OSN Guru Matematika SMA (Olimpiade Sains Nasional)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "OSN Guru Matematika SMA (Olimpiade Sains Nasional)"

Transkripsi

1 ocsz Pembahasan Soal OSN Guru 2012 OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang

2 Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE GURU MATEMATIKA SMA TINGKAT PROPINSI TANGGAL 7 JUNI 2012 By Pak Anang ( 1. Pak Tamrin sedang membuat rencana pembelajaran Matematika kelas X materi aturan sinus. Agar siswa lebih memahami untuk apa belajar aturan sinus, Pak Tamrin akan memanfaatkan materi sebelumnya yang dapat mengantarkan ke pembelajaran aturan sinus. Permasalahan apa dalam materi prasyarat yang dapat mengantarkan pemahaman pada materi aturan sinus tersebut? Materi prasyarat: (1) Siswa mampu menghitung operasi bilangan real. (2) Siswa mampu menunjukkan garis tinggi segitiga. (3) Siswa mampu memahami definisi perbandingan trigonometri sinus Pada aturan sinus, siswa harus bisa mendefinisikan garis tinggi segitiga dari salah satu sisi segitiga dengan melihat pengertian sinus pada materi pembelajaran sebelumnya. Sebagai contoh perhatikan segitiga ABC di bawah: C b a A D B Dengan melihat garis tinggi AD, dimana AD bisa didefinisikan menggunakan sinus sudut A maupun sinus sudut B, siswa akan dapat menemukan pemahaman rumus aturan sinus. Garis tinggi CD bisa dinyatakan sebagai perbandingan sinus dari sudut A dan B: sin A = CD b CD = b sin A sin B = CD CD = a sin B a a Jadi, dari persamaan a sin B = b sin A akan diperoleh persamaan aturan sinus sin A = b sin B Dari dua nilai CD tersebut, siswa diberi pemahaman bahwa nilai CD dapat dihubungkan menjadi aturan sinus apabila ada salah satu dari variabel yang mempengaruhi nilai CD tersebut tidak diketahui.

3 Halaman 3 dari Untuk mencapai tujuan pembelajaran Siswa dapat menentukan sisa pembagian suku banyak f(x) dengan suku banyak berbentuk (x a), Pak Soleh memilih lintasan belajar sebagai berikut: (1) Mengingatkan kembali pembagian suku banyak f(x) dengan suku banyak g(x) yang dapat ditulis dalam bentuk f(x) = g(x).h(x) + S(x) dengan H(x) hasil bagi dan S(x) sisa pembagian. (2) Memandang g(x) = x a sehingga f(x) = (x a)h(x) + S(x) (3) Menentukan S(x) dengan memandang f(x) berlaku untuk semua x, termasuk x = a. Pendekatan yang dipilih oleh Pak Soleh untuk mencapai tujuan pembelajaran dengan lintasan belajar seperti itu disebut pendekatan Pendekatan deduktif adalah cara yang dilakukan oleh guru di dalam mencapai tujuan pembelajaran dengan menggunakan aturan yang sudah dijamin kebenarannya. Proses pendekatan deduktif secara matematika dapat dirumuskan sebagai berikut: Aturan : p q Fakta yang dimiliki : p Kesimpulan q Dari lintasan belajar yang dilakukan, fakta yang dihadapi yang sudah diketahui siswa adalah f(x) = (x a) H(x) + S(x) Dengan mengunakan aturan bahwa: f(a) = (a a) H(a) + S(a) S(a) = f(a) Sehingga akan diperoleh kesimpulan bahwa: S(a) = f(a) Dengan demikian lintasan belajar seperti itu menggunakan pendekatan deduktif.

4 Halaman 4 dari Seorang guru matematika kelas X sedang merencanakan pembelajaran materi aturan cosinus. Agar siswa memahami pentingnya materi aturan cosinus ini, guru itu memikirkan bagaimana lintasan belajarnya. Tuliskan lintasan belajar (urutan proses pembelajaran) sebelum menurunkan aturan cosines tersebut! Lintasan belajar menurunkan rumus aturan kosinus: (1) Mengingatkan kembali bahwa pada segitiga sembarang juga berlaku perbandingan trigonometri serta aturan Pythagoras dengan cara menarik garis tinggi segitiga. Dan mengingatkan juga bahwa garis tinggi segitiga tersebut membagi segitiga menjadi dua segitiga siku-siku. C C b a b a A c D B A c B D (2) Memandang salah satu segitiga siku-siku dan menyatakan aturan Pythagoras yang berlaku. a 2 = CD 2 + BD 2 (3) Menyatakan perbandingan sinus dan kosinus pada segitiga siku-siku yang lain. sin A = CD b CD = b sin A cos A = AD b AD = b cos A (4) Menghubungkan aturan Pythagoras dan perbandingan trigonometri yang telah didapatkan, sehingga didapatkan persamaan untuk menurunkan rumus aturan kosinus. a 2 = CD 2 + (c AD) 2 (5) Menurunkan rumus yang telah didapatkan, dengan mengingatkan kembali tentang perkalian faktor (x y) 2 dan identitas trigonometri (sin 2 x + cos 2 x = 1). (6) Menemukan aturan cosinus: a 2 = b 2 + c 2 2bc cos A (7) Melakukan analisis yang sama untuk menemukan aturan cosinus yang lain: b 2 = a 2 + c 2 2ac cos B c 2 = a 2 + b 2 2ab cos C

5 Halaman 5 dari Pak Hidayat akan mengukur kemampuan dalam mengukur jarak dari titik C ke bidang BPD dalam ruang dimensi tiga seperti di bawah ini G P H E F D C A Oleh karena penilaian dilakukan sambil Pak Hidayat membimbing siswa dalam menyelesaikan masalah yang terkait dengan konsep itu ia perlu mengetahui standar penilaian yang praktis dan sederhana. Standar penilaian tersebut berupa kemampuankemampuan dalam menerapkan prosedur penentuan jarak titik ke bidang. Apa yang menjadi kemampuan kunci (penentu kebenaran secara keseluruhan) dalam menentukan jarak tersebut? Konsep mencari jarak titik C ke bidang BPD: Buat garis g pada bidang yang melalui C dan tegak lurus bidang BPD. Jika titik tembus garis g pada bidang BPD adalah Q, maka jarak C ke bidang BPD adalah CQ. Langkah-langkahnya: Memperluas bidang BPD dengan melukis perpanjangan garis DP dan perpanjangan garis CH hingga berpotongan di titik R. Serta menarik garis dari titik B ke R. Didapatkan bidang DBR. Melukis garis pada bidang ABCD yang melewati C dan memotong tegak lurus BD di titik S. Menghitung panjang CS, CR dan SR. Melukis segitiga CSR dengan titik Q berada di SR sedemikian sehingga CQ tegak lurus dengan SR. R Menghitung CQ menggunakan perbandingan atau aturan cosinus. B Jadi, dengan melihat uraian di atas maka yang menjadi kemampuan kunci dalam menentukan jarak dari titik C ke bidang BDP adalah kemampuan menentukan titik S sebagai proyeksi dari titik C ke garis BD. Jika penentukan titik S ini salah, maka proses selanjutnya dipastikan akan salah. E G D P Q F H C A S B

6 Halaman 6 dari Tranformasi mempunyai banyak jenis sehingga guru perlu menyederhakan proses pembelajaran. Tuliskan dengan singkat dan jelas proses pembelajaran tersebut! 1. Mengingatkan tentang persamaan garis. 2. Memberi stimulus tentang empat jenis transformasi, translasi (pergeseran), refleksi (pencerminan), rotasi (perputaran), dan dilatasi (perkalian). 3. Menegaskan bahwa translasi adalah pergeseran yang berkaitan dengan vektor, jadi matriks translasinya hanya matriks baris dan arah pergeseran mengikuti aturan sumbu kartesius. 4. Menegaskan bahwa refleksi adalah pencerminan terhadap sebuah garis tertentu yang bertindak sebagai sumbu simetri, sambil menanamkan kembali sifat bayangan pencerminan dan aturan sumbu kartesius. 5. Menegaskan bahwa rotasi adalah perputaran terhadap sebuah titik pusat sebesar sudut putar dan dipengaruhi oleh arah putar, sambil menanamkan kembali sifat-sifat penjumlahan sudut trigonometri. 6. Menegaskan bahwa rotasi adalah perbesaran/pengecilan (perkalian) suatu bangun tanpa mengubah bentuk bangun geometri tersebut yang ditentukan oleh pusat dilatasi dan faktor skala dilatasi. 7. Mengingatkan bahwa transformasi juga bisa dinyatakan ke dalam sebuah matriks transformasi, sambil menanamkan kembali sifat fungsi invers matriks. 8. Menegaskan bahwa untuk menemukan persamaan bayangan hasil transformasi harus melalui proses invers terlebih dahulu. 9. Mengingatkan kembali bahwa transformasi berurutan bisa dinyatakan ke dalam komposisi transformasi, sambil menanamkan kembali sifat komposisi fungsi. 10. Menyimpulkan bentuk-bentuk matriks transformasi terhadap jenis transformasi, sehingga peserta didik bisa menentukan strategi belajar sendiri untuk memperkuat konsep transformasi bidang dan transformasi terhadap kurva.

7 Halaman 7 dari Pada suatu tes salah satu soalnya adalah sebagai berikut: C 20 cm A 30 cm β B Skor total untuk jawaban tersebut adalah 3. Berdasarkan soal di atas tuliskan pedoman penskorannya! Pedoman penskoran: 1. Menentukan sudut A (1 poin) 2. Menuliskan rumus aturan sinus (1 poin) 3. Menyelesaikan perhitungan aturan sinus (1 poin) Total skor maksimal: 3 poin. Pedoman penskoran: Nilai = Skor yang diperoleh Skor maksimal 3

8 Halaman 8 dari Seorang siswa SMA kebingungan ketika menentukan nilai komposisi fungsi (g o f)(0). f dan g adalah fungsi bernilai real dengan f(x) = x 1 dan g(x) = x 2. Ketika dikerjakan melalui (g o f)(x) = x 1 diperoleh nilai (g o f)(0) = -1. Apabila dikerjakan melalui proses g(f(0)) diperoleh nilai f(0) = 1 yang tidak mungkin ada. Konsep apa yang belum dipahami oleh siswa tersebut? Konsep pengertian fungsi, domain (daerah asal fungsi) dan range (daerah hasil) pada fungsi dan komposisi fungsi. Nilai x = 0 mengakibatkan f(0) tidak terdefinisi yang akan menyebabkan komposisi tidak terdefinisi untuk nilai x = 0. Jika R f menyatakan daerah hasil fungsi f, dan D g menyatakan daerah asal fungsi g, maka fungsi f dan fungsi g dapat dikomposisikan menjadi komposisi fungsi (g f)(x), jika R f D g. Misalnya, daerah asal yang diperbolehkan untuk fungsi pecahan, maka nilai penyebut tidak boleh nol. Sementara untuk fungsi akar, nilai di dalam akar harus lebih besar dari nol.

9 Halaman 9 dari Seorang guru SMA sedang melakukan proses pembelajaran materi persamaan matriks AX = B. Tujuan pembelajaran yang diharapkan adalah mampu menentukan matriks X. Apa cara yang paling tepat yang ia lakukan untuk gagasan memperoleh matriks itu telah dikuasai siswa apa belum? Memberikan pertanyaan diskusi tentang menyajikan sistem persamaan linear dalam bentuk matriks dan menyelesaikannya nilai variabel pada sistem persamaan linear menggunakan persamaan matriks AX = B atau XA = B.

10 Halaman 10 dari Jumlah akar-akar persamaan 2x 8 + 3x 6 16x 4 + 3x = 0 adalah... Dengan menggunakan teorema Vieta: a n x n + a n 1 x n 1 + a n 2 x n a 1 x + a 0 = 0 Maka jumlah akar-akarnya adalah: x 1 + x 2 + x x n = a n 1 a n = 0 2 = 0

11 Halaman 11 dari Fungsi f memenuhi yf(xy) = f(x) untuk semua bilangan real x dan y. Bila f(4) = 1006 maka (2012) =... 1 f(4 1) = f(4 503) = 1006 f(2012) = f(2012) = 2

12 Halaman 12 dari Nilai dari adalah n(n+1) n= n(n + 1) n= A n + B (n + 1) n= = A(n + 1) + B(n) Untuk n = 0, didapatkan A = Untuk n = 1 didapatkan B = n 4026 (n + 1) n=1 Dengan memasukkan nilai indeks n didapatkan sebuah persamaan yang saling mencoret satu sama lain, yaitu: ( ) + ( ) + ( ) + + ( )

13 Halaman 13 dari Kedua akar persamaan x 2 63x + k = 0 adalah bilangan prima. Banyaknya nilai k yang mungkin adalah... x 2 63x + k = 0 Misalkan kedua akar persamaan tersebut adalah a dan b dan a < b. Akan diperoleh: a + b = 63 dan ab = k Karena a + b adalah bilangan ganjil maka salah satu dari a atau b adalah bilangan ganjil dan yang lain adalah bilangan genap. Tidak mungkin keduanya ganjil atau keduanya genap. Satu-satunya bilangan prima genap adalah 2. Jadi salah satu dari a atau b adalah 2. Misalkan a = 2, maka b = 61. k = ab = (2)(61) = 122.

14 Halaman 14 dari Keliling suatu segitiga adalah 10 cm. Jika panjang sisi adalah bilangan bulat maka luas paling besar yang mungkin adalah... cm 2. Keliling suatu segitiga maksimum jika segitiga tersebut berbentuk segitiga sama sisi. Karena panjang sisi harus bilangan bulat, maka jika keliling segitiga 10 cm. maka kemungkinan sisi-sisi segitiga yang mengakibatkan luasnya paling besar adalah: 3, 3, dan 4. Dengan menggunakan teorema Heron untuk menghitung luas segitiga: L = s(s a)(s b)(s c) Dimana s = 1 keliling = 1 (a + b + c) 2 2 s = 1 2 keliling = = 5 L = s(s a)(s b)(s c) = = 2 5 cm 2

15 Halaman 15 dari tan x + tan(90 x) = 6. Nilai cos 2x yang mungkin adalah... tan x + tan(90 x) = 6 tan x + cot x = 6 sin x cos x + cos x sin x = 6 sin 2 x + cos 2 x = 6 sin x cos x 1 = sin 2x sin 2x = 1 3 sin 2 2x + cos 2 2x = 1 cos 2x = 1 sin 2 2x cos 2x = cos 2x = 8 9 cos 2x = ± 2 3 2

16 Halaman 16 dari Garis 3x + 4y = 12 memotong ellips 9x y 2 = 144 di titik A dan B. Terdapat titik P pada ellips sehingga luas segitiga PAB adalah 3 satuan luas. Titik P semacam itu sebanyak... 3x + 4y = 12 y = x Substitusi y = 3 3 x ke persamaan 4 elips: 9x y 2 = 144 9x (3 3 4 x) 2 = 144 9x (9 9 2 x x2 ) = 144 9x x + 9x 2 = x 2 72x = 0 18x (x 4) = 0 pembuat nol x = 0 atau x = 4 Untuk x = 0 y = 3 Untuk x = 4 y = 0 L segitiga = y + x x y 4 0 = x + 4y = x + 4x = 6 3x + 4y = 6 Perpotongan garis 3x + 4y = 6 dengan elips adalah letak titik P. 3x + 4y = 6 y = x Substitusi y = 3 3 x ke persamaan 4 elips: 9x y 2 = 144 9x ( x) 2 = 144 9x (4 + 3x x2 ) = 144 9x x + 9x 2 = x x 80 = 0 9x x 40 = 0 Cek diskriminan persamaan kuadrat tersebut: D = (24) 2 4(9)( 40) = 2016 Jadi persamaan kuadrat tersebut memiliki dua akar berbeda. Sehingga titik P pada elips ada 2.

17 Halaman 17 dari Misalkan a > 0, A = {(x, y)l y x 3, y 0, 0 x a}, dan B = {(x, y)l y x 3, y 0, 0 x 1}, Nilai a yang mungkin agar luas daerah B empat kali luas daerah A adalah... 1 Luas B = x 3 dx 0 a Luas A = x 3 dx 0 Nilai a yang mungkin agar luas daerah B empat kali luas daerah A: Luas B = 4 Luas A 1 x 3 dx = 4 x 3 dx 0 1 [ 1 4 x4 ] 0 0 a a = 4 [ 1 4 x4 ] = a4 4 a = 1 = = 1 2 2

18 Halaman 18 dari Himpunan solusi dari x 3 7x x + 15 < 0 adalah... x 3 7x 2 x + 7 x + 15 < 0 { 3 7x 2 + 7x + 15 < 0, untuk x 0 ( x) 3 7x 2 7x + 15 < 0, untuk x < 0 x 3 7x 2 + 7x + 15 < 0 (x + 1)(x 3)(x 5) < 0 pembuat nol x = 1 atau x = 3 atau x = HP = {x x < 1 atau 3 < x < 5} x 3 7x 2 7x + 15 < 0 x 3 + 7x 2 + 7x 15 > 0 (x 1)(x + 3)(x + 5) > 0 pembuat nol x = 1 atau x = 3 atau x = HP = {x 5 < x < 3 atau x > 1} Jadi daerah penyelesaiannya adalah irisan dua HP tersebut: HP = {x 5 < x < 3 atau 3 < x < 5} = {x 3 < x < 5} TRIK SUPERKILAT: Dengan menganggap bahwa x 2 = ( x) 2 = x 2 Maka persamaan x 3 7x x + 15 < 0 bisa ditulis ulang menjadi: x 3 7 x x + 15 < 0 ( x + 1)( x 3)( x 5) < 0 pembuat nol x = 1 atau x = 3 atau x = 5 Daerah penyelesaian adalah x < 1 atau 3 < x < 5. Himpunan penyelesaian x < 1 tidak memenuhi. Sehingga daerah penyelesaian yang memenuhi adalah 3 < x < 5, yang ekuivalen dengan 5 < x < 3 atau 3 < x <

19 Halaman 19 dari Rata-rata dari 3 bilangan adalah 4 lebih besar dari bilangan terkecil dan 7 lebih kecil dari bilangan terbesar. Median ketiga bilangan itu adalah 8. Jumlah ketiga bilangan itu adalah... Bilangan tersebut adalah: (x 4), (x + a), (x + 7) Dimana, median adalah 8. x + a = 8 Kita cari dulu nilai a: x = x n x = (x 4) + (x + a) + (x + 7) 3 3x = 3x a a = 3 Sehingga, x + a = 8 x = 8 a x = 8 ( 3) x = 11 Jadi jumlah ketiga bilangan tersebut adalah, x = x x = nx = 3(11) = 33 n

20 Halaman 20 dari Diberikan segitiga ABC siku-siku di B dan panjang AC adalah 15 cm. Titik D di sisi BC sehingga sudut BAD = sudut CAD. Luas segitiga ADC = 30 cm 2. Panjang BD adalah... A 15 B D C Panjang AC = 15 cm. BAD = CAD = θ Luas segitiga ADC = 30 cm 2. L ADC = 1 AD AC sin θ 2 30 = 1 BD AD 15 2 AD 30 = 1 15 BD 2 BD = 4 cm

21 Halaman 21 dari Bilangan asli 2 angka yang selisih antara bilangan itu dan hasil kali kedua angkanya adalah 12 sebanyak... Misalkan bilangan itu adalah xy, 1 x 9 dan 1 y 9, x, y bilangan bulat. Dimana x adalah puluhan, dan y adalah satuan. Berarti bilangan xy bisa ditulis menjadi 10x + y. Selisih antara bilangan tersebut dengan hasil kali kedua angkanya adalah 12. (10x + y) xy = 12 10x + (1 x)y = 12 (10 y)x + y = 12 Dari persamaan tersebut diperoleh nilai y untuk x 1 dan y y 12 10x x = atau y = 10 y 1 x Solusi dari soal tersebut dengan menggunakan trial dan error adalah: x = 2 dan y = 8. x = 3 dan y = 9. Jadi, jumlah bilangan adalah 2 buah. Bilangan tersebut adalah 28 dan 39.

22 Halaman 22 dari Nilai sin 2 1 o + sin 2 3 o + sin 2 5 o + + sin 2 89 o adalah... sin sin sin sin 2 89 (sin sin 2 89 ) + (sin sin 2 87 ) + + (sin sin 2 46 ) + sin 2 45 (sin sin 2 (90 1 )) + (sin sin 2 (90 3 )) + + (sin sin 2 (90 44 )) + sin 2 45 (sin cos 2 1 ) + (sin cos 2 3 ) + + (sin cos 2 44 ) + sin ( ) 22 faktor ,5

23 Halaman 23 dari Diberikan barisan geometri yang suku-sukunya merupakan bilangan bulat positif. Suku ketiga barisan itu adalah Jumlah tiga suku pertama barisan itu adalah = Faktor kuadrat dari 2012 adalah 4. Karena ketiga sukunya bilangan bulat positif dan U 3 = ar 2, maka rasio barisan geometri tersebut yang mungkin adalah r = 2. U 3 = ar 2 a = U 3 r 2 = = 2012 = S n = a(rn 1) r 1 = 503(23 1) 2 1 = = 3521

24 Halaman 24 dari Suatu almari memuat 8 buku matematika, 5 buku fisika dan 7 buku kimia. Diketahui bahwa tidak ada buku yang sama. Banyak cara penyusunan berbeda yang bisa dilakukan pada buku-buku ini, jika semua buku Matematika harus berdekatan adalah... Karena semua buku Matematika harus diletakkan secara berdekatan, maka semua buku Matematika harus dianggap hanya menjadi 1 buku saja, sehingga jumlah semua buku dianggap = 13 buku. Jadi, banyak cara menyusun 13 buku adalah: 13! Sedangkan banyak cara menyusun 8 buku Matematika adalah: 8! Jadi, banyak cara penyusunan berbeda yang bisa dilakukan jika semua buku harus berdekatan adalah: 8! 13! 2, cara.

25 Halaman 25 dari Untuk a > 0 dan a 1, nilai x 1) lim x 0 (x(a1 ) a 1 adalah... lim x 0 lim x 0 lim x 0 1 x x (a 1) (x ) a 1 1 (a x 1) (x a 1 x ) 1 (a x 1) (x + a 1 ) x x = tidak ada = 1 = a

26 Halaman 26 dari Suatu nomor telepon bebentuk ABC-DEF-GHIJ, dengan masing-masing huruf mempresentasikan angka berbeda. Angka pada masing-masing bagian terurut menurun. A > B > C, D > E > F, G > H > I > J. Selanjutnya D, E, dan F adalah angka-angka genap berurutan. G, H, I, dan J adalah angka-angka ganjil berurutan. A + B + C = 9. Angka A adalah... Karena D, E, F adalah angka genap berurutan, maka kemungkinannya adalah 864 dan 642. G, H, I, J adalah angka ganjil berurutan, maka kemungkinannya adalah 9753 dan Jadi angka 3, 4, 5, 6, dan 7 mustahil digunakan pada A, B, C. Angka yang mungkin digunakan pada ABC hanya 9, 8, 2, 1, 0. Karena, A + B + C = 9, maka kemungkinan nilai dari ABC adalah hanya Jadi nilai angka A adalah 8. Pembahasan soal OSN Guru Matematika SMA 2012 ini sangat mungkin jauh dari sempurna mengingat keterbatasan penulis. Saran, koreksi dan tanggapan sangat diharapkan demi perbaikan pembahasan soal OSN ini. Untuk download pembahasan soal SNMPTN, UNAS, Olimpiade, dan rangkuman materi pelajaran serta soal-soal ujian yang lainnya, silahkan kunjungi Terima kasih. Pak Anang.

OSN Guru Matematika SMA

OSN Guru Matematika SMA ocsz Pembahasan Soal OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE GURU MATEMATIKA

Lebih terperinci

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

B21 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( )

B21 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( ) B Pak Anang http://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M8-0/0 Mata Pelajaran Jenjang Program Studi Hari/Tanggal Jam MATA PELAJARAN : MATEMATIKA : SMA/MA : IPA WAKTU

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

OSN Guru Matematika SMA

OSN Guru Matematika SMA z Pembahasan Soal OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE GURU MATEMATIKA

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2009

SOAL UN DAN PENYELESAIANNYA 2009 1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Blog:

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si   Blog: PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Email: sebelasseptember@yahoo.com Blog: http://istiyanto.com Berikut soal-soal yang dapat Anda gunakan untuk latihan dalam menghadapi

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

LATIHAN SOAL PROFESIONAL

LATIHAN SOAL PROFESIONAL LATIHAN SOAL PROFESIONAL 1. Jika 7 x = 8; maka 7 +x =. A. 686 B. 512 C. 4 D. 256 E. 178 7 x = 2 (7 x ) = 2 7 x = 2 7 x+ = 7. 7 x = 7. 2 = 4. 2 = 686 2. Panjang sisi miring segitiga siku-siku sama kaki

Lebih terperinci

E59 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

E59 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh DOKUMEN NEGARA SANGAT RAHASIA Pembahasan soal oleh http://pak-anang.blogspot.com E9 MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April

Lebih terperinci

D. 90 meter E. 95 meter

D. 90 meter E. 95 meter 1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Matematika EBTANAS Tahun 2003

Matematika EBTANAS Tahun 2003 Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

SOAL TRY OUT MATEMATIKA 2009

SOAL TRY OUT MATEMATIKA 2009 SOAL TRY OUT MATEMATIKA 009. Diberikan premis-premis :. jika semua siswa SMA di DKI Jakarta lulus ujian, maka Pak Gubernur DKI Jakarta sujud syukur. Pak Gubernur DKI Jakarta tidak sujud syukur negasi kesimpulan

Lebih terperinci

C34 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

C34 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh DOKUMEN NEGARA C MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M9-0/0 Hak Cipta pada Pusat Penilaian Pendidikan-BALITBANG-KEMDIKBUD

Lebih terperinci

PEMBAHASAN UN SMA IPA TAHUN AJARAN 2011/2012

PEMBAHASAN UN SMA IPA TAHUN AJARAN 2011/2012 Page of PEMBAHASAN UN SMA IPA TAHUN AJARAN 0/0 OLEH: SIGIT TRI GUNTORO, M.Si MARFUAH, S.Si, M.T REVIEWER: UNTUNG TRISNA S., M.Si JAKIM WIYOTO, S.Si Page of Misalkan, p : hari ini hujan q: saya tidak pergi

Lebih terperinci

Indikator : Menentukan penarikan kesimpulan dari beberapa premis. Modus Ponens Modus Tollens Silogisme

Indikator : Menentukan penarikan kesimpulan dari beberapa premis. Modus Ponens Modus Tollens Silogisme Indikator : Menentukan penarikan kesimpulan dari beberapa premis Modus Ponens Modus Tollens Silogisme p q p q p q p ~q q r q ~p p r Bentuk ekuivalen : p q ~q ~p p q ~p q Soal 1 : Diketahui premis : Premis

Lebih terperinci

D46 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( )

D46 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( ) SANGAT RAHASIA D Pembahasan soal oleh http://pak-anang.blogspot.com Pak Anang http://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M0-0/0 SANGAT RAHASIA Pembahasan soal oleh http://pak-anang.blogspot.com

Lebih terperinci

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah...

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah... SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN /. Nilai a yang menyebabkan fungsi kuadrat f x a x ax a a a a a a Solusi: [Jawaban D] a a a. () D a a a a a

Lebih terperinci

RINGKASAN MATERI UN SMA

RINGKASAN MATERI UN SMA RINGKASAN MATERI UN SMA - 2016 EKSPONEN DAN LOGARITMA (3 SOAL) PROGRAM LINEAR (1 SOAL) PERSAMAAN KUADRAT DAN FUNGSI KUADRAT (3 SOAL) A. PERSAMAAN KUADRAT (P.K) Bentuk Umum ax 2 + bx + c = 0 Penyelesaian

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah.

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah. . Diketahui premis premis : () Jika Badu rajin belajar dan, maka Ayah membelikan bola basket () Ayah tidak membelikan bola basket Kesimpulan yang sah A. Badu rajin belajar dan Badu patuh pada orang tua

Lebih terperinci

Matematika Ujian Akhir Nasional Tahun 2004

Matematika Ujian Akhir Nasional Tahun 2004 Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke

Lebih terperinci

Pembahasan soal oleh MATEMATIKA. Rabu, 18 April 2012 ( )

Pembahasan soal oleh  MATEMATIKA. Rabu, 18 April 2012 ( ) DOKUMEN NEGARA Pembahasan soal oleh http://pak-anang.blogspot.com B MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Perpustakaan SMAN Wonogiri MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M8-0/0 Hak Cipta

Lebih terperinci

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada

Lebih terperinci

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan

Lebih terperinci

UAN MATEMATIKA SMA IPA 2009 P45

UAN MATEMATIKA SMA IPA 2009 P45 1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.

Lebih terperinci

PEMBAHASAN DAN KUNCI JAWABAN UN MATEMATIKA SMA 2011 PAKET 12 PLUS TRIK SUPERKILAT DAN LOGIKA PRAKTIS (By Pak Anang

PEMBAHASAN DAN KUNCI JAWABAN UN MATEMATIKA SMA 2011 PAKET 12 PLUS TRIK SUPERKILAT DAN LOGIKA PRAKTIS (By Pak Anang 1. Bentuk sederhana dari A. LOGIKA PRAKTIS: PEMBAHASAN DAN KUNCI JAWABAN UN MATEMATIKA SMA 2011 PAKET 12 PLUS TRIK SUPERKILAT DAN LOGIKA PRAKTIS (By Pak Anang http://www.facebook.com/pak.anang ) Pembilang

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E

1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E 1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... A. 3-3 + 21-7 21-21 + 7 2. Persamaan (2m - 4)x² + 5x + 2 = 0 mempunyai akar-akar real berkebalikan, maka nilai m adalah... A. -3-3 6 Kunci

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran / SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D) SELASA, 6 MEI Pukul 7.. DEPARTEMEN PENDIDIKAN NASIONAL --D-P Hak Cipta pada

Lebih terperinci

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian 1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika pengguna kendaraan bermotor bertambah banyak maka kemacetan di ruas jalan

Lebih terperinci

1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5

1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5 1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... A. 5 3 2 Kunci : C 3x + y = 5 y - 2z = -7-3x + 2z = 12 2x + 2z = 10 - x = 2-4 -5 x + z = 5 2 + z = 5 z = 3 3x + y = 5 3. 2 + y =

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y

Lebih terperinci

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan - Telepon (0) 77, Fax (0)

Lebih terperinci

KARTU SOAL UJIAN NASIONAL MADRASAH ALIYAH NEGERI PANGKALPINANG

KARTU SOAL UJIAN NASIONAL MADRASAH ALIYAH NEGERI PANGKALPINANG Jumlah 50 Bentuk Pilihan Ganda Standar Kompetensi : Menggunakan logika matematika dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor Kompetensi Dasar : Menggunakan

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

PAKET TRY OUT UN MATEMATIKA IPA

PAKET TRY OUT UN MATEMATIKA IPA PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"

Lebih terperinci

DESKRIPSI PEMELAJARAN - MATEMATIKA

DESKRIPSI PEMELAJARAN - MATEMATIKA DESKRIPSI PEMELAJARAN MATA DIKLAT : MATEMATIKA TUJUAN : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN PAKET SOAL A. Diberikan premis-premis berikut : ) Politik tidak sehat atau Negara tentram dan damai ) Jika Negara tentram dan damai maka

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan Silabus Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMK : MATEMATIKA : XI / TEKNOLOGI, KESEHATAN, DAN PERTANIAN : GANJIL Standar Kompetensi:7. Menerapkan perbandingan, fungsi,, dan identitas

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011 Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u = (a, -, -) dan v = (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A.

Lebih terperinci

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika Dasar Distributed By : WWW.E-SBMPTN.COM Kumpulan SMART SOLUTION dan TRIK

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

SOAL TO UN SMA MATEMATIKA

SOAL TO UN SMA MATEMATIKA 1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas

Lebih terperinci

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u (a, -, -) dan v (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A. -

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 1. Perhatikan himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = { 1 < 11, bilangan ganjil} C = {semua faktor dari 12}

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)

Lebih terperinci

DESKRIPSI PEMELAJARAN

DESKRIPSI PEMELAJARAN DESKRIPSI PEMELAJARAN MATA DIKLAT : Matematika TUJUAN : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan

Lebih terperinci

GAMBARAN UMUM SMA/MA. Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS 1

GAMBARAN UMUM SMA/MA. Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS 1 GAMBARAN UMUM Pada ujian nasional tahun pelajaran 006/007, bentuk tes Matematika tingkat berupa tes tertulis dengan bentuk soal pilihan ganda, sebanyak 0 soal dengan alokasi waktu 0 menit. Acuan yang digunakan

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Soal Latihan UJIAN NASIONAL TAHUN PELAJARAN 0/0 Disusun Per Indikator Kisi-Kisi UN 0 Matematika SMA (Program Studi IPA) Written By : Team MKKS Jakarta Distributed by : Pak Anang PEMERINTAH PROVINSI DAERAH

Lebih terperinci

D46 MATEMATIKA. Rabu, 18 April 2012 ( ) Pembahasan soal oleh Perpustakaan.

D46 MATEMATIKA. Rabu, 18 April 2012 ( ) Pembahasan soal oleh  Perpustakaan. DOKUMEN NEGARA Pembahasan soal oleh http://pak-anang.blogspot.com D6 MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Perpustakaan SMAN Wonogiri MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M0-0/0 Hak Cipta

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 006/007 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan

Lebih terperinci

SANGGAR 14 SMA JAKARTA TIMUR

SANGGAR 14 SMA JAKARTA TIMUR SANGGAR 4 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan yang

Lebih terperinci

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. 1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00

Lebih terperinci

UN SMA IPA 2003 Matematika

UN SMA IPA 2003 Matematika UN SMA IPA 00 Matematika Kode Soal Doc. Version : 0-0 halaman 0. Persamaan kuadrat (k + )² - (k - ) +k - = 0, mempunyai akar-akar nyata dan sama. Jumlah kedua persamaan tersebut 9 9 0. Jika akar-akar persamaan

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 007/008 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan

Lebih terperinci

DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL

DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 0/0 LEMBAR SOAL Mata Pelajaran : Matematika Jenjang : SMA/MA Program Studi : IPA Hari/Tanggal : Jam : PETUNJUK UMUM. Isilah lembar jawaban tes uji coba Ujian

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

TAHUN PELAJARAN 2009 / 2010 MATEMATIKA SMA PROGRAM STUDI IPA. Rabu, 3 Februari Menit

TAHUN PELAJARAN 2009 / 2010 MATEMATIKA SMA PROGRAM STUDI IPA. Rabu, 3 Februari Menit Try Out TAHUN PELAJARAN 009 / 00 MATEMATIKA SMA PROGRAM STUDI IPA Rabu, Februari 00 0 Menit PETUNJUK :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer (LJK) yang tersedia dengan menggunakan pensil

Lebih terperinci

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013 Soal dan Pembahasan UN Matematika SMA IPA Tahun 013 LOGIKA MATEMATIKA p siswa rajin belajar ; q mendapat nilai yang baik r siswa tidak mengikuti kegiatan remedial ~ r siswa mengikut kegiatan remedial Premis

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika n bilangan prima ganjil maka n.. Jika n maka n 4. Ingkaran dari kesimpulan

Lebih terperinci

Soal Latihan Matematika

Soal Latihan Matematika Soal Latihan Matematika www.oke.or.id Soal berikut terdiri dari 6 soal Yang merupakan rangkuman dari berbagai latihan, isi dari soal berikut meliputi : Pernyerderhanaan Persamaan grafis akar kuadrat fungsi

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika Dasar Disusun Oleh : Pak Anang (http://pak-anang.blogspot.com) Kumpulan

Lebih terperinci

DURASI PEMELAJARAN KURIKULUM SMK EDISI 2004

DURASI PEMELAJARAN KURIKULUM SMK EDISI 2004 DESKRIPSI PEMELAJARAN MATA DIKLAT TUJUAN : MATEMATIKA : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan

Lebih terperinci

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) UJIAN NASIONAL SMA/MA Tahun Pelajaran 004/005 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 005 Jam : 08.00 0.00 PELAKSANAAN

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDY IPA PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 010 1. Perhatikan

Lebih terperinci

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan adalah bilangan bulat genap tak negatif. n = F P B(a, b + KP K(a, b a b Solusi. Misalkan d = F P B(a, b,

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 132

Pembahasan Matematika IPA SNMPTN 2012 Kode 132 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode Oleh Tutur Widodo. Lingkaran (x 6) + (y + ) = menyinggung garis x = di titik... (, 6) d. (, ) (, 6) e. (, ) c. (,

Lebih terperinci

Hak Cipta 2014 Penerbit Erlangga

Hak Cipta 2014 Penerbit Erlangga 00-00-008-0 Hak Cipta 0 Penerbit Erlangga Berilah tanda silang (X) pada huruf A, B, C, D, atau E pada jawaban yang benar!. Diketahui premis-premis: () Jika beberapa daerah dilanda banjir, maka beberapa

Lebih terperinci

Pembahasan Simak UI Matematika Dasar 2012

Pembahasan Simak UI Matematika Dasar 2012 Pembahasan Simak UI Matematika Dasar 2012 PETUNJUK UMUM 1. Sebelum mengerjakan ujian, periksalah terlebih dulu, jumlah soal dan nomor halaman yang terdapat pada naskah soal. Naskah soal ini terdiri dari

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci