7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian
|
|
- Widya Gunardi
- 4 tahun lalu
- Tontonan:
Transkripsi
1 1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan oleh h(t) = 40t - 5t² (dalam meter). Tinggi maksimum yang dapat ditempuh oleh peluru tersebut 75 meter 80 meter 85 meter 90 meter 95 meter 3. Pada segitiga ABC diketahui sisi AB = 6 cm, AC =10 cm, dan sudut A = 60. Panjang sisi BC =... 2 cm 3 cm 4 cm 2 cm 3 cm 4. Nilai sin 45 cos 15 + cos 45 sin 15 sama dengan Persamaan fungsi grafik di bawah ini y = 2 cos (x + ) y = 2 cos (x - ) y = 2 cos (x + ) 6. Penyelesaian persamaan sin (x - 45 ) > untuk 0 x < x < < x < < x < < x < 75 atau 165 < x < < x < 105 atau 165 < x < Himpunan penyelesaian persamaan sin x + cos x = 2 untuk 0 x < 360 {15, 105} {15, 195} {75, 195} {75, 345} {105, 345} 8. Jika log 2 = 0,301 dan log 3 = 0,477, maka log =... 0,714 0,734 0,756 0,778 0, Himpunan penyelesaian persamaan : 9 3x x = 0 { } {1 } { 2 } {, 1 } {, 2 } 10. Himpunan penyelesaian y = 2 cos (x + ) y = 2 cos (x - ) pertidaksamaan : (x 2-8) < 0 { x -3 < x < 3 } { x -2 < x < 2 } { x x < -3 atau x > 3 } { x x < -2 atau x > 2 } dengan catatan menyertakan catatan kaki ini
2 { x -3 < x < -2 atau 2 < x < 3 } 11. Himpunan penyelesaian sistem persamaan : 1 cm 1 cm 1 cm alah... {2, 1, -1} {-2, 1, 1} {, 1, -1} {-, -1, 1} {, 1, 1} 12. Diketahui matriks S = ad 1 cm 2 cm 15. Dua dadu dilambungkan bersamasama. Peluang muncul mata dadu pertama 3 dan mata dadu kedua 5 dan M = jika fungsi f(s,m) = S² - M², maka matriks f(s+m, S-M) 16. Modus dari data pada gambar di bawah ini 13. Nilai (5n - 6) = Data yang diperoleh dari hasil pengamatan setiap hari terhadap tinggi sebuah tanaman membentuk barisan geometri. Bila pada pengamatan hari kedua adalah 2 cm dan pada hari keempat 25,5 25, ,5 26,6 17. Suatu pemetaan f : R R, g : R R dengan (g f) (x) = 2x² + 4x + 5 dan g(x) = 2x + 3, maka f(x) =... x² + 2x + 1 x² + 2x + 2 2x² + x + 2 2x² + 4x + 2 2x² + 4x + 1 adalah 3 cm, maka tinggi tanaman tersebut pada hari pertama pengamatan 18. Nilai =... dengan catatan menyertakan catatan kaki ini
3 Rp ,00 Rp ,00 Rp ,00 Rp ,00 Rp ,00 Jika vektor =, =, dan = Nilai = , maka vektor sama dengan Turunan pertama dari fungsi f(x) = 21. Turunan pertama dari y = cos²(2x - ), -2 sin (4x - 2 ) -sin (4x - 2 ) -2 sin (2x - ) cos (2x - ) 4 sin (2x - ) 4 sin (2x - ) cos (2x - ) 22. Dengan persediaan kain polos 20 m dan kain bergaris 10 m, seorang penjahit akan membuat 2 model pakaian jadi. Model I memerlukan 1 m kain polos dan 1,5 m kain bergaris. Model II memerlukan 2 m kain polos dan 0,5 m kain bergaris. Bila pakaian tersebut dijual, setiap model I memperoleh untung Rp ,00 dan model II memperoleh untung Rp ,00. Laba maksimum yang diperoleh adalah sebanyak Diketahui vektor = dan vektor =. Jika proyeksi skalar ortogonal vektor pada arah vektor sama dengan setengah panjang vektor, maka nilai p -4 atau -2-4 atau 2 4 atau -2 8 atau -1-8 atau 1 dengan catatan menyertakan catatan kaki ini
4 25. Persamaan garis singgung pada lingkaran x² + y² - 2x + 4y - 4 = 0 yang tegak lurus garis 5x -12y + 15 = 0 12x + 5y - 41 = 0 dan 12x + 5y + 12x + 5y + 41 = 0 dan 12x + 5y - 5x + 12y + 41 = 0 dan 5x + 12y + 37= 0 5x +12y - 41 = 0 dan 5x + 12y - 12x - 5y - 41 = 0 dan 12x -5y + 37 = Suku banyak (x 4-3x 3-5x 2 + x - 6) dibagi oleh (x 2 - x - 2), sisanya sama dengan... 16x x 8-8x x 16-8x Gradien garis singgung di sembarang titik pada suatu kurva ditentukan oleh rumus y' = 3x 2-6x + 2. Jika kurva tersebut melalui titik (1, -5), maka persamaan kurvanya y = x 3-3x 2 + 2x + 5 y = x 3-3x 2 + 2x 5 y = x 3-3x 2 + 2x 1 y = x 3-3x 2 + 2x + 1 y = x 3-3x 2 + 2x 31. Luas daerah pada kuadran I yang dibatasi oleh kurva y = x² - 2x - 3, garis 5x - 3y - 5 = 0, dan sumbu x 6 satuan luas Persamaan parabola pada gambar di atas x² + 2x + 2y + 5 = 0 x² + 2x - 2y + 5 = 0 x² - 2x - 2y + 5 = 0 x² + 2x - 2y - 5 = 0 x² - 2x - 2y - 5 = Persamaan elips dengan fokus (2, 1) dan (8, 1) serta panjang sumbu mayor 10 adalah... 16x² +25y² + 160x + 50y + 25 = 0 16x² + 25² + 160x - 50y + 25 = 0 16x² + 25y² -160x - 50y + 25 = 0 25x² + 16y² + 50x - 160y + 25 = 0 25x² + 16y² 50x + 160y + 25 = Titik potong sumbu x dengan salah satu asimptot hiperbola : 5 satuan luas 4 satuan luas 3 satuan luas 2 satuan luas 32. Nilai dari 4 sin 7x cos 3x dx = (-3, 0) (-6, 0) (-, 0) (, 0) (3, 0) Hasil dari 16 (x + 3) cos (2x - ) dx =... 8 (2x + 6) sin (2x - ) + 4 cos (2x - dengan catatan menyertakan catatan kaki ini
5 8 (2x + 6) sin (2x - ) - 4 cos (2x - 8 (x + 3) sin (2x - ) + 4 cos (2x - 8 (x + 3) sin (2x - ) - 4 cos (2x - 8 (x + 3) cos (2x - ) + 4 sin (2x T 1 adalah transformasi rotasi pusat O dan sudut putar 90. T 2 adalah transformasi pencerminan terhadap garis y = -x. Bila koordinat peta titik A oleh transformasi T 1 T 2 adalah A'(8, -6), maka koordinat titik A (-6, -8) (-6, 8) (6, 8) (8, 6) (10, 8) 35. Persamaan peta kurva y = x² - 3x + 2 karena pencerminan terhadap sumbu x dilanjutkan dilatasi dengan pusat O dan faktor Skala 3 3y + x² - 9x + 18 = 0 3y - x² + 9x + 18 = 0 3y - x² + 9x + 18 = 0 3y + x² + 9x + 18 = 0 y + x² + 9x -18 = Diketahui kubus ABCEFGH dengan panjang rusuk 12 cm. K adalah titik tengah rusuk A Jarak titik K ke garis HC 4 cm 6 cm 4 cm 4 cm 6 cm Ingkaran dari pernyataan "Semua makhluk hidup perlu makan dan minum." Semua makhluk hidup tidak perlu makan dan minum. Ada makhluk hidup yang tidak perlu makan atau minum. Ada makhluk hidup yang tidak perlu makan minum. Semua makhluk tidak hidup perlu makan dan minum. Semua makhluk hidup perlu makan tetapi tidak perlu minum. 40. Diberikan pernyataan-pernyataan sebagai berikut : 1. Jika penguasaan matematika rendah, makin sulit untuk menguasai IP 2. IPA tidak sulit dikuasai atau IPTEK tidak berkembang. 3. Jika IPTEK tidak berkembang, maka negara akan semakin tertinggal. Dari ketiga pernyataan di atas dapat disimpulkan... Jika penguasaan matematika rendah, maka negara akan semakin tertinggal. Jika penguasaan matematika rendah, maka IPTEK berkembang. IPTEK dan TPA berkembang. IPTEK dan IPA tidak berkembang. Sulit untuk memajukan negara. 37. Diketahui kubus ABCEFGH dengan rusuk 8 cm. Panjang proyeksi DE pada bidang BDHF Pada limas segiempat beraturan T.ABCD yang semua rusuknya sama panjang. Sudut antara TA dan bidang ABCD dengan catatan menyertakan catatan kaki ini
Matematika Ujian Akhir Nasional Tahun 2004
Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke
D. 90 meter E. 95 meter
1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x
TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul
DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada
8. Nilai x yang memenuhi 2 log 2 (4x -
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum
1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.
1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik
Matematika EBTANAS Tahun 2003
Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +
b c a b a c 1. Bentuk sederhanaa dari
7 a b c. Bentuk sederhanaa dari 6 6a b c c A. a b b B. a c C. b a c bc D. a E. 7 7 c a b. Dalam kantong kantong diambil dua kelereng sekaligus, maka peluang mendapatkan kelereng satu berwarna merah dan
PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A01) 5b Dengan merasionalkan penyebut, bentuk sederhana dari 5 2
PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A0).. a bc Bentuk sederhana dari 9. a b c c a b. (C) ab c a b c a c b ac b. Dengan merasionalkan penyebut, bentuk sederhana dari. (C). (E).. (D). 7 9 log.
PREDIKSI UJIAN NASIONAL MATEMATIKA TAHUN 2009
PREDIKSI UJIAN NASIONAL MATEMATIKA TAHUN 009 HTTP://CANDRAPETRA.WORDPRESS.COM . Persamaan kuadrat yang akar-akarnya 5 dan - adalah A. x² + 7x + 0 = 0 B. x² - 7x + 0 = 0 C. x² + 3x + 0 = 0 D. x² + 3x -
PEMERINTAH KOTA MAKASSAR DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 11 MAKASSAR
1 PEMERINTAH KOTA MAKASSAR DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 11 MAKASSAR Alamat : Jalan Letjen. Pol. Mappa Oudang Nomor 66 Telepon/Fax (0411) 851262 Makassar 90223 PREDIKSI SOAL UJIAN
SOAL-SOAL TO UN MATEMATIKA IPA PAKET A ... A B. x 3 C. 2 5 D E. 3 x Bentuk sederhana dari ... A. B. C. D. E. 3. Nilai dari =...
SOAL-SOAL TO UN MATEMATIKA IPA PAKET A 5. 4 4 Nilai dari 4 ( )4 5 4.0..... 4 5 4 5. Bentuk sederhana dari 5... 0 8 5 8 5 5 8 8 5 8 5 5 log 4. log log8. Nilai dari log 4 log 8 4 4 8 4 =.... 4. Nilai x yang
02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E.
PILIHLAH JAWABAN YANG PALING TEPAT 0. Diketahui : Premis : Jika laut berombak besar, maka nelayan tidak berlayar Premis : Jika nelayan tidak berlayar, maka tidak ada ikan di pasar. Negasi dari kesimpulan
1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.
1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00
PAKET TRY OUT UN MATEMATIKA IPA
PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"
Matematika EBTANAS Tahun 1999
Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar
UN SMA IPA 2003 Matematika
UN SMA IPA 00 Matematika Kode Soal Doc. Version : 0-0 halaman 0. Persamaan kuadrat (k + )² - (k - ) +k - = 0, mempunyai akar-akar nyata dan sama. Jumlah kedua persamaan tersebut 9 9 0. Jika akar-akar persamaan
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)
TRY OUT MATEMATIKA PAKET 2A TAHUN 2010
TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis
SOAL UN DAN PENYELESAIANNYA 2009
1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan
PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA
Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 49 PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut
Matematika EBTANAS Tahun 1991
Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai
( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari
ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan
2009 ACADEMY QU IDMATHCIREBON
NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan
Ujian Akhir Nasional Tahun Pelajaran 2002/2003
DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran / SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D) SELASA, 6 MEI Pukul 7.. DEPARTEMEN PENDIDIKAN NASIONAL --D-P Hak Cipta pada
1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E
1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... A. 3-3 + 21-7 21-21 + 7 2. Persamaan (2m - 4)x² + 5x + 2 = 0 mempunyai akar-akar real berkebalikan, maka nilai m adalah... A. -3-3 6 Kunci
SMA / MA IPA Mata Pelajaran : Matematika
Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban
Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3
Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log
adalah... pq = Dalam skala Richter, kekuatan R dari suatu gempa bumi dengan intensitas I dimodelkan dengan
SOAL-SOAL TO KELAS XII IPA PAKET B. Nilai paling sederhana dari 9 9 9 9 9 4 6 6 4 adalah.... Diketahui p = + dan q =. Nilai 0 0. Apabila g g maka pq p q =... 4. Dalam skala Richter, kekuatan R dari suatu
A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah.
. Diketahui premis premis : () Jika Badu rajin belajar dan, maka Ayah membelikan bola basket () Ayah tidak membelikan bola basket Kesimpulan yang sah A. Badu rajin belajar dan Badu patuh pada orang tua
TRY OUT MATEMATIKA PAKET 2B TAHUN 2010
TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang
UN MATEMATIKA IPA PAKET
UN MATEMATIKA IPA PAKET Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Diberikan pernyataan berikut: P: Semua pramugari berwajah cantik P: Catherine seorang pramugari
PILIHLAH SALAH SATU JAWABAN YANG BENAR
PETOENJOEK OEMOEM. Periksa Soal Try Out (IPA) dan Nomor Tes sebelum Anda menjawab. Jumlah soal sebanyak 0 butir soal yang terdiri dari :. Pengisian pada lembar jawaban (LJK) yang disediakan PILIHLAH SALAH
PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.
PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan
Matematika EBTANAS Tahun 2002
Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0
UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA
B Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang
2014 ACADEMY QU IDMATHCIREBON
NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/15 April 2014 Program Studi : IPA Waktu : 07.30 09.30 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Bentuk
SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009
SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh
f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}
1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1
12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...
1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)
TRY OUT UN MATEMATIKA SMA IPA 2013
TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika
TRY OUT MATEMATIKA PAKET 3B TAHUN 2010
. Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan
UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )
UJIAN NASIONAL SMA/MA Tahun Pelajaran 004/005 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 005 Jam : 08.00 0.00 PELAKSANAAN
UAN MATEMATIKA SMA IPA 2009 P45
1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.
adalah. 3. Bentuk sederhana dari A.!!" B.!!" 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16
. Diketahui premis-premis berikut : Premis : Jika Dasikin belajar maka ia dapat mengerjakan soal Premis : Dasikin tidak dapat mengerjakan soal atau ia bahagia Premis : Dasikin belajar Kesimpulan yang sah
PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA
Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut
TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA
TRYOUT UN SM/M 04/0 MTMTIK IP. iketahui premis-premis berikut : Premis : Jika kita tidak menjaga kebersihan, maka kita akan terserang penyakit. Premis : Jika kita terserang penyakit, maka aktivitas kita
SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA
SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai
SOAL TO UN SMA MATEMATIKA
1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas
UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA
A Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang
UN SMA 2017 Matematika IPA
UN SMA 07 Matematika IPA Soal UN SMA 07 - Matematika IPA Doc. Name: UNSMA07MATIPA Version: 07-0 Halaman 5-8 5 4 0. Hasil dari - 8 8.4 5 7 7 8 8 8 7 0. Bentuk sederhana dari ( 5 + ) ( - 5 ) - ( 5 +4 ) 4
TAHUN PELAJARAN 2009 / 2010 MATEMATIKA SMA PROGRAM STUDI IPA. Rabu, 3 Februari Menit
Try Out TAHUN PELAJARAN 009 / 00 MATEMATIKA SMA PROGRAM STUDI IPA Rabu, Februari 00 0 Menit PETUNJUK :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer (LJK) yang tersedia dengan menggunakan pensil
04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )
0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :
UN SMA IPA 2014 Pre Matematika
UN SMA IPA 04 Pre Matematika Kode Soal Doc. Name: UNSMAIPA04PREMAT999 Doc. Version : 04-0 halaman 0. Diketahui premis-premis berikut: Premis : Jika harga turun, maka penjualan naik. Premis : Jika permintaan
Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E
1 Nama : Ximple Education No. Peserta : 08-6600-747 1 1. Jika a = 1, b = 6, maka nilai dari 6 a b 1 4 =. a b A. 6 B. 4 C. 1 6 D. 1 4 E.. Nilai dari ( log + log log log ) log 7+ log =. A. B. C. 4 D. 4 8
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka
ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA
PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan
SOAL TRY OUT MATEMATIKA 2009
SOAL TRY OUT MATEMATIKA 009. Diberikan premis-premis :. jika semua siswa SMA di DKI Jakarta lulus ujian, maka Pak Gubernur DKI Jakarta sujud syukur. Pak Gubernur DKI Jakarta tidak sujud syukur negasi kesimpulan
UN SMA IPA 2008 Matematika
UN SMA IPA 008 Matematika Kode Soal P Doc. Name: UNSMAIPA008MATP Doc. Version : 0-0 halaman 0. Ingkaran dari pernyataan "Semua anak-anak suka bermain air." Tidak ada anak-anak yang suka bermain air. Semua
m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah.
. Di berikan premis sebagai berikut : Premis : Jika terjadi hujan lebat atau mendapat air kiriman maka Jakarta banjir Premis : Jalan menjadi macet dan aktivitas kerja terhambat jika Jakarta banjir Kesimpulan
4. Diketahui M = dan N = Bentuk sederhana dari M N adalah... Pilihlah jawaban yang benar.
Pilihlah jawaban yang benar.. Diketahui premis-premis berikut. Premis : Jika terjadi kemarau panjang maka air sulit diperoleh. Premis : Jika air sulit diperoleh maka semua Kesimpulan dari premis-premis
Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan
Uji Coba Ujian Nasional tahun 009 Satuan pendidikan Mata pelajaran Program Waktu. Diketahui premis-premis berikut : ). p ~ q ). q r : SMA : Matematika : IPA : 0 menit.. Negasi (ingkaran) dari kesimpulan
Ujian Akhir Nasional Tahun Pelajaran 2002/2003
DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D0) SELASA, 6 MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL 0 0-0-D0-P0
Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010
PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh
E59 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh
DOKUMEN NEGARA SANGAT RAHASIA Pembahasan soal oleh http://pak-anang.blogspot.com E9 MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April
SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012
SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 1. Akar-akar persamaan kuadrat x 2 +ax - 4=0 adalah p dan q. Jika p 2-2pq + q 2 =8a, maka nilai a =... A. -8 B. -4 C. 4 D. 6 E. 8 2. Persamaan
Soal Ujian Nasional Tahun 2007 Bidang Matematika
Soal Ujian Nasional Tahun 007 Bidang Matematika Oleh : Fendi Alfi Fauzi 6 Desember 01 1. Bentuk sederhana dari (1 + ) (4 50) adalah... A. B. + 5 C. 8 D. 8 + E. 8 + 5. Jika log = a dan log 5 = b, maka 15
SANGGAR 16 SMA JAKARTA TIMUR
SANGGAR 6 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA Senin, 6 Pebruari 05. Ingkaran dari pernyataan : Jika semua sampah dibuang pada tempatnya maka Jakarta tidak banjir adalah Jika semua sampah tidak dibuang
Soal Latihan Matematika
Soal Latihan Matematika www.oke.or.id Soal berikut terdiri dari 6 soal Yang merupakan rangkuman dari berbagai latihan, isi dari soal berikut meliputi : Pernyerderhanaan Persamaan grafis akar kuadrat fungsi
SOAL UN DAN PENYELESAIANNYA 2008
1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan
PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA
Pilihlah salah satu jawaban yang paling benar! PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA TAHUN PELAJARAN 2012 / 2013 1. Ditentukan premis-premis: I. Jika Badu rajin bekerja, maka ia disayang
SOAL: MATEMATIKA Kelas : XII Mipa
SOAL: MATEMATIKA Kelas : XII Mipa Pilihlah salah satu jawaban yang tepat! Diberikan premis-preimis:. Jika Siti sakit maka dia pergi ke dokter.. Jika Siti pergi ke dokter maka dia diberi obat. Negasi dari
SANGGAR 14 SMA JAKARTA TIMUR
SANGGAR 4 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan yang
SOAL MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A
SOAL MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN PAKET SOAL A. Diberikan premis-premis berikut : ) Politik tidak sehat atau Negara tentram damai ) Jika Negara tentram damai maka rakyat makmur sejahtera
UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA
UJIAN NASIONAL TAHUN PELAJARAN 007/008 MATEMATIKA (D0) SMA/MA - PROGRAM STUDI IPA KODE : P 5 UTAMA SOAL :. Ingkaran dari pernyataan Beberapa siswa senang belajar matematika adalah... A. Ada siswa tidak
D. (1 + 2 ) 27 E. (1 + 2 ) 27
1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka
SOAL UN DAN PENYELESAIANNYA 2007
1. Bentuk sederhana dari (1 + 3 ) - (4 - ) adalah... A. -2-3 B. -2 + 5 C. 8-3 D. 8 + 3 8 + 5 (1 + 3 ) - (4 - ) = (1 + 3 ) - (4-5 ) = 1 + 3-4 + 5 = 8-3 2. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20
GAMBARAN UMUM SMA/MA. Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS 1
GAMBARAN UMUM Pada ujian nasional tahun pelajaran 006/007, bentuk tes Matematika tingkat berupa tes tertulis dengan bentuk soal pilihan ganda, sebanyak 0 soal dengan alokasi waktu 0 menit. Acuan yang digunakan
Matematika EBTANAS Tahun 1995
Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Grafik fungsi kuadrat di samping (,) persamaannya y = + + y = + y = + (0,) y = + y = + EBT-SMA-9-0 Akar-akar persamaan kuadrat = 0 adalah dan. Persamaan kuadrat
Ujian Nasional. Tahun Pelajaran 2010/2011 IPA MATEMATIKA (D10) UTAMA. SMA / MA Program Studi
Ujian Nasional Tahun Pelajaran 00/0 UTAMA SMA / MA Program Studi IPA MATEMATIKA (D0) c Fendi Alfi Fauzi alfysta@yahoo.com Ujian Nasional Tahun Pelajaran 00/0 (Pelajaran Matematika) Tulisan ini bebas dibaca
PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010
PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 00 Mata Pelajaran : Matematika Kelas : XII IPA Alokasi Waktu : 0
Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran
Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran 009 00 Petunjuk Umum:. Tulislah nomor dan nama pada lembar jawaban!. Periksa dan bacalah soal dengan teliti!. Dahulukam
x y xy x y 2 E. 9 8 C. m > 1 8 D. m > 3 E. m < x : MATEMATIKA Mata Pelajaran
Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPA Waktu : 0 menit *Pilihlah satu jawaban yang benar * Tidak diperkenankan menggunakan kalkulator atau alat hitung lainnya.. Diketahui premis - premis:
Hak Cipta 2014 Penerbit Erlangga
00-00-008-0 Hak Cipta 0 Penerbit Erlangga Berilah tanda silang (X) pada huruf A, B, C, D, atau E pada jawaban yang benar!. Diketahui premis-premis: () Jika beberapa daerah dilanda banjir, maka beberapa
SOLUSI PREDIKSI SOAL UJIAN NASIONAL TAHUN 2015
SOLUSI PREDIKSI SOAL UJIAN NASIONAL TAHUN 5 KELOMPOK :. IMAM SUROSO, S.Pd SMA 7 Tebo. MARYANTO, S.Pd SMA 9 Tebo. HARDIANTO, S.Pd SMA Tebo. RISA EVI NURYANA, S.Pd SMA Tebo 5. TURLISA, S.Pd SMA Tebo. Diketahui
Matematika Proyek Perintis I Tahun 1979
Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila
Matematika EBTANAS Tahun 1986
Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo
SOLUSI PREDIKSI SOAL UJIAN NASIONAL TAHUN 2015
SOLUSI PREDIKSI SOAL UJIAN NASIONAL TAHUN 05 KELOMPOK :. IMAM SUROSO, S.Pd SMA 7 Tebo. MARYANTO, S.Pd SMA 9 Tebo. HARDIANTO, S.Pd SMA 4 Tebo 4. RISA EVI NURYANA, S.Pd SMA Tebo 5. TURLISA, S.Pd SMA 4 Tebo.
2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a
Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab
TRY OUT UJIAN NASIONAL
PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 0 Jakarta Jalan Bulungan No. C, Jakarta Selatan - Telepon (0), Fax (0) TRY
UJIAN NASIONAL TAHUN PELAJARAN 2006/2007
UJIAN NASIONAL TAHUN PELAJARAN 006/007 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan
SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA
SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA. Diketahui premis-premis : (): Jika Ani lulus ujian maka ia bekerja atau kuliah di luar negeri (): Jika rajin dan tekun
Istiyanto.Com Media Belajar dan Berbagi Ilmu
Istiyanto.Com Media Belajar dan Berbagi Ilmu Dapatkan tutorial-tutorial TIK/komputer dan soal-soal Matematika secara mudah dan gratis dengan berlangganan melalui email. SOAL UAN MATEMATIKA JURUSAN BAHASA
SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari
SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika n bilangan prima ganjil maka n.. Jika n maka n 4. Ingkaran dari kesimpulan
LATIHAN SOAL PROFESIONAL
LATIHAN SOAL PROFESIONAL 1. Jika 7 x = 8; maka 7 +x =. A. 686 B. 512 C. 4 D. 256 E. 178 7 x = 2 (7 x ) = 2 7 x = 2 7 x+ = 7. 7 x = 7. 2 = 4. 2 = 686 2. Panjang sisi miring segitiga siku-siku sama kaki
UJIAN NASIONAL TAHUN PELAJARAN 2007/2008
UJIAN NASIONAL TAHUN PELAJARAN 007/008 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan
INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y
INDIKATOR : Menyelesaikan masalah program linear. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y 8 8 X x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh
MATEMATIKA IPA PAKET D. 1. Diberikan nilai m = 81 dan n =64. Nilai paling sederhana dari =... D. 128 E. 256
MATEMATIKA IPA PAKET D. Diberikan nilai m = 8 dan n =. Nilai paling sederhana dari 5 9 8 * 5 8 5 m n m n n. m =.... Diketahui m = + dan n =. Nilai mn m n *. Seseorang menyimpan uang secara pasif pada sebuah
asimtot.wordpress.com Page 1
. Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri