMA PYTHAGORAS 97

104 MGMP Matematika MATRIKS Wil. Timur Kota Langsa, Aceh 2) Pada gambar disamping balok ABCD.EFGH dengan sisi alas ABCD dan sisi atas EFGH. Panjang rusuk AB=8 cm, BC=6 cm dan CG=4 cm a) Hitung panjang AC b) Hitung luas bidang ACGE c) Hitung keliling bidang ACGE Kognitif Afektif Psikomotorik Paraf Guru Paraf Orang Tua 98 LKS MATEMATIKA KELAS VIII SEMESTER 1

105 Orang yang luar biasa itu sederhana dalam ucapan, tetapi hebat dalam tindakan TETA-TEKI SILANG Mendatar: 1. Menurun: 1. Kuadrat Kuadrat Kuadrat Luas persegi dengan panjang 40 satuan (balik) Triple pytagoras:..., 15, ABC siku-siku di A. Jika AB=240 cm dan AC=320 cm, maka BC= Triple pytagoras: 20,..., ab =... BAB 5 TEOREMA PYTHAGORAS 99

106 DAFTAR PUSTAKA Dewi Nuharini, 2008, Matematika Konsep dan Aplikasinya: untuk SMP Kelas VIII, Buku Sekolah Elektronik (BSE), Pusat Pembukuan Departemen Pendidikan Nasional, Jakarta. Endah Budi Rahayu, 2008, Contextual Teaching and Learning Matematika: Sekolah Menengah Pertama/Madrasah Tsanawiyah Kelas VIII Edisi 4, Buku Sekolah Elektronik (BSE), Pusat Pembukuan Departemen Pendidikan Nasional, Jakarta. Heru Nugroho, 2009, Matematika 2: SMP dan MTs Kelas VIII, Buku Sekolah Elektronik (BSE), Pusat Pembukuan Departemen Pendidikan Nasional, Jakarta. Nuniek Avianti Agus, 2008, Mudah Belajar Matematika untuk kelas VIII Sekolah Menengah Pertama/Madrasah Tsanawiyah, Buku Sekolah Elektronik (BSE), Pusat Pembukuan Departemen Pendidikan Nasional, Jakarta. Syamsul Junaidi, dkk, 2004, Matematika SMP untuk Kelas VIII, Penerbit Erlangga (Esis), Jakarta. 100 LKS MATEMATIKA KELAS VIII SEMESTER 1

107 TIM PENYUSUN No Nama Instansi Keterangan 1 Yenny Suzana, M.Pd. Universitas Zawiyah Cot Kala, Langsa Pembimbing 2 Hardani, S.Pd. SMPN 1 LANGSA Ketua 3 Intan Yuliani, S.Pd. SMPN 4 LANGSA Sekretaris 4 Muhammad Yusuf, S.Pd SMPN 1 LANGSA Bendahara 5 Nur Asni, S.Pd SMPN 1 LANGSA Anggota 6 Ida, S.Pd SMPN 1 LANGSA Anggota 7 Effendi SMPN 1 LANGSA Anggota 8 Meltda Silvira, S.Pd. SMPN 1 LANGSA Anggota 9 Elmayenti, S.Pd. SMPN 1 LANGSA Anggota 10 Nuraini, S.Pd. SMPN 5 LANGSA Anggota 11 Syah Misriah, S.Pd.I. SMPN 5 LANGSA Anggota 12 Zuraidah SMPN 5 LANGSA Anggota 13 Taufik Zulhidayat, S.Pd. SMPN 7 LANGSA Anggota 14 Ibrahim, S.Pd. SMPN 7 LANGSA Anggota 15 Sarmila, S.Pd. SMPN 10 LANGSA Anggota 16 Widiya Mandasari, S.Pd. SMPN 10 LANGSA Anggota 17 Muhammad Irwansa, S.Pd. SMPN 10 LANGSA Anggota 18 Listriana, S.Pd. SMPN 12 LANGSA Anggota 19 Epi Yulida, S.Pd.I. SMPN 12 LANGSA Anggota 20 Iswadi, S.Pd. SMPN 13 LANGSA Anggota 21 Suyani, S.Pd. SMPN 13 LANGSA Anggota 22 Salpia, S.T. SMPN 13 LANGSA Anggota

108

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus PErSamaan GarIS lurus Untuk SMP Kelas VIII Peta Konsep Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus Kompetensi Dasar Menentukan gradien, persamaan dan grafik garis

Lebih terperinci

Faktorisasi Bentuk Aljabar

Faktorisasi Bentuk Aljabar Faktorisasi Bentuk Aljabar Satuan Pendidikan Bidang Study Kelas / Semester : SMP. N 2 Jatipuro : MATEMATIKA : VIII / I 1. STANDAR KOMPETENSI Memahami bentuk aljabar. 2. KOMPETENSI DASAR 1.1 Melakukan operasi

Lebih terperinci

A. Menentukan Letak Titik

A. Menentukan Letak Titik Apa yang akan Anda Pelajari? Koordinat Cartesius Mengenal pengertian dan menentukan gradien garis lurus Menentukan persamaan garis lurus Menggambar grafik garis lurus Menentukan Gradien, Persamaan garis

Lebih terperinci

Faktorisasi Suku Aljabar

Faktorisasi Suku Aljabar Bab 1 Tujuan Pembelajaran Setelah mempelajari bab ini siswa diharapkan mampu: Menjelaskan pengertian koe sien, variabel, konstanta, suku satu, suku dua, dan suku banyak; Menyelesaikan masalah operasi tambah,

Lebih terperinci

Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius

Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius Pengertian Persamaan Garis Lurus Sebelum memahami pengertian persamaan garis lurus, ada baiknya kamu mengingat kembali materi tentang koordinat Cartesius persamaan garis lurus selalu digambarkan dalam

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas : VIII (Delapan) Semester : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan

Lebih terperinci

2. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sama.

2. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sama. A. OPERASI BENTUK ALJABAR 1. Pengertian suku, koefisien, variabel, dan konstanta bentuk aljabar Bentuk 8x + 17 merupakan bentuk aljabar dengan x sebagai variabel, 8 sebagai koefisien, dan 17 adalah konstant

Lebih terperinci

FAKTORISASI SUKU ALJABAR

FAKTORISASI SUKU ALJABAR 1 FAKTORISASI SUKU ALJABAR Pernahkah kalian berbelanja di supermarket? Sebelum berbelanja, kalian pasti memperkirakan barang apa saja yang akan dibeli dan berapa jumlah uang yang harus dibayar. Kalian

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

3 OPERASI HITUNG BENTUK ALJABAR

3 OPERASI HITUNG BENTUK ALJABAR OPERASI HITUNG BENTUK ALJABAR Pada arena balap mobil, sebuah mobil balap mampu melaju dengan kecepatan (x + 10) km/jam selama 0,5 jam. Berapakah kecepatannya jika jarak yang ditempuh mobil tersebut 00

Lebih terperinci

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS)

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS) LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL SEKOLAH KELAS MATA PELAJARAN SEMESTER BILANGAN Standar Kompetensi KOMPETENSI DASAR 1.1 Melakukan operasi hitung bilangan bulat. : SMP : VII : MATEMATIKA

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN No : 1 Mata Pelajaran : Matematika Kelas / Semester : VIII /1

RENCANA PELAKSANAAN PEMBELAJARAN No : 1 Mata Pelajaran : Matematika Kelas / Semester : VIII /1 RENCANA PELASANAAN PEMBELAJARAN No : 1 Mata Pelajaran : Matematika elas / Semester : V /1 Alokasi : 4 jam pelajaran A. Standar ompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis

Lebih terperinci

Bab 1. Faktorisasi Suku Aljabar. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus.

Bab 1. Faktorisasi Suku Aljabar. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Bab 1 Faktorisasi Suku Aljabar Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar 1.1 Melakukan operasi aljabar. 1.2 Menguraikan bentuk aljabar ke dalam

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

Latihan Soal Persiapan UAS 1 Matematika Kelas 8 SMP 2017/2018 [1]

Latihan Soal Persiapan UAS 1 Matematika Kelas 8 SMP 2017/2018 [1] Latihan Soal Persiapan UAS Matematika Kelas 8 SMP 07/08 [] I. Pilihlah jawaban yang paling tepat. Koefisien dan konstanta dari persamaan adalah. Suku-suku sejenis dari bentuk aljabar adalah... 3. Bentuk

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB II ALJABAR Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya

Lebih terperinci

KUMPULAN SOAL MATEMATIKA SMP KELAS 8

KUMPULAN SOAL MATEMATIKA SMP KELAS 8 KUMPULAN SOAL MATEMATIKA SMP KELAS 8 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co,cc Email: fatkoer@gmail.com 009 Evaluasi Bab 1 Untuk nomor 1 sampai 5 pilihlah

Lebih terperinci

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus.

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Bab 3 Persamaan Garis Lurus Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar 1.4 Menentukan gradien, persamaan dan grafik garis lurus 3.1 Pengertian

Lebih terperinci

Silabus dan Rencana Pelaksanaan Pembelajaran (RPP)

Silabus dan Rencana Pelaksanaan Pembelajaran (RPP) Ponco Sujatmiko MODEL Silabus dan Rencana Pelaksanaan Pembelajaran (RPP) MATEMATIKA KREATIF Konsep dan Terapannya untuk Kelas VIII SMP dan MTs Semester 1 2A Berdasarkan Permendiknas Nomor 22 Tahun 2006

Lebih terperinci

MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd.

MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd. MAKALAH RELASI DAN FUNGSI Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 1 Dosen Pengampu: Koryna Aviory, S.Si.,M.Pd. Disusun oleh: Kelompok 8 1. Yusie Kristiawan (14144100113)

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

BAB XI PERSAMAAN GARIS LURUS

BAB XI PERSAMAAN GARIS LURUS BAB XI PERSAMAAN GARIS LURUS A. Pengertian Pesamaan Garis Lurus Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

BAB MATRIKS. Tujuan Pembelajaran. Pengantar

BAB MATRIKS. Tujuan Pembelajaran. Pengantar BAB II MATRIKS Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks persegi merupakan invers

Lebih terperinci

MODUL MATA PELAJARAN MATEMATIKA

MODUL MATA PELAJARAN MATEMATIKA KERJASAMA DINAS PENDIDIKAN KOTA SURABAYA DENGAN FAKULTAS MIPA UNIVERSITAS NEGERI SURABAYA MODUL MATA PELAJARAN MATEMATIKA Bilangan dan Aljabar untuk kegiatan PELATIHAN PENINGKATAN MUTU GURU DINAS PENDIDIKAN

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Dalam ilmu ekonomi, kita selalu berhadapan dengan variabel-variabel ekonomi seperti harga, pendapatan nasional, tingkat bunga, dan lainlain. Hubungan kait-mengkait

Lebih terperinci

Bab 2. Relasi dan Fungsi. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar

Bab 2. Relasi dan Fungsi. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar Bab 2 Relasi dan Fungsi Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar 1.3 Memhami relasi dan fu ngsi 1.4 Menentukan nilai fungsi. 1.5 Membuat sketsa

Lebih terperinci

RELASI DAN FUNGSI. 2. Misalkan A = {2,3,4,5} dan B = {2,3,4,5,6}. Buatlah relasi dari A ke B yang

RELASI DAN FUNGSI. 2. Misalkan A = {2,3,4,5} dan B = {2,3,4,5,6}. Buatlah relasi dari A ke B yang RELASI DAN FUNGSI A. Relasi I. Pengertian Relasi Relasi dari himpunan A ke himpunan B adalah hubungan yang memasangkan anggota himpunan A dengan anggota-anggota himpunan B. Misalkan A={Adi, Boni, Chris}

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

Bab. Faktorisasi Aljabar. A. Operasi Hitung Bentuk Aljabar B. Pemfaktoran Bentuk Aljabar C. Pecahan dalam Bentuk Aljabar

Bab. Faktorisasi Aljabar. A. Operasi Hitung Bentuk Aljabar B. Pemfaktoran Bentuk Aljabar C. Pecahan dalam Bentuk Aljabar Bab Sumber: Science Encylopedia, 997 Faktorisasi Aljabar Masih ingatkah kamu tentang pelajaran Aljabar? Di Kelas VII, kamu telah mengenal bentuk aljabar dan juga telah mempelajari operasi hitung pada bentuk

Lebih terperinci

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta 1 RELASI Oleh: Mega Inayati Rif ah, S.T., M.Sc. 2 RELASI Relasi adalah suatu aturan yang memasangkan anggota himpunan

Lebih terperinci

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini.

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. Gambar 1.1 Gambar 1.1 menunjukkan suatu kumpulan anak yang terdiri atas Tino, Atu, Togar, dan Nia berada di sebuah toko alat tulis.

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan

Lebih terperinci

BAB I BILANGAN BULAT dan BILANGAN PECAHAN

BAB I BILANGAN BULAT dan BILANGAN PECAHAN File asli diunduh di 8-Spensasi.blogspot.com BAB I BILANGAN BULAT dan BILANGAN PECAHAN A. Bilangan Bulat I. Pengertian Bilangan bulat terdiri atas bilangan bulat positif atau bilangan asli, bilangan nol

Lebih terperinci

Soal Ulangan Umum Semester 1 Kelas VIII

Soal Ulangan Umum Semester 1 Kelas VIII Soal Ulangan Umum Semester 1 Kelas VIII A. Berilah tanda silang (x) pada huruf a, b, c, d atau e di depan jawaban yang benar! 1. Salah satu factor dari x - xy 4y adalah cm a. (x - 4y)(x + 3y) b. (x + 4y)(x

Lebih terperinci

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Kemampuan yang diuji. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat.

Lebih terperinci

C. 30 Januari 2001 B. 29 Januari 2001

C. 30 Januari 2001 B. 29 Januari 2001 1. Notasi pembentuk himpunan dari B = {1, 4, 9} adalah... A. B = {x x kuadrat tiga bilangan asli yang pertama} B. B = {x x bilangan tersusun yang kurang dari 10} C. B = {x x kelipatan bilangan 2 dan 3

Lebih terperinci

PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015

PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015 PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015 http://matematohir.wordpress.com/ Mata Pelajaran Kelas / Semester : Matematika : VIII / Ganjil Nama : Mathematics

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp. 8400005,

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Kemampuan yang diuji. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat.

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

RELASI DAN FUNGSI. b. Diberikan dua himpunan:

RELASI DAN FUNGSI. b. Diberikan dua himpunan: RELASI DAN FUNGSI A. Relasi. Pengertian Relasi Relasi menurut bahasa berarti hubungan. Dalam matematika, relasi atau hubungan menyatakan hubungan antara anggota suatu himpunan dengan anggota himpunan yang

Lebih terperinci

Jakarta,. Guru Mata Pelajaran Memeriksa / Mengetahui Kepala SMP NIP... NIP...

Jakarta,. Guru Mata Pelajaran Memeriksa / Mengetahui Kepala SMP NIP... NIP... Kompetensi Dasar : 2.1 Mengenali bentuk aljabar dan unsur-unsurnya. 2.2 Melakukan operasi pada bentuk aljabar. Indikator : 1. Menentukan variabel, koefisien, konstanta, dan suku sejenis. 2. Menentukan

Lebih terperinci

BAB I OPERASI ALJABAR DAN PEMFAKTORAN BENTUK ALJABAR

BAB I OPERASI ALJABAR DAN PEMFAKTORAN BENTUK ALJABAR BAB I OPERASI ALJABAR DAN PEMFAKTORAN BENTUK ALJABAR Setelah mempelajari bab ini kamu diharapkan mampu melakukan operasi aljabar, beberapa alternatif penyelesaian yang dihadapi oleh siswa terkait dengan

Lebih terperinci

MODUL 1 SISTEM KOORDINAT KARTESIUS

MODUL 1 SISTEM KOORDINAT KARTESIUS 1 MODUL 1 SISTEM KOORDINAT KARTESIUS Dalam matematika, sistem koordinat kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang biasa disebut koordinat x (absis)

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4 BAHAN BELAJAR MANDIRI 4 PERSAMAAN GARIS PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep garis, dan persamaan garis lurus yang dinyatakan ke dalam bentuk implisit maupun bentuk

Lebih terperinci

LAMPIRAN A. A1. Analisis kurikulum. A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar

LAMPIRAN A. A1. Analisis kurikulum. A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar 86 LAMPIRAN A A1. Analisis kurikulum A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar A. Materi, contoh soal dan soal latihan permainan materi operasi aljabar 87 ANALISIS KURIKULUM

Lebih terperinci

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah No RUMUS 1 Bilangan Bulat Sifat penjumlahan bilangan bulat a. Sifat tertutup a + b = c; c juga bilangan bulat b. Sifat komutatif a + b = b + a c. Sifat asosiatif (a + b) + c = a + (b + c) d. Mempunyai

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

53

53 LAMPIRAN 53 54 55 56 57 RENCANA PELAKSAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP Negeri 1 Sooko Ponorogo Mata Pelajaran : Matematika Kelas / Semester : VIII / 1 Materi Pokok : Persamaan Garis Lurus Alokasi

Lebih terperinci

LAMPIRAN 1 DAFTAR NILAI SISWA

LAMPIRAN 1 DAFTAR NILAI SISWA LAMPIRAN LAMPIRAN 1 DAFTAR NILAI SISWA DAFTAR NILAI MATEMATIKA KELAS VIII A SEMESTER 1 SMP PANGUDI LUHUR TUNTANG NO NAMA Nilai Sebelum Tindakan Nilai Siklus 1 Nilai Siklus 2 1 R1 40 70 40 2 R2 45 58 90

Lebih terperinci

Faktorisasi Bentuk Aljabar. Suku Tunggal dan Suku Banyak. (suku banyak) disebut bentuk Aljabar.

Faktorisasi Bentuk Aljabar. Suku Tunggal dan Suku Banyak. (suku banyak) disebut bentuk Aljabar. 569 Lembar Kerja Siswa Faktorisasi Bentuk Aljabar Materi Singkat: 1. Pengertian Suku pada Bentuk Aljabar 1.1.1 Suku Tunggal dan Suku Banyak 4a, 5a 2 b, 6 x 2 3 xy 8 y Bentuk-bentuk seperti (suku satu/tunggal)

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 1. Perhatikan himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = { 1 < 11, bilangan ganjil} C = {semua faktor dari 12}

Lebih terperinci

: Gradien dan Persamaan Garis Lurus

: Gradien dan Persamaan Garis Lurus PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA Jl. Gajah Mada No. 109 Telp. (0362) 22441 Fax. (0362) 2970 Website: http://www.smpn1singaraja.sch.id E-mail: smpn1_singaraja@yahoo.co.id

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain Pesan soal-soal matematika untuk SD, SMP dan SMA? Soal ulangan harian, ulangan mid, ulangan semester, soal-soal UAN dll. Tulis

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan) : Menentukan rumus fungsi jika nilainya diketahui

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan) : Menentukan rumus fungsi jika nilainya diketahui RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah Mata Pelajaran Kelas Semester : SMP Negeri 3 Magelang : Matematika : VIII (Delapan) : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi,

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci

PAKET 3 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 3 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET 3 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs. * Kemampuan yang diuji. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat.

Lebih terperinci

BERBASIS PENDEKATAN KONTEKSTUAL. SMP/MT s. Kelas :... Sekolah :...

BERBASIS PENDEKATAN KONTEKSTUAL. SMP/MT s. Kelas :... Sekolah :... BERBASIS PENDEKATAN KONTEKSTUAL MODUL MATEMATIKA ALJABAR SMP/MT s SMP/MT s Elvira Resa Krismasari Nama :... Kelas :... Sekolah :... Modul Matematika Aljabar Berbasis Pendekatan Kontekstual Untuk Siswa

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar,persamaan dan pertidaksamaan linier satu variabel.

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar,persamaan dan pertidaksamaan linier satu variabel. Bab Persamaan Garis Lurus Standar Kompetensi Memahami bentuk aljabar,persamaan dan pertidaksamaan linier satu variabel. Kompetensi Dasar 1.1. Mengenali bentuk aljabar dan unsur-unsurnya. 1.. Melakukan

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA

PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA Jl. Gajah Mada No. 109 Telp. (0362) 22441 Fax. (0362) 2970 Website: http://www.smpn1singaraja.sch.id E-mail: smpn1_singaraja@yahoo.co.id

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

Bab. Persamaan Garis Lurus. Pengertian Persamaan Garis Lurus Gradien Menentukan Persamaan Garis lurus

Bab. Persamaan Garis Lurus. Pengertian Persamaan Garis Lurus Gradien Menentukan Persamaan Garis lurus Bab Sumb er: Scien ce Enclopedia, 997 Persamaan Garis Lurus Dalam suatu perlombaan balap sepeda, seorang pembalap mengauh sepedana dengan kecepatan tetap. Setiap 5 detik, pembalap tersebut menempuh jarak

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2009

SOAL UN DAN PENYELESAIANNYA 2009 1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : VIII (Delapan) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah Mata Pelajaran Kelas Semester : SMP Negeri 3 Magelang : Matematika : VIII (Delapan) : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi,

Lebih terperinci

KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK

KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIK Jenis Sekolah : SMP/MTs Alokasi Waktu : 90 Menit Mata Pelajaran : Matematika Jumlah Soal : 10 butir Kelas/Semester : VIII/2 Bentuk Soal : Uraian Kurikulum

Lebih terperinci

F U N G S I A R U M H A N D I N I P R I M A N D A R I

F U N G S I A R U M H A N D I N I P R I M A N D A R I F U N G S I A R U M H A N D I N I P R I M A N D A R I DEFINISI Fungsi adalah suatu aturan yang memetakan setiap anggota himpunan A pada tepat satu anggota himpunan B. Dimana: Himpunan A disebut domain

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Nama Sekolah : SMP Islam Sabilillah Malang Mata Pelajaran : Matematika Kelas / Semester : VIII / Ganjil Materi Pokok : Operasi Bentuk Aljabar Waktu : 2 x 40 Menit JP Pertemuan

Lebih terperinci

Matematika

Matematika Fungsi dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Fungsi Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain,

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

MODUL ALJABAR. February 3, 2006

MODUL ALJABAR. February 3, 2006 MODUL ALJABAR February 3, 2006 1 Pendahuluan Aljabar merupakan bahasa simbol dan relasi. Dalam kehidupan seharihari aljabar seringkali digunakan tanpa memperdulikan apa pengertian aljabar tersebut. Dalam

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : VIII (Delapan) Mata Pelajaran : Matematika Semester : I (satu) ALJABAR Standar : 1. Memahami bentuk aljabar, relasi,, dan persamaan garis lurus Indikator Kegiatan

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

Fungsi Grafik Fungsi. Kalkulus 1. Fungsi dan Grafik Fungsi. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Fungsi Grafik Fungsi. Kalkulus 1. Fungsi dan Grafik Fungsi. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Fungsi dan Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Fungsi Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu

Lebih terperinci

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y BAB 3 FUNGSI LINIER DAN PERSAMAAN GARIS LURUS 3.1 Pengantar Fungsi linier adalah bentuk fungsi yang paling sederhana. Banyak hubungan antara variable ekonomi, dalam jangka pendek dianggap linier. Pengetahuan

Lebih terperinci

TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI EKA REZEKI AMALIA DIAH RAHMAWATI HANIYAH MATKOM II A

TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI EKA REZEKI AMALIA DIAH RAHMAWATI HANIYAH MATKOM II A TUGAS HIMPUNAN DAN FUNGSI OLEH ARNASARI MERDEKAWATI HADI 06320003 EKA REZEKI AMALIA 06320004 DIAH RAHMAWATI 06320027 HANIYAH 06320029 MATKOM II A JURUSAN MATEMATIKA DAN KOMPUTASI FAKULTAS KEGURUAN DAN

Lebih terperinci

Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar : 1.1. Melakukan operasi aljabar

Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar : 1.1. Melakukan operasi aljabar Standar Kompetensi :. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar :.. Melakukan operasi aljabar A. PENGERTIAN KOEFISIEN, VARIABEL, KONSTANTA, SUKU SATU, SUKU DUA

Lebih terperinci

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 ALJABAR Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 Aljabar adalah salah satu cabang penting dalam matematika. Kata aljabar

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah PERSAMAAN GARIS. SIMAK UI Matematika Dasar 9, 9 Diketahui adalah garis l yang dinyatakan oleh det( A) dimana A x y, persamaan garis yang sejajar l dan melalui titik (,4) adalah... A. x y 7 C. x y E. x

Lebih terperinci

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional Rekap Nilai Ujian Nasional tahun 2011 Pada tahun 2011 rata-rata nilai matematika 7.31, nilai terendah 0.25, nilai tertinggi 10, dengan standar deviasi sebesar 1.57. Secara rinci perolehan nilai Ujian Nasional

Lebih terperinci

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK DOSEN Fitri Yulianti, SP, MSi. Fungsi Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan : 1. Variabel bebas yaitu variabel yang besarannya

Lebih terperinci

Mata Pelajaran MATEMATIKA Kelas X

Mata Pelajaran MATEMATIKA Kelas X Mata Pelajaran MATEMATIKA Kelas X SEKOLAH MENENGAH ATAS dan MADRASAH ALIYAH PG Matematika Kelas X 37 Bab 1 Bentuk Pangkat, Akar, dan Logaritma Nama Sekolah : SMA dan MA Mata Pelajaran : Matematika Kelas

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci