Pembahasan Simak UI Matematika Dasar 2012

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pembahasan Simak UI Matematika Dasar 2012"

Transkripsi

1 Pembahasan Simak UI Matematika Dasar 2012

2 PETUNJUK UMUM 1. Sebelum mengerjakan ujian, periksalah terlebih dulu, jumlah soal dan nomor halaman yang terdapat pada naskah soal. Naskah soal ini terdiri dari 12 halaman. 2. Tulislah nomor peserta Anda pada lembar jawaban di tempat yang disediakan. 3. Tulislah kode naskah soal ini, pada lembar jawaban di tempat yang disediakan. Kode naskah soal ini: Bacalah dengan cermat setiap petunjuk yang menjelaskan cara menjawab soal. 5. Pikirkanlah sebaik-baiknya sebelum menjawab tiap soal, karena setiap jawaban yang salah akan mengakibatkan pengurangan nilai (penilaian: benar +4, kosong 0, salah -1). 6. Jawablah lebih dulu soal-soal yang menurut Anda mudah, kemudian lanjutkan dengan menjawab soal-soal yang lebih sukar sehingga semua soal terjawab. 7. Tulislah jawaban Anda pada lembar jawaban ujian yang disediakan. 8. Untuk keperluan coret-mencoret, harap menggunakan tempat yang kosong pada naskah soal ini dan jangan pernah menggunakan lembar jawaban karena akan mengakibatkan jawaban Anda tidak dapat terbaca. 9. Selama ujian, Anda tidak diperkenankan bertanya atau meminta penjelasan mengenai soal-soal yang diujikan kepada siapapun, termasuk kepada pengawas ujian. 10. Setelah ujian selesai, Anda diharapkan tetap duduk di tempat Anda sampai pengawas ujian datang ke tempat Anda untuk mengumpulkan lembar jawaban. 11. Perhatikan agar lembar jawaban ujian tidak kotor, tidak basah, tidak terlipat, dan tidak sobek. PETUNJUK KHUSUS PETUNJUK A: Pilih satu jawaban yang paling tepat. PETUNJUK B: Soal terdiri dari 3 bagian, yaitu PERNYATAAN, kata SEBAB, dan ALASAN yang disusun berurutan. Pilihlah: (A) Jika pernyataan benar, alasan benar, dan keduanya menunjukkan hubungan sebab dan akibat (B) Jika pernyataan benar, alasan benar, tetapi keduanya tidak menunjukkan hubungan sebab dan akibat (C) Jika pernyataan benar dan alasan salah (D) Jika pernyataan salah dan alasan benar (E) Jika pernyataan dan alasan keduanya salah PETUNJUK C: Pilihlah: (A) Jika (1), (2), dan (3) yang benar (B) Jika (1) dan (3) yang benar (C) Jika (2) dan (4) yang benar (D) Jika hanya (4) yang benar (E) Jika semuanya benar

3 Kode Naskah Soal: 221 MATA UJIAN : Matematika Dasar, Bahasa Indonesia, dan Bahasa Inggris TANGGAL UJIAN : 8 JULI 2012 WAKTU : 120 MENIT JUMLAH SOAL : 60 Keterangan : Mata Ujian MATEMATIKA DASAR nomor 1 sampai nomor 20 Mata Ujian BAHASA INDONESIA nomor 21 sampai nomor 40 Mata Ujian BAHASA INGGRIS nomor 41 sampai nomor 60 MATEMATIKA DASAR Gunakan Petunjuk A dalam menjawab soal nomor 1 sampai nomor Sebuah garis h yang melalui titik asal memotong kurva 2y = 3x 2 2x + 1 di dua titik di mana jumlah nilai x-nya adalah 10, maka gradien dari garis h adalah... (A) 1 (B) 3 2 (C) 6 (D) 14 (E) Diketahui sebuah barisan 3 2, 3 4, 9 8, 15,.... Jumlah 16 sepuluh suku pertama dari barisan tersebut adalah... (A) (B) (C) (D) (E) Jika diketahui x dan y adalah bilangan riil dengan x > 1 dan y > 0. Jika xy = x y dan x y = x5y, maka x 2 + 3y =... (A) 29 (B) 28 (C) 27 (D) 26 (E) Hasil perkalian dari nilai-nilai x yang memenuhi x = adalah... x 2(10 log x) 8 5. (A) 10 2 (B) 10 3 (C) 10 4 (D) 10 5 (E) 10 7 Jika luas dari gambar di atas adalah 40 satuan luas dan jika 3 < a < 5, maka... (A) 2 3 < b < 31 6 (B) 3 2 < b < 31 6 (C) 9 < b < 25 (D) 9 < b < 31 (E) 43 < b < Diketahui bahwa jika Deni mendapatkan nilai 75 pada ulangan yang akan datang, maka rata-rata nilai ulangannya adalah 82. Jika Deni mendapatkan nilai 93, maka rata-rata nilai ulangannya adalah 85. Banyaknya ulangan yang sudah diikuti Deni adalah... (A) 3 (B) 4 (C) 5 (D) 6 (E) 7 c Universitas Indonesia Halaman 1 dari 12 halaman

4 Kode Naskah Soal: Sebuah dadu dilempar sebanyak 6 kali. Peluang munculnya angka yang lebih besar atau sama dengan 5 dalam minimal 5 kali pelemparan adalah... (A) (B) (C) (D) (E) ( 2 z log b ) 8. Diketahui A = log 1 merupakan 1 z matriks singular. Maka a log b 3 a + z log a. b log z 2 =... (A) 10 (B) 6 (C) 0 (D) 6 (E) Jika garis singgung parabola y = 4x x 2 di titik M(1, 3) juga merupakan garis singgung parabola y = x 2 6x + k, maka nilai dari 5 k 1 adalah... (A) 0 (B) 1 (C) 2 (D) 3 (E) Nilai maksimum dari k di mana 5 cos(2θ) 2k sin(θ) dan 0 < θ π adalah... (A) 3 (B) 4 (C) 5 (D) 6 (E) Diketahui y = 1 csc x. Jika y dan 0 x 2π, y maka nilai x yang memenuhi adalah... (A) 0 < x < π 2 (B) 0 < x π 2 (C) 0 x π (D) 0 < x π (E) 0 < x < π 12. lim x 1 sin 2(x 1) (x 2 2x + 1) cot 1 2 (x 1) =... (A) 1 4 (B) 1 2 (C) 1 (D) 2 (E) Dari sehelai karton akan dibuat sebuah kotak tanpa tutup dengan alas persegi. Jika jumlah luas bidang alas dan semua bidang sisi kotak adalah 192 cm 2, maka volume kotak terbesar yang mungkin adalah... (A) 256 cm 3 (B) 320 cm 3 (C) 364 cm 3 (D) 381 cm 3 (E) 428 cm Jika diketahui xyz = 2 6 dan ( 2 log x)( 2 log yz) + ( 2 log y)( 2 log z) = 10 dengan x, y, z 0, maka 2 log 2 x + 2 log 2 y + 2 log 2 z =... (A) 2 (B) 3 (C) Jika diketahui a + b + c = 18 a 2 + b 2 + c 2 = 756 a 2 = bc maka a =... (A) 18 (B) 12 (C) 1 (D) 5 (E) 6 (D) 12 (E) Jika kedua akar persamaan px 2 + 8x + 3p = 0 bernilai negatif, maka jumlah kuadrat kedua akar-akar tersebut akan bernilai... (A) maksimum 30 (B) minimum 30 (C) minimum 6 (D) maksimum 6 (E) minimum 15/2 c Universitas Indonesia Halaman 2 dari 12 halaman

5 Kode Naskah Soal: 221 Gunakan Petunjuk C dalam menjawab soal nomor 17 sampai nomor Apabila k = x + y, maka k 2 k = 1 dan apabila k = x y, maka k 2 + k = 1, maka x + y =... (1) (2) 1 2 (3) (4) Misalkan f : R R dan g : R R, f(x) = x + 2 dan (g f)(x) = 2x 2 + 4x 6. Misalkan juga x 1 dan x 2 adalah akar-akar dari g(x) = 0, maka x 1 + 2x 2 =... (1) 0 (2) 1 (3) 3 (4) Jika diketahui y 2 + 2y + 1, y2 + 3y 1, y 1 3 adalah tiga suku barisan aritmatika, maka nilai suku kedua yang memenuhi adalah... (1) 1 (2) 2 (3) 1 (4) Diketahui bahwa x 2 + 2xy + 2y 2 = 13 dengan x dan y adalah bilangan bulat. Nilai x y yang mungkin dengan x > 0 dan y > 0 adalah... (1) 4 (2) 1 (3) 4 (4) 1 c Universitas Indonesia Halaman 3 dari 12 halaman

6 Kode Naskah Soal: 222 MATA UJIAN : Matematika Dasar, Bahasa Indonesia, dan Bahasa Inggris TANGGAL UJIAN : 8 JULI 2012 WAKTU : 120 MENIT JUMLAH SOAL : 60 Keterangan : Mata Ujian MATEMATIKA DASAR nomor 1 sampai nomor 20 Mata Ujian BAHASA INDONESIA nomor 21 sampai nomor 40 Mata Ujian BAHASA INGGRIS nomor 41 sampai nomor 60 MATEMATIKA DASAR Gunakan Petunjuk A dalam menjawab soal nomor 1 sampai nomor Jika diketahui f(n) = 2 log 3 3 log 4 4 log 5... n 1 log n, maka f(8) + f(16) + f(32) f(2 30 ) =... (A) 461 (B) 462 (C) 463 (D) 464 (E) Syarat agar persamaan (p 2)x 4 + 2px 2 + (p 1) = 0 mempunyai 4 akar riil yang berbeda adalah... (A) 0 < p < 2 (B) p < 1 atau p > 2 (C) 0 < p < 1 (D) 2/3 < p < 1 (E) 0 < p < 2/3 ax 2 + bx x 3. Misalkan lim x 4 x 2 = 1, maka bilangan 16 2 bulat terbesar yang lebih kecil atau sama dengan a 2b adalah... (A) 5 (B) 2 (C) 6 (D) 7 (E) 8 4. Jumlah dari semua bilangan bulat x yang memenuhi pertidaksamaan x 2 11 (A) 33 (B) 60 (C) 77 < 6 7 < x adalah... (D) 253 (E) Pada suatu ulangan Matematika, ternyata nilai Nita salah karena adanya kesalahan pencatatan oleh gurunya. Nilai Nita sebenarnya adalah empat kali dari nilai yang dicatat oleh gurunya. Ketika guru Matematika Nita mengoreksi kesalahannya, rata-rata nilai ulangan kelas Nita naik 2 poin. Jika kelas Nita terdiri dari 30 orang (termasuk Nita), maka nilai ulangan Nita yang sebenarnya adalah... (A) 50 (B) 60 (C) 70 (D) 80 (E) Jika garis singgung parabola y = 4x x 2 di titik M(1, 3) juga merupakan garis singgung parabola y = x 2 6x + k, maka nilai dari 5 k 1 adalah... (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 7. Jika sin(x) = a, maka 1 a a 1 a 2 =... (A) sin 2 (x). tan 2 (x) (B) sec 2 (x). cos(x) (C) cos(2x).(x) (D) sec(2x). tan 2 (x) (E) (1 + cot(x))/ sin(x). cos(x) 8. Jika kedua akar persamaan px 2 + 8x + 3p = 0 bernilai negatif, maka jumlah kuadrat kedua akar-akar tersebut akan bernilai... (A) maksimum 30 (B) minimum 30 (C) minimum 6 (D) maksimum 6 (E) minimum 15/2 c Universitas Indonesia Halaman 1 dari 13 halaman

7 Kode Naskah Soal: Seseorang membeli dua macam tablet: tablet A dan tablet B sebagai suplemen harian yang masing-masing mengandung elemen X dan Y. Banyaknya elemen X pada tablet A dan B masing-masing adalah 100 mg dan 200 mg, sedangkan banyaknya elemen Y yang terkandung pada tablet A dan B masing-masing adalah 400 mg dan 200 mg. Orang tersebut ingin suplemen harian yang dikonsumsi dari kedua tablet ini mengandung tidak kurang dari 0,6 g tetapi tidak lebih dari 1,6 g elemen X dan mengandung tidak kurang dari 1,2 g tetapi tidak lebih dari 2,8 g elemen Y. Jika banyaknya tablet setiap hari adalah a tablet A dan b tablet B, di mana a dan b adalah nilai yang membuat total tablet yang dikonsumsi sedikit mungkin, maka a + b adalah... (A) 4 (B) 7 (C) 8 (D) 10 (E) Jumlah dari semua kemungkinan jawaban persamaan x = 3x 35 3x adalah... (A) 12 (B) 35 (C) 40 (D) 42 (E) Garis l sejajar dengan garis 4x y 3 = 0 dan melalui titik (1, 5). Garis l tersebut juga memotong sebuah parabola yang melalui tiga titik (0, 1),(1, 1), dan( 1, 1) di titik P dan Q. Jumlah absis P dan Q adalah Diketahui dalam sebuah ruangan terdapat tiga kelompok orang, yaitu kelompok ibu sebanyak 3 orang, kelompok bapak sebanyak 4 orang, dan kelompok anak sebanyak 2 orang. Mereka hendak duduk pada sebuah bangku panjang. Peluang bahwa mereka akan duduk berdampingan berkelompok adalah (A) (B) (C) (D) (E) = (A) 1 (B) 3 (C) 25 4 (D) 25 2 (E) Jika diketahui x dan y adalah bilangan riil dengan x > 1 dan y > 0. Jika xy = x y dan x y = x5y, maka x 2 + 3y =... (A) 2 (B) 1 (C) 0 (D) 3 (E) 4 (A) 29 (B) 28 (C) 27 (D) 26 (E) Diketahui f : R R yang memenuhi f(f(x)) = (x + 1)f(x) x. Maka f(1) =... (A) 1 (B) 0 (C) 1 (D) 2 (E) 3 c Universitas Indonesia Halaman 2 dari 13 halaman

8 Kode Naskah Soal: Diketahui f(x) = 2 2x + 3 dan x T adalah nilai tengah dari domain f(x). Maka [f(x T )] 2 =... (A) 1 2 (B) 2 5 (C) 0 (D) 2 2 (E) Diketahui bahwa f(x) adalah fungsi kuadrat yang memenuhi pertidaksamaan x 2 2x + 3 f(x) 2x 2 4x + 4 untuk semua bilangan riil x. Jika diketahui bahwa f(5) = 26, maka f(7) =... (A) 38 (B) 50 (C) 56 (D) 74 (E) Jika y(x) = ( 3 sin(x) + cos(x))(3 3 cos(x) 3 sin(x)), maka nilai minimum dari y(x) adalah... (A) 6 (B) 3 (C) 0 (D) 3 (E) 6 Gunakan Petunjuk C dalam menjawab soal nomor 19 sampai nomor Apabila k = x + y, maka k 2 k = 1 dan apabila k = x y, maka k 2 + k = 1, maka x + y =... (1) (2) 1 2 (3) (4) Diketahui matriks A 2 2 = [a ij ] = ij, B 2 2 = [b ij ] = i j dan C 2 2 = [c ij ] = i j. Pernyataan berikut ini yang BENAR adalah... (1) Jika A + B = C + D, maka D 2 2 = [d ij ] = ij. (2) Jika AB = XC, maka X = [x ij ] = (ij). (3) B tidak mempunyai invers. (4) A matriks singular. c Universitas Indonesia Halaman 3 dari 13 halaman

9 Kode Naskah Soal: 223 MATA UJIAN : Matematika Dasar, Bahasa Indonesia, dan Bahasa Inggris TANGGAL UJIAN : 8 JULI 2012 WAKTU : 120 MENIT JUMLAH SOAL : 60 Keterangan : Mata Ujian MATEMATIKA DASAR nomor 1 sampai nomor 20 Mata Ujian BAHASA INDONESIA nomor 21 sampai nomor 40 Mata Ujian BAHASA INGGRIS nomor 41 sampai nomor 60 MATEMATIKA DASAR Gunakan Petunjuk A dalam menjawab soal nomor 1 sampai nomor Jika 4 sin(x) 4 = 1, maka diskriminan dari cos(x) persaman kuadrat sin(x)a 2 + cos(x)a cos(x) = 0 adalah... (A) 4 (B) 2 (C) 0 (D) 2 (E) 4 2. Jika f(2) = 3, f (2) = 4, g(2) = 2 dan g (2) = 5, d maka untuk x = 2, nilai dari dx [f 2 (x) + g 3 (x)] d dx [f(g(x))] adalah... (A) 3,6 (B) 4,2 (C) 4,8 (D) 5,6 (E) 7 3. Jika (a + b + c + d + e + f + g + h + i + j) 2 diuraikan dan disederhanakan, maka banyaknya suku yang berbeda adalah... (A) 10 (B) 20 (C) 45 (D) 55 (E) Ahmad dan Aisyah adalah teman satu sekolah di sebuah SMA di kota Depok. Saat ini mereka duduk di kelas 1. Mereka mencatat jumlah seluruh siswa kelas 1 di sekolah mereka. Aisyah mencatat, 5/17 dari temannya di kelas 1 adalah laki-laki, sedangkan menurut catatan Ahmad, 2/7 dari temannya di kelas 1 adalah laki-laki. Jika catatan mereka berdua tidak salah, maka banyaknya jumlah siswa perempuan kelas 1 di sekolah mereka adalah... (A) 35 (B) 55 (C) 65 (D) 85 (E) Jika 3 x 4, 2 y 5, 4 z 10, dan w = z xy, maka nilai terbesar yang mungkin untuk w adalah... (A) 10 (B) 16 (C) Jika cos 2x = (D) 25 (E) cos 2x untuk 0 < x < 2π, 4 cos 2x 1, maka jumlah nilai x yang memenuhi adalah... (A) 720 o (B) 480 o (C) 390 o (D) 360 o (E) 240 o 7. Banyaknya bilangan ratusan kelipatan 5 yang dapat disusun dari digit 0, 1, 2, 3, 4, 5 dengan digit yang berbeda adalah... (A) 24 (B) 30 (C) 32 (D) 36 (E) 40 c Universitas Indonesia Halaman 1 dari 12 halaman

10 Kode Naskah Soal: Jika diketahui x dan y adalah bilangan riil dengan 9. x > 1 dan y > 0. Jika xy = x y dan x y = x5y, maka x 2 + 3y =... (A) 29 (B) 28 (C) 27 (D) 26 (E) 25 Dalam sebuah bujursangkar dibuat empat buah persegi panjang yang sama sehingga terdapat bujursangkar kecil di dalamnya (seperti tampak dalam gambar). Jika diketahui luas bujursangkar besar adalah sembilan kali lebih besar dari luas bujursangkar kecil, maka perbandingan sisi panjang dan sisi pendek dari persegi panjang adalah... (A) 5 4 (B) 4 3 (C) 3 2 (D) 2 (E) Dua buah parabola mempunyai titik puncak yang sama. Parabola pertama memotong sumbu-x di titik (a,0) dan (b,0) serta memotong sumbu-y di (0, 32). Parabola kedua definit positif dan memotong sumbu-y di (0,40). Jika a dan b dua bilangan bulat positif pertama yang habis dibagi 4, maka persamaan parabola kedua adalah... (A) y = x (B) y = x 2 32 (C) y = x 2 12x 32 (D) y = x x + 40 (E) y = x 2 12x Jika garis singgung parabola y = 4x x 2 di titik M(1, 3) juga merupakan garis singgung parabola y = x 2 6x + k, maka nilai dari 5 k 1 adalah... (A) 0 (B) 1 (C) 2 (D) 3 (E) Himpunan penyelesaian dari pertidaksamaan berikut x 2 + 2x 3 x 2 x 6 < x 1 x + 2 adalah... { (A) x }. x < 3 2 < x 1 3, x R { } (B) x x 3 2 < x < 1 3, x R { } (C) x x < < x < 3, x R (D) {x x 3 2 < x 1, x R} (E) {x 3 x < 2 1 x < 3, x R}. 13. Jika kedua akar persamaan px 2 + 8x + 3p = 0 bernilai negatif, maka jumlah kuadrat kedua akar-akar tersebut akan bernilai... (A) maksimum 30 (B) minimum 30 (C) minimum 6 (D) maksimum 6 (E) minimum 15/2 c Universitas Indonesia Halaman 2 dari 12 halaman

11 Kode Naskah Soal: Sebuah lingkaran memiliki jari-jari log a 2 dan keliling log b 4, maka a log b =... (A) 1 4π (B) 1 π (C) π (D) 2π (E) 10 2π 15. Misalkan a dan b adalah sudut lancip yang dibentuk oleh sumbu-x dengan garis singgung kurva y = x 2 + 6x 8 di titik potong kurva tersebut dengan garis y = 2x 5, maka sin(a b)=... (A) 1 4 (B) (C) 15 (D) (E) Jika titik A(a, c) dan B(b, d) adalah dua buah titik berbeda yang terletak pada kurva y = x 2 + x + 3, maka garis AB akan memotong sumbu-y pada... (A) y = a + b + 3 ab 3 (B) y = a 2 + a + 3 (C) y = b 2 + b + 3 (D) y = a 2 b (E) y = 3 ab 17. Misalkan rata-rata nilai ujian Matematika dari 30 siswa adalah 8,4. Jika nilai yang terkecil tidak diperhitungkan, maka rata-ratanya menjadi 8,5, sedangkan jika nilai terbesarnya tidak diperhitungkan, maka rata-ratanya menjadi 8,2. Jangkauan dari nilai ujian Matematika adalah... Gunakan Petunjuk C dalam menjawab soal nomor 18 sampai nomor Apabila k = x + y, maka k 2 k = 1 dan apabila k = x y, maka k 2 + k = 1, maka x + y =... (1) (2) 1 2 (3) (4) Jika persamaan matriks D 1 B 1 D 1 C 1 = A, A 0, maka pernyataan tersebut setara dengan... (1) BD = CD (2) B = C (3) ABD = ACD (4) B 1 C 1 = DA 20. Pada segitiga siku-siku ABC dengan siku-siku di C, besar A = 15 o dan panjang sisi AB= 5 cm. Titik D pada sisi AB sedemikian sehingga CD tegak lurus AB dan BCD = A. Pernyataan berikut ini yang BENAR adalah... (1) AD = 5 sin 2 15 o (2) CD = 5 sin 15 o cos 15 o (3) AD < CD (4) BD < AD (A) 6,7 (B) 7,4 (C) 7,8 (D) 8,2 (E) 8,7 c Universitas Indonesia Halaman 3 dari 12 halaman

12 Kode Naskah Soal: 224 MATA UJIAN : Matematika Dasar, Bahasa Indonesia, dan Bahasa Inggris TANGGAL UJIAN : 8 JULI 2012 WAKTU : 120 MENIT JUMLAH SOAL : 60 Keterangan : Mata Ujian MATEMATIKA DASAR nomor 1 sampai nomor 20 Mata Ujian BAHASA INDONESIA nomor 21 sampai nomor 40 Mata Ujian BAHASA INGGRIS nomor 41 sampai nomor 60 MATEMATIKA DASAR Gunakan Petunjuk A dalam menjawab soal nomor 1 sampai nomor Jika cos(2x) + cos(4x) = 1 2, maka sin(4x) + 2 sin(6x) + sin(8x) =... (A) sin(2x) + sin(4x) (B) sin(x) + sin(2x) (C) cos(x) + cos(2x) (D) cos(2x) + cos(4x) (E) sin(2x) + cos(4x) 2. Jika setiap anggota dari himpunan 5, 6, 7,..., 20 dikalikan dengan setiap anggota dari himpunan 21, 22,..., 30, maka penjumlahan dari semua hasil kali tersebut adalah... (A) (B) (C) (D) (E) Diketahui f(x) = ax 2 + (b + 1)x (a + b + 1) memotong sumbu-x di dua titik yang berbeda. Jika f(x) dibagi x mempunyai sisa (a + 6), maka a dipenuhi oleh... (A) a < 3 atau a > 3 (B) 3 < a < 3 (C) a 3 (D) a < 2 atau a > 8 (E) 2 < a < 8 4. Nilai x yang memenuhi 2 log x log(3x + 7) + 2 log 2 adalah... (A) 2 x 14 (B) 2 x 0 (C) 0 < x 14 (D) 2 < x < 0 (E) 0 x lim x 0 (A) x 5 2 x x = (B) 2 5 (C) (D) (E) Jika diketahui tan 2α + cot α = 0 untuk 0 < α < 180, maka nilai sin 2α =... (A) 1 (B) 0, 5 (C) 0 (D) 0,5 (E) 1 c Universitas Indonesia Halaman 1 dari 13 halaman

13 Kode Naskah Soal: Diketahui sebuah segitiga mempunyai tinggi t satuan dan alas a satuan. Dengan ukuran tinggi bertambah x satuan terbentuk segitiga baru. Berapa alas harus dikurangi supaya luas segitiga baru sepertiga dari segitiga semula? (A) ax t + x (B) a + x 3(t + x) (C) a + x 6(t + x) (D) a(2t + 3x) 3(t + x) a(3t + 2x) (E) 3(t + x) [ ] Jika matriks A =, maka matriks B yang 3 5 memenuhi A + B T = (A B) T adalah... [ ] 2 3 (A) 1 5 [ ] 0 2 (B) 2 0 [ ] 0 2 (C) 2 0 [ ] 0 1 (D) 1 0 [ ] 0 1 (E) A dan B berjalan menuju C dari dua tempat yang berbeda dengan waktu yang sama. Jika CAB = 30 o dan CBA = 45 o, maka perbandingan kecepatan A dengan kecepatan B agar mereka sampai di C pada saat yang bersamaan adalah... (A) 1 : 2 (B) 2 : 1 (C) 2 : 3 (D) 3 : 2 (E) 3 : Jika ( penyelesaian dari pertidaksamaan tan x + π ) 1 untuk π 3 2 < x < π adalah aπ x bπ atau cπ x < dπ, maka nilai dari a d + c b =... (A) 3 2 (B) 5 8 (C) 9 8 (D) 5 4 (E) Jika garis singgung parabola y = 4x x 2 di titik M(1, 3) juga merupakan garis singgung parabola y = x 2 6x + k, maka nilai dari 5 k 1 adalah... (A) 0 (B) 1 (C) 2 (D) 3 (E) Jika f(0) = 0 dan f (0) = 2, maka turunan dari f(f(f(f(f(f(x)))))) di x = 0 adalah... (A) 128 (B) 64 (C) 32 (D) 16 (E) Jika diketahui x dan y adalah bilangan riil dengan x > 1 dan y > 0. Jika xy = x y dan x y = x5y, maka x 2 + 3y =... (A) 29 (B) 28 (C) 27 (D) 26 (E) Titik yang memaksimumkan 3x + 2y yang memenuhi sistem pertidaksamaan linier y 2x, y 20, x + y 60 adalah... (A) (10, 20) (B) (40, 20) (C) (20, 40) (D) (60, 0) (E) (0, 60) c Universitas Indonesia Halaman 2 dari 13 halaman

14 Kode Naskah Soal: orang siswa kelas X, 4 orang siswa kelas XI dan 2 orang siswa kelas XII dipanggil ke ruang kepala sekolah. Kepala sekolah akan menunjuk 2 orang siswa sebagai ketua dan sekretaris mewakili sekolah untuk mengikuti rapat teknis porseni tingkat kabupaten. Peluang terpilih keduanya dari kelas yang berbeda dan ketua harus berasal dari kelas yang lebih tinggi dari sekretaris adalah... (A) 7 36 (B) (C) (D) (E) Nilai rata-rata matematika di suatu kelas yang jumlah siswanya 22 orang adalah 5 dengan jangkauan 4. Jika nilai siswa yang paling rendah dan yang paling tinggi tidak disertakan, maka nilai rata-ratanya berubah menjadi 4,9. Nilai siswa yang tertinggi adalah... (A) 7 (B) 7,5 (C) 8 (D) 8,5 (E) Jika kedua akar persamaan px 2 + 8x + 3p = 0 bernilai negatif, maka jumlah kuadrat kedua akar-akar tersebut akan bernilai... (A) maksimum 30 (B) minimum 30 (C) minimum 6 (D) maksimum 6 (E) minimum 15/2 18. Sebuah kotak berisi 2 koin Rp200, 4 koin Rp500, dan 6 koin Rp koin diambil tanpa pengembalian, di mana setiap koin memiliki peluang terpilih yang sama. Peluang bahwa enam koin yang terambil memiliki jumlah minimal Rp5000 adalah... (A) (B) (C) (D) (E) Gunakan Petunjuk C dalam menjawab soal nomor 19 sampai nomor Diberikan (x 1) 2 (x 4) 2 < (x 2) 2. Himpunan penyelesaian dari pertidaksamaan tersebut adalah... (1) { x 2 2 < x < 3 3 } (2) { x 3 3 < x < } (3) { x < x < } (4) { x x < 2 2 atau x > } 20. Apabila k = x + y, maka k 2 k = 1 dan apabila k = x y, maka k 2 + k = 1, maka x + y =... (1) (2) 1 2 (3) (4) c Universitas Indonesia Halaman 3 dari 13 halaman

15 PEMBAHASAN SIMAK UI 2012 MATEMATIKA DASAR Kode: Persamaan umum garis adalah y = mx + c. Karena h melalui titik asal (0,0), maka y = mx. Kemudian karena memotong kurva 2y = 3x 2x + 1 maka 2mx = 3x 2x + 1 3x (2 + 2m)x + 1 = 0 Maka jumlah nilai x-nya adalah x + x = 10 = 2. Perhatikan bahwa 3 2, 3 4, 9 8, 15 16, = , 2 1 2, , 2 1 2, Maka jumlah sepuluh suku pertama dari barisan tersebut adalah Perhatikan bahwa, m = 14. Jawaban: (D) = (2 + 2 ) + (2 2 ) + (2 + 2 ) + (2 2 ) + + (2 2 ) 2 = (2 2 ) + (2 2 ) + + (2 2 ) 2 = (2 1) + 2 (2 1) (2 1) 2 = = 10 + xy = x log xy = x log 2 2 ((2 ) 1) = = y log y = y 1...(1) dan = 5y log y Dari (1) dan (2) maka diperoleh y 1 = 1 5y y = 1/3 Sehingga diperoleh pula x. = x x = x x = 27. Jadi, x + 3y = = 28. = 1 5y...(2) Jawaban: (A)

16 4. Perhatikan bahwa = ( ) x = 10 x = 10 log 10 = 2 log x 6 = 2a 6 (a = log 10 2a 6a + 8 = 0. Maka hasil kali nilai-nilai x yang memenuhi adalah ) log(x x ) = log x + log x = a + a = 6 2 = 3 x x = Luas daerah bangun pada gambar adalah L = (a + b) b = 40 (a + b) = 40 + b a = 40 + b b Dengan batasan 3 < a < 5, maka 3 < 40 + b b < b < 40 + b < 5 + b 9 + 6b + b < 40 + b < b + b 6b < 31 atau 10b > 15 < b < 6. Misalkan banyak ulangan yang telah dilakukan Deni adalah n 1 dengan jumlah semua nilai adalah X. Jika ulangan yang berikutnya adalah 75, maka Dan jika ulangan berikutnya adalah 93, maka = 82 X + 75 = 82n...(1) = 85 X + 93 = 85n...(2) Dengan mengeliminasi (2) dan (1) maka diperoleh 18 = 3n n = 6 Jawaban: (D) 7. Peluang munculnya kejadian A: angka lebih besar atau sama dengan 5 pada pelemparan satu kali mata dadu adalah () = ({,}) = =. () () Jika dadu dilempar enam kali, peluang kejadian A terjadi pada minimal lima kali pelemparan adalah A tepat terjadi lima kali + A terjadi tepat enam kali, yaitu 1 3. C C = = Jawaban: (A)

17 8. Karena A adalah matriks singular maka Akibatnya, log b a + log a det A = 0 2 log 2 + log z log b. log z = 3 log b. log b = 0 log b = 0 = 2 + log a + 2 log z. log a = 3( 2) = 6 9. Gradien garis singgung y = 4x x di titik (1,3) adalah m(1) = y (1) = 4 2x = 2. Sehingga diperoleh garis singgung y = 2(x 1) + 3. Karena garis singgung kurva tersebut sama dengan kurva y = x 6x + k maka jelas memiliki gradien yang sama m = y = 2x 6 2x 6 = 2 x = 4 sehingga diperoleh pula y = 2(4 1) + 3 = 9. Akibatnya, 9 = k k = 17. Jadi diperoleh 5 k 1 = 5 16 = Perhatikan bahwa f(x) = Karena k ( ) sehingga f (x) = 0, yaitu Jadi, k = f = = = + sin θ., agar k maksimum maka fungsi di atas harus maksimum f (x) = 2 cos θ sin θ + cos θ = 0 = 0 2 cos θ (1 + sin θ) = 0 cos θ = 0 θ = + sin = 3. Jawaban: (A) 11. Perhatikan bahwa y 1 + ()() 0 0 y 1 atau 0 < y 2 1 atau 0 < 2 sin x 1 sin x = 1 atau 0 < sin x 2 0 < sin x 1 x = π atau 0 < x π Jawaban: (D)

18 12. Perhatikan bahwa, 1 sin 2(x 1) sin 2(x 1) tan (x lim (x 2x + 1) cot 1 = lim 2 1) = (x 1) (x 1)(x 1) 2 = Jumlah luas bidang alas dan semua bidang sisi kotak adalah L = L persegi + 4 L persegi panjang = s + 4st = 192 t = Volume kotak adalah V = L alas t = s t = s Agar Vvolume kotak sebesar mungkin maka V = 0 yaitu 48 s = 0 s = 48. = 64 s = 8 Jadi, V = = = 256. = 48s s. Jawaban: (D) Jawaban: (A) 14. Perhatikan bahwa, ( log x)( log yz) + ( log y)( log z) = 10 log x log y + log x log z + ( log y)( log z) = 10 Dengan memisalkan log x = a, log y = b, dan log y = c, maka = ( log x + log y + log z log x + log y + log z = a + b + c = (a + b + c) 2(ab + ac + ad) ) 2log x log y + log x log z = ( log xyz) 2.10 = ( log 2 ) 20 = = Perhatikan bahwa (a + b + c) = a + b + c + 2(ab + ac + bc) 18 = (a(b + c) + a ) = 2(a(18 a) + a ) 216 = 18a a = 12 + ( log y)( log z) Jawaban: (C) 16. Karena kedua akar negatif maka x + x = < 0 p > 0 dan diskriminan D 0 yaitu 64 12p 0 p artinya p = adalah maksimum. Akibatnya x + x = (x + x ) 2x x = = 6 = 6 p adalah nilai minimum. Jawaban: (C)

19 17. Karena x + y = k maka x + y adalah akar-akar dari persamaan k k 1 = 0, yaitu x, y = 1 ± (1) 4(1)( 1) ± 5 = 2 Jawaban: (1) dan (3) 18. Perhatikan bahwa (g f)(x) = gf(x) 2x + 4x 6 = g(x + 2) g(x) = 2(x 2) + 4(x 2) 6 = 2x 8x x 8 6 = 2x 4x 6 = (2x + 2)(x 3) x = 1 atau x = 3 Jadi, x + 2x = = 5 atau x + 2x = 3 + ( 2) = 1 Jawaban: (2) dan (4) 19. Perhatikan bahwa, U = y + 2y + 1 = (y + 1) = y + 1 U = y 1 Maka, 2b = U U = 2 b = 1. Di sisi lain, b = U u = y + 3y 1 (y + 1) 3 1 = 3 = y 4 y = 1 y = ±1 Akibatnya, suku keduanya adalah 1. Untuk y = 1 maka U = = 1 2. Untuk y = 1 maka U = 1 Jawaban: (2) dan (4) 20. Perhatikan bahwa, x + 2xy + 2y = x + 2xy + y + y 13 = (x + y) + y Dua bilangan kuadrat bulat yang mungkin dengan jumlah 13 adalah 4 dan 9. Akibatnya, jika (x + y) = 4 dan y = 9 maka y = 3 dan x = 1 tidak mungkin karena x > 0. Kemudian jika (x + y) = 9 dan y = 4 maka y = 2 dan x = 1. Jadi, x y = 1 3 = 4 atau x y = 1 2 = 1 Jawaban: (4)

20 PEMBAHASAN SIMAK UI 2012 MATEMATIKA DASAR Kode: Perhatikan bahwa, f(n) = log 3 log 4 log 5 log n = log n Akibatnya, f(8) + f(16) + + f(2 ) = f(2 ) + f(2 ) + + f(2 ) = log 2 + log log 2 = (28 barisan aritmetika dengan a = 3, b = 1) = S = 28 ( ) 2 = 14(6 + 27) = = Dengan memisalkan x = a maka diperoleh (p 2)a + 2pa + (p 1) = 0 Agar persamaan kuadrat di atas memiliki akar-akar riil berbeda maka D > 0, yaitu (2p) 4(p 1)(p 2) > 0 4p 4(p 3p + 2) > 0 3p 2 > 0 p > Jawaban: (D) 3. Jika x 4, maka penyebut x 16 = = 0. Agar terdefinisi menjadi maka pembilang juga harus 0, yaitu a(4) + b(4) 4 = 0 16a + 4b = 2...(1) Kemudian karena maka dengan menggunakan metode L hospital diperoleh 2ax + b 1 2 x lim = 1 2x 2 = 8a + b = 4. 8a + b =...(2) Dengan mengalikan 4 pada persamaan (2) kemudian menguraninya dengan persamaan (1) maka diperoleh 16a = 13 a = sehingga b = 8. = Jadi, a 2b = + = = 6. Bilangan bulat terbesar yang lebih kecil dari 6 adalah 6. Jawaban: (C)

21 4. Perhatikan bahwa x 2 11 < 6 7 < x x 2 < atau x + 1 > x < = 11 atau x > = 3 3 < x < 11 Bilangan bulat yang memenuhi x adalah 4, 5, 6, 7, 8, 9, 10, dan 11 Jumlahnya adalah (4 + 11) + (5 + 10) + (6 + 9) + (7 + 8) = 4 15 = Misalkan nilai ulangan Nita yang tercatat oleh gurunya = a. Diketahui setelah diperbaiki nilai ulangan Nita sebenarnya adalah b = 4a dan rata-rata barunya adalah x + 2. Perhatikan bahwa, x baru = x + 2 = + 2 (A adalah total nilai 29 anak selain Nita) A + b = A + a + 60 b = b + 60 b = 60 b = 80 Jawaban: (D) 6. Gradien garis singgung y = 4x x di titik (1,3) adalah m(1) = y (1) = 4 2x = 2. Sehingga diperoleh garis singgung y = 2(x 1) + 3. Karena garis singgung kurva tersebut sama dengan kurva y = x 6x + k maka jelas memiliki gradien yang sama m = y = 2x 6 2x 6 = 2 x = 4 sehingga diperoleh pula y = 2(4 1) + 3 = 9. Akibatnya, 9 = k k = 17. Jadi diperoleh 5 k 1 = 5 16 = Dengan a = sin(x), perhatikan bahwa 1 a + 1 a 1 a = 1 a + a a 1 a = 1 sin x + sin x sin x 1 sin x cos x + sin x = sin x cos x cot x = sin x cos x + 1 sin x cos x = (1 + cot x)/ sin x cos x Jawaban: (E)

22 8. Karena kedua akar negatif maka x + x = < 0 p > 0 dan diskriminan D 0 yaitu 64 12p 0 p artinya p = adalah maksimum. Akibatnya x + x = (x + x ) 2x x = = 6 = 6 p adalah nilai minimum. Jawaban: (C) 9. Misalkan banyaknya tablet A adalah a dan B adalah b. Diketahui bahwa, (1) a + 200b 1600 (2) a + 200b 2800 Nilai minimum dapat diperoleh dari eliminasi persamaan (1) dan persamaan (2) dengan batas minimum. Yaitu 600 = 100a + 200b 1200 = 400a + 200b 600 = 300a a = 2 dan b =. = 2 Jadi, a + b = 4. Jawaban: (A) 10. Perhatikan bahwa, x = 3x 35 3x = 3x 3x 35 Untuk x x = 3x 3x + 35 x = 35. Untuk x < x = 3x x = 6x 35 = 35 6x 7x = 35 x = 5. Jadi, jumlah semua nilai x adalah = 40. Jawaban: (C) 11. Karena garis l sejajar garis 4x y 3 = 0 y = 4x 3 yang memiliki gradien m = 4, maka gradien garis l adalah m = m = 4. Kemudian karena melalui titik (1,5) maka persamaan garis l y = 4(x 1) + 5 = 4x + 1. Persamaan parabola y = ax + bx + c melalui: - (0, 1) maka 1 = c c = 1. - (1,1) maka 1 = a + b 1 a + b = 2 - ( 1, 1) maka 1 = a b 1 a b = 0 a = b Akibatnya, a = b = 1 sehingga y = x + x 1. Jadi jumlah absis x + x dari titik potong l dan parabola, yaitu x + x 1 = 4x + 1 x 3x 2 = 0, adalah = = 3 Jawaban: (D) 12. Banyaknya kemungkinan keseluruhan adalah n(s) = ( )! = 9! Dengan menganggap kelompok adalah satu kesatuan maka akan terdapat 3 kelompok kesatuan sehingga susunan duduk per kelompok terdapat 3!, kemudian karena

23 kelompok ibu tedapat 3 orang maka terdapat 3!, kelompok bapak 4!, dan kelompok anak 2!. Jadi total banyaknya kemungkinannya adalah n(a) = 3! 3! 4! 2! Jadi peluangnya, P(A) = n(a) 3! 3! 4! 2! = n(s) 9! = = Perhatikan bahwa, = 5 (5 1) 5 (5 1) = 5 = 25 Jawaban: (E) 14. Perhatikan bahwa, xy = x log xy = x log = y log y = y 1...(1) dan = 5y log y Dari (1) dan (2) maka diperoleh y 1 = 1 5y y = 1/3 Sehingga diperoleh pula x. = x x = x x = 27. Jadi, x + 3y = = 28. = 1 5y...(2) 15. Karena ff(x) = (x + 1)f(x) x f(x) = (f (x) + 1)x f (x), Perhatikan bahwa, f(1) = (f (1) + 1). 1 f (1) = 1. Jawaban: (C) 16. Karena f(x) = 2 2x + 3, maka syarat yang harus dipenuhi adalah: 2 2x x x x + 3 0, sehingga 0 2x x 1 x Maka nilai tengah interval tersebut adalah X = =. Akibatnya, [f(x )] = f 1 2 = = 2 2 = 0 Jawaban: (C)

24 17. Perhatikan bahwa, x 2x + 3 f(x) 2x 4x f(5) 34 Karena f(5) = 26 artinya f(5) merupakan titik tengah antara 18 dan 34. Akibatnya, f(7) adalah titik tengah interval = 38 dan = 74, yaitu = = 56. Jawaban: (C) 18. Perhatikan bahwa, y(x) = 3 sin x + cos x3 3 cos x 3 sin x = 9 sin x cos x 3 3 sin x cos x 3 sin x cos x = 6 sin x cos x 3 3(cos x sin x) = 3 sin 2x 3 3 cos 2x Agar y ekstrim (min/maks) maka y = 0, yaitu y (x) = 6 cos 2x sin 2x = sin 2x = 6 cos 2x tan 2x = 3 2x = 150 atau 330 Jika 2x = 150 maka y = 3 sin cos 150 = + = 6 (maksimum) Jika 2x = 330 maka y = 3 sin cos 330 = = 6 (minimum) Jawaban: (A) 19. Karena x + y = k maka x + y adalah akar-akar dari persamaan k k 1 = 0, yaitu x, y = 1 ± (1) 4(1)( 1) 2.1 = 1 ± 5 2 Jawaban: (1) dan (3) 20. Perhatikan bahwa, (1) A + B = C + D ij + (i j) = i j + D D = ij + (i j) i j Jika i = 1 dan j = 2 maka D = (1 2) 1 2 = 2 + ( 1) 1 = 0 ij. (2) AB = XC ij(i j) = X i j X = () Jika i = 2 dan j = 1 maka X =.() = 2 ij (3) det B = (a. a a. a ) = (1 1). (2 2) (1 2)(2 1) = 0 ( 1). 1 = 1 0 Artinya B memiliki invers. (4) det A = (a. a a. a ) = = 4 4 = 0 Artinya A tidak memiliki invers atau disebut matriks singular. Jawaban: (4)

25 PEMBAHASAN SIMAK UI 2012 MATEMATIKA DASAR Kode: Perhatikan bahwa, 4 sin x = 1 = 1 2 sin 2x 4 = cos x cos x + 2 sin 2x = 4 Kemudian dari persamaan kuadrat perhatikan bahwa 2. Perhatikan bahwa, d dx [f (x) + g (x)] = d dx fg(x) Jika x = 2, maka 2f(2)f (2) + 3g (2)g (2) D = b 4ac = cos x 4 sin x ( cos x) f g(2)g (2) = cos x + 2 sin 2x = 4 2f(x)f (x) + 3g (x)g (x) = f (2). 5 f g(x)g (x) = Jawaban: (E) = = 4,2 3. Banyaknya suku yang berbeda dari suku pangkat 2 adalah banyaknya setiap pasang dari variabel yang ada yaitu C. Karena terdapat 10 huruf yaitu huruf a, b,, j. Jadi, banyaknya suku yang berbeda adalah C =..! = 45. Jawaban: (C) 4. Misalkan total siswa adalah A dan banyaknya siswa laki-laki adalah x, maka menurut Aisyah, x = (A 1) = A (Karena yang dihitung dalam survei adalah teman-temannya sehingga Aisyah tidak dihitung). Sedangkan menurut Ahmad, x 1 = (A 1) x = A + (Karena Ahmad sendiri tidak terhitung sekaligus sebagai teman laki-lakinya). Jadi,!.! A = A + A = + A = A = 120 Jadi banyaknya teman siswi perempuan Aisyah di kelas 1 adalah. (120 1) = 84 sehingga totalnya adalah 85. Jawaban: (D) 5. Karena w = z xy, agar w sebesar mungkin maka z harus sebesar mungkin dan xy sekecil mungkin. Agar z sebesar mungkin maka z = 10 karena 4 z 10. Agar xy sekecil mungkin maka pilih x = 3 dan y = 5 sehingga xy = 15. Jadi, w = 10 ( 15) = 25.

26 6. Perhatikan bahwa, cos 2x = cos 2x cos 2x + 2 cos 2x + 8 cos 2x = 3 8 cos 2x + 10 cos 2x + 2 = 9 8 cos 2x + 10 cos 2x 7 = 0 8a + 10a 7 = 0 (2a 1)(4a + 7) = 0 a = atau a = (tidak mungkin krn <-1) Jadi, a = cos 2x = 2x = 60, 300, 420, 660, Jawaban: (D) x = 30, 150, 210, 330 Jadi, jumlahnya adalah = 720. Jawaban: (A) 7. Karena kelipatan 5 maka angka belakang atau satuan adalah angka 0 dan 5 (2 angka). - Untuk angka satuan adalah 0 maka angka ratusan haruslah tanpa 0 sehingga terdapat 5 angka yang diperbolehkan {1,2,...,5}. Sedangkan untuk puluhan, karena 0 telah terpakai pada satuan, dan salah satu dari {1,2...5} terpakai di ratusan maka tersisa 4 angka. Jadi, banyaknya susunan angkanya adalah = Untuk angka satuan adalah 5 maka angka ratusan haruslah tanpa 0 dan 5 sehingga terdapat 4 angka yang diperbolehkan {1,2,...,4}. Sedangkan untuk puluhan, karena 5 telah terpakai pada satuan, dan salah satu dari {1,2...4} terpakai di ratusan maka tersisa 4 angka + 1 angka 0 untuk satuan. Jadi, banyaknya susunan angkanya adalah = 20. Jadi, banyaknya susunan angka ratusan kelipatan 5 adalah = 40 Jawaban: (E) 8. Perhatikan bahwa, xy = x log xy = x log = y log y = y 1...(1) dan = 5y log y = 1 5y...(2) Dari (1) dan (2) maka diperoleh y 1 = 1 5y y = 1/3 Sehingga diperoleh pula x. = x x = x x = 27. Jadi, x + 3y = = Misalkan sisi panjang dari persegi panjang adalah x dan sisi pendeknya adalah y. Diketahui L = 9L s = 9r s = 3r. Pada gambar dapat dilihat bahwa panjang sisi bujur sangkar besar adalah s = 2y + r 2y = s r = 2r y = r

27 dan sisi panjang dari persegi panjang adalah x = y + r = 2y = 2 Jawaban: (D) 10. Karena melalui titik (a, 0) dan (b, 0) dan a dan b adalah dua bilangan positif pertama yang habis dibagi delapan maka a = 4 dan b = 8 sehingga persamaan parabola pertama: y = A(x 4)(x 8). Kemudian karena melalui (0, 32) maka 32 = A( 4)( 8) A = 1. Jadi y = 1(x 4)(x 8) = x + 12x 32. Parabola ini memiliki titik puncak:, =, () = (6,4). Karena parabola kedua memiliki puncak yang sama maka persamaan parabola kedua adalah: y y = Bx x y 4 = B(x 6). Kemudian karena melalui (0,40) maka 40 4 = B( 6) B = 1 Jadi, persamaan parabola 2 adalah y = 1(x 12x + 36) + 4 y = x 12x + 40 Jawaban: (E) 11. Gradien garis singgung y = 4x x di titik (1,3) adalah m(1) = y (1) = 4 2x = 2. Sehingga diperoleh garis singgung y = 2(x 1) + 3. Karena garis singgung kurva tersebut sama dengan kurva y = x 6x + k maka jelas memiliki gradien yang sama m = y = 2x 6 2x 6 = 2 x = 4 sehingga diperoleh pula y = 2(4 1) + 3 = 9. Akibatnya, 9 = k k = 17. Jadi diperoleh 5 k 1 = 5 16 = Perhatikan bahwa x + 2x 3 x x 6 < x 1 x + 2 x + 2x 3 (x 1) x < x 6 (x + 2) (x + 3)(x 1) (x 1) (x + 2)(x 3) (x + 2) < 0 (x + 3)(x 1)(x + 2) (x 1) (x 3) (x + 2) < 0 (x 3) (x 1)[x + 5x + 6 (x 4x + 3) (x + 2) < 0 (x 3) (x 1)(9x + 3) (x + 2) (x 3) < 0 ( 2) (1) (3) Jadi, {x < 2} 2 < x < {1 < x < 3}. Namun karena ada dalam akar maka:

28 x + 2x 3 (x + 3)(x 1) x = x 6 (x + 2)(x 3) ( 3) ( 2) (1) (3) Jadi, {x 3} { 2 < x 1} {x > 3}. Akibatnya, himpunan penyelesaiannya adalah {x x 3 2 < x < 1 3 } 13. Karena kedua akar negatif maka x + x = < 0 p > 0 dan diskriminan D 0 yaitu 64 12p 0 p artinya p = adalah maksimum. Akibatnya x + x = (x + x ) 2x x = = 6 = 6 p adalah nilai minimum. Jawaban: (C) 14. Diketahui, r = log a dan K = log b, maka K = 2πr log b = 2π log a Jadi, log b = π. = 2π 2 log b = 2π 15. Titik potong antara kurva dan garis adalah 2x 5 = x + 6x 8 x 4x + 3 = 0 (x 3)(x 1) = 0 x = 3 dan x = 1 Gradien garis singgung kurva pada dua absis titik potong tersebut adalah tan a = m = y (1) = 2x + 6 = 4 tan b = m = y (3) = 2x + 6 = 0 Jadi, tan(a b) = = = Jawaban: (C) Akibatnya, 4 sin(a b) = = 4 17 = Jawaban: (D) 16. Karena A = (a, c) dan B = (b, d) pada kurva maka c = a + a + 3 dan d = b + b + 3. Sehingga gradien dari garis AB adalah c d m = a b = a + a + 3 b b 3 a b = a b + a b (a b)(a + b + 1) = = a + b + 1 a b a b Maka persamaan yang melalui ruas garis AB adalah

29 y (a + a + 3) = m(x a) = (a + b + 1)(x a) Titik potong dengan sumbu y adalah ketika x = 0, yaitu y (a + a + 3) = (a + b + 1)( a) y = a ab a + a + a + 3 = 3 ab Jawaban: (E) 17. Misalkan nilai terkecil x dan terbesar x. Dengan A adalah total nilai tanpa x dan x, perhatikan bahwa A + x = 8,5 29 dan x + A 29 = 8,2 Dengan mengurangi persamaan atas dengan bawah maka diperoleh A + x 29 x + A 29 = 0,3 x x = 0,3 29 x x = 8,7 Jawaban: (E) 18. Karena x + y = k maka x + y adalah akar-akar dari persamaan k k 1 = 0, yaitu x, y = 1 ± (1) 4(1)( 1) Perhatikan bahwa, D B D C = A Maka (1) (BD) (CD) = A. Karena A 0 maka BD CD. = 1 ± 5 2 Jawaban: (1) dan (3) (2) D (B C ) = A. Jika B = C maka A = 0, padahal A 0. Jadi B C. (3) Jika ABD = ACD maka BD = CD (karena A 0 sehingga memiliki invers). Akibatnya, (BD) (CD) = 0 = A. Padahal A 0. jadi ABD ACD. (4) Dari (2) D (B C ) = A B C = DA 20. B 5 cm Jawaban: (4) D 15 o 15 o C Perhatikan bahwa, (1) AD = AC cos 15 = (AB cos 15 ) cos 15 = 5 cos 15 5 sin 15 (2) CD = BC cos 15 = (AB sin 15 ) cos 15 = 5 sin 15 cos 15 A

30 (3) Perhatikan bahwa AD = 5 cos 15 = 5 2 (2 cos 15 ) = 5 2 (cos 30 1) = 5 2 (1 3 1) 2 = < 0 4 Sedangkan CD = 5 sin 15 cos 15 = sin 30 = > 0 Jadi, AD < CD (4) Perhatikan bahwa, BD = BC sin 15 = AB sin 15 = 5 sin 15 = 5 2 (2 sin 15 ) = 5 2 (1 cos 30 ) = = > 0 dan berdasarkan (3) telah diperoleh bahwa AD < 0, maka AD < BD. Jawaban: (2) dan (3)

31 PEMBAHASAN SIMAK UI 2012 MATEMATIKA DASAR Kode: Perhatikan bahwa, cos 2x + cos 4x = 1 2 cos 2x + 2 cos 2x 1 = 1/2 4 cos 2x + 2 cos 2x 3 = 0 (2 cos 2x 1)(2 cos 2x + 3) = 0 cos 2x = 2x = 60 x = 30 Perhatikan pula bahwa sin 4x + 2 sin 6x + sin 8x = sin sin sin 240 = = 0 (a) sin 2x + sin 4x = sin 60 + sin (b) sin x + sin 2x = sin 30 + sin 60 0 (c) cos x + cos 2x = cos 30 + cos 60 0 (d) cos 2x + cos 4x = cos 60 + cos 120 = cos 60 cos 60 = 0 (e) sin 2x + cos 4x = sin 60 + cos 120 = sin 60 cos 60 0 Jawaban: (D) 2. Jika setiap anggota dari {5,6,,20} dikalikan dengan setiap anggota dari {21,22,,30}, maka jumlah dari semuanya adalah S = ( )( ) = 16 2 = S. S = S. S ( ). 10 ( ) 2 = 8( ). 5(42 + 9) = = = Jawaban: (D) 3. Karena f(x) dibagi x bersisa (a + 6) maka (a + 6) = f(0) = (a + b + 1) 6 = b + 1 b = 5 Jadi, f(x) = ax + 6x (a + 6). Akibatnya, agar memotong sumbu x di dua titik berbeda maka diskriminan dari f(x), D > 0, yaitu 36 4a (a + 6) > a + 24a > 0 a + 6a + 9 > 0 (a + 3) > 0 a 3 Jawaban: (C)

32 4. Perhatikan bahwa 2 log x log(3x + 7) + 2 log 2 log x log(3x + 7). 2 x 12x + 28 x 12x 28 0 (x + 2)(x 14) 0 2 x 14 Kemudian karena berada di dalam log maka - x > 0-3x + 7 > 0 x > Jadi, himpunan penyelesaiannya adalah 0 < x Perhatikan bahwa, x 5 2 x lim x x x x x x 5 2 x = lim x x x 4 x = lim x x x = = = Jawaban: (C) Jawaban: (C) 6. Perhatikan bahwa, tan 2α + cot α = 0 tan 2α = cot α sin 2α cos α = cos 2α sin α sin 2α sin α = cos α cos 2α 2 cos α sin α sin α = cos α (1 2 sin α) 2 sin α = (2 sin α 1) 0 = 1 Persamaan ini tidak konsisten maka tidak ada nilai x yang memenuhi. Jawaban: - 7. Diketahui segitiga awal dengan tinggi t dan alas a, maka L =. Jika tinggi bertambah x maka menjadi t + x, akibatnya agar luas menjadi nya maka, L = L = 1 at 3 2 (a y)(t + x) = at 2 6

33 at (a y) = 3(t + x) at 3at + 3ax at y = a = 3(t + x) 3(t + x) a(2t + 3x) = 3(t + x) Jawaban: (D) 8. Perhatikan bahwa A + B = (A B) = A B. Akibatnya, 2B = A A B = = = Jawaban: (D) 9. Jarak dari A ke C adalah s = v. t, sedangkan jarak B ke C adalah s = v. t. Berdasarkan aturan sinus pada segitiga maka BC sin CAB = AC sin CBA. =.. =. 10. Perhatikan bahwa, = = tan x + 1 tan x tan x + = 1 x + 60 = 135, 315, 495, 675 x = 75, 255, 435 (75 ), 615 (255 ) Karena < x < π 90 = 270 < x < 180 maka x = 75 = π. Kemudian karena x + x Jadi, π (π) < x < atau x < π Artinya a = 5/12 ; b = 1; c = 1/2; dan d = 1/6 Sehingga a d + = + = = = Jawaban: Gradien garis singgung y = 4x x di titik (1,3) adalah m(1) = y (1) = 4 2x = 2. Sehingga diperoleh garis singgung y = 2(x 1) + 3. Karena garis singgung kurva tersebut sama dengan kurva y = x 6x + k maka jelas memiliki gradien yang sama m = y = 2x 6 2x 6 = 2 x = 4 sehingga diperoleh pula y = 2(4 1) + 3 = 9.

34 Akibatnya, 9 = k k = 17. Jadi diperoleh 5 k 1 = 5 16 = Perhatikan bahwa, y = f f f f ff(x) f f f ff(x) f f ff(x) Perhatikan bahwa f(0) = 0 Maka f ff(x) f f(x) f (x) ff(0) = f(0) = 0 f ff(0) = f(0) = 0 dst. y (0) = f (0) f (0) f (0) f (0) f (0) f (0) = f (0) = 2 = Perhatikan bahwa, xy = x log xy = x log = y log y = y 1...(1) dan = 5y log y Dari (1) dan (2) maka diperoleh y 1 = 1 5y y = 1/3 Sehingga diperoleh pula x. = x x = x x = 27. Jadi, x + 3y = = = 1 5y...(2) Perhatikan bahwa, - Untuk (10,20) maka 3x + 2y = = Untuk (40,20) maka 3x + 2y = = Untuk (20,40) maka 3x + 2y = = 140. Jadi, (40,20) memaksimumkan 3x + 2y.

35 15. Kejadian dimana terpilihnya ketua dari kelas yang lebih tinggi dari sekrtaris jelas akan memberikan pilihan dari kelas yang berbeda jadi kejadian terjadi sekaligus dengan kemungkinannya: (1) Ketua dari kelas XII dan sekretaris dari kelas XI = 2.4 = 8 (2) Ketua dari kelas XII dan sekretaris dari kelas X = 2.3 = 6 (3) Ketua dari kelas XI dan sekretaris dari kelas X = 3.4 = 12 Jadi, terdapat 26 kemugkinan. Akibatnya, peluang kejadian di atas adalah P(A) = 26 C = 26 = ! ! 16. Misalkan a nilai terkecil dan b adalah nilai terbesar serta total nilai tanpa nilai terbesar dan terkecil adalah A, maka Jawaban: (E) x = a + A + b 22 = 5 dan rata-rata tanpa a dan b adalah = 4,9 A = 98. Akibatnya, = 5 a + b + 98 = 110 a + b = 12 dengan diketahui jangkauan adalah J = b a = 4 maka 2b = 16 b = 8 Jawaban: (C) 17. Karena kedua akar negatif maka x + x = < 0 p > 0 dan diskriminan D 0 yaitu 64 12p 0 p artinya p = adalah maksimum. Akibatnya x + x = (x + x ) 2x x = = 6 = 6 p adalah nilai minimum. Jawaban: (C) 18. Misalkan A adalah kejadian terambilnya minimal jumlah Perhatikan bahwa 6 koin yang memiliki jumlah minimal 5000 adalah (1) 6 koin 1000 > 5000 maka terdapat C = 1 kemungkinan (2) 5 koin koin 500 maka terdapat C. C = 24 kemungkinan (3) 5 koin koin 200 maka terdapat C. C = 12 kemungkinan (4) 4 koin koin 500 maka terdapat C. C = 90 kemungkinan Jadi total terdapat 127. Akibatnya peluang dari A adalah

36 P(A) = 127 C = 127 = ! Jawaban: (C) 19. Perhatikan bahwa, (x 1) (x 4) < (x 2) (x 5x + 4) (x 2) < 0 x 5x + 4 (x 2)x 5x (x 2) < 0 (x 6x + 6)(x 4x + 2) < 0 Untuk x 6x + 6 = 0 (x 3) = 0 (x 3) = 3 x 3 = ± 3 x = 3 ± 3 Untuk x 4x + 2 = 0 (x 2) = 0 (x 3) = 2 Jadi, diperoleh x 2 = ± 2 x = 2 ± (1) 2 3 < x < 3 3 atau (2)2 + 3 < x < Jawaban: (1) dan (3) 20. Karena x + y = k maka x + y adalah akar-akar dari persamaan k k 1 = 0, yaitu x, y = 1 ± (1) 4(1)( 1) ± 5 = 2 Jawaban: (1) dan (3)

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2007

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2007 Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 007. Jika a > 0 dan a memenuhi a 4 b ( ) a, maka log b A. B. C. D. E. a a 4 b ( ) a 4 ( b a ) a 4 b a b 4 4 log b log 4 log ( ) log log. Jawabannya

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2009

Pembahasan Matematika IPA SIMAK UI 2009 Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika pengguna kendaraan bermotor bertambah banyak maka kemacetan di ruas jalan

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket Oleh : Fendi Alfi Fauzi. Lingkaran x 6) 2 + y + ) 2 menyinggung garis y di titik a), ) b), ) c) 6, ) d) 6,

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

Xpedia Matematika. Kapita Selekta Set 05

Xpedia Matematika. Kapita Selekta Set 05 Xpedia Matematika Kapita Selekta Set 05 Doc. Name: XPMAT9705 Doc. Version : 0-07 halaman 0a Garis singgung pada kurva y=x -x + akan sejajar dengan sumbu x di titik yang absisnya... x = x = 0 x = 0 dan

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40. PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan

Lebih terperinci

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Blog:

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si   Blog: PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Email: sebelasseptember@yahoo.com Blog: http://istiyanto.com Berikut soal-soal yang dapat Anda gunakan untuk latihan dalam menghadapi

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014 PETUNJUK UNTUK PESERTA 1. Tuliskan nama lengkap, kelas, asal sekolah, alamat sekolah lengkap dengan nomor telepon, faximile, email sekolah dan nama guru Matematika di tempat yang telah disediakan.. Tes

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 0 / 06 SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON Downloaded from SMA / MA MATEMATIKA Program Studi IPA Kerjasama dengan Dinas Pendidikan Provinsi

Lebih terperinci

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) UJIAN NASIONAL SMA/MA Tahun Pelajaran 004/005 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 005 Jam : 08.00 0.00 PELAKSANAAN

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Matematika EBTANAS Tahun 2002

Matematika EBTANAS Tahun 2002 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3 Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log

Lebih terperinci

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal B) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal B) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 05 / 06 SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON Downloaded from SMA / MA MATEMATIKA Program Studi IPA Kerjasama dengan Dinas Pendidikan Provinsi

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2009 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai

Lebih terperinci

Ujian Nasional. Tahun Pelajaran 2010/2011 IPA MATEMATIKA (D10) UTAMA. SMA / MA Program Studi

Ujian Nasional. Tahun Pelajaran 2010/2011 IPA MATEMATIKA (D10) UTAMA. SMA / MA Program Studi Ujian Nasional Tahun Pelajaran 00/0 UTAMA SMA / MA Program Studi IPA MATEMATIKA (D0) c Fendi Alfi Fauzi alfysta@yahoo.com Ujian Nasional Tahun Pelajaran 00/0 (Pelajaran Matematika) Tulisan ini bebas dibaca

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2. Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan - Telepon (0) 77, Fax (0)

Lebih terperinci

Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3.

Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3. Nama : No. Peserta :. Jika x =, y =, dan z = 0, maka nilai dari x y z =. x yz A. 6 B. 5 C. 6 D. 9 E.. Jika log A. ab+a+b a+ B. b+a+ a+ C. a+b+ a+ D. ab+a+ a+ E. ab+a+ a+ = a dan log 5 = b, maka log 60.

Lebih terperinci

CONTOH SOAL DAN PEMBAHASAN PERSIAPAN UN 2014

CONTOH SOAL DAN PEMBAHASAN PERSIAPAN UN 2014 CONTOH SOAL DAN PEMBAHASAN PERSIAPAN UN 04 DISUSUN OLEH AHMAD THOHIR MA FUTUHIYAH JEKETRO GUBUG GROBOGAN JATENG KATA PENGANTAR Tulisan yang sangat sederhana ini berisi kisi-kisi UN 0 disertai contoh soal

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMA Minggu, 0 Oktober HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR

Lebih terperinci

+ 19) = 0 adalah α dan β. Jikaα > β

+ 19) = 0 adalah α dan β. Jikaα > β TRY OUT MATEMATIKA PAKET B TAHUN 00 PETUNJUK KHUSUS Pilihlah salah satu jawaban yang paling benar, dengan menghitamkan bulatan lembar jawab(ljk) yang tersedi. Diketahui pernyataan sebagai berikut: Jika

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan Telepon (0) 77, Fax (0)

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika n bilangan prima ganjil maka n.. Jika n maka n 4. Ingkaran dari kesimpulan

Lebih terperinci

Siap UAN Matematika. Oleh. Arwan Hapsan. Portal Pendidikan Gratis Indonesia.

Siap UAN Matematika. Oleh. Arwan Hapsan. Portal Pendidikan Gratis Indonesia. Siap UAN Matematika Oleh Arwan Hapsan Portal Pendidikan Gratis Indonesia Http://okor.id Copyright okor.id Artikel ini boleh dicopy,diubah, dikutip, di cetak dalam media kertas atau yang lain, dipublikasikan

Lebih terperinci

B21 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( )

B21 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( ) B Pak Anang http://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M8-0/0 Mata Pelajaran Jenjang Program Studi Hari/Tanggal Jam MATA PELAJARAN : MATEMATIKA : SMA/MA : IPA WAKTU

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif,

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif, 000 SOAL UNTUK MATEMATIKA CEPAT TEPAT MATEMATIKA. Fungsi kuadrat y ( p ) ( p ) = + + + definit postif untuk konstanta p yang memenuhi adalah. Jika persamaan kuadrat p ( p p) + 4 = 0 mempunyai dua akar

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran / SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D) SELASA, 6 MEI Pukul 7.. DEPARTEMEN PENDIDIKAN NASIONAL --D-P Hak Cipta pada

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-26

LOMBA MATEMATIKA NASIONAL KE-26 LOMBA MATEMATIKA NASIONAL KE-6 Babak Penyisihan Tingkat SMA Minggu, 8 November 015 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA

SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA SIMAK UI KEMAMPUAN DASAR Matematika Dasar Universitas Indonesia 0 FReS-TA SIMAK UI - Matematika Dasar 45 Kode Naskah Soal: PETUNJUK KHUSUS PETUNJUK

Lebih terperinci

PAKET TRY OUT UN MATEMATIKA IPA

PAKET TRY OUT UN MATEMATIKA IPA PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA TRYOUT UN SM/M 04/0 MTMTIK IP. iketahui premis-premis berikut : Premis : Jika kita tidak menjaga kebersihan, maka kita akan terserang penyakit. Premis : Jika kita terserang penyakit, maka aktivitas kita

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D0) SELASA, 6 MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL 0 0-0-D0-P0

Lebih terperinci

Matematika EBTANAS Tahun 2003

Matematika EBTANAS Tahun 2003 Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

yos3prens.wordpress.com

yos3prens.wordpress.com yosprens.wordpress.com Before anything else, preparation is the key to success. Alexander Graham Bell Mata Pelajaran Jenjang Program Studi : Matematika : SMA/MA : IPA Hari/Tanggal Jam :... :.... Isilah

Lebih terperinci

adalah. 3. Bentuk sederhana dari A.!!" B.!!" 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16

adalah. 3. Bentuk sederhana dari A.!! B.!! 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16 . Diketahui premis-premis berikut : Premis : Jika Dasikin belajar maka ia dapat mengerjakan soal Premis : Dasikin tidak dapat mengerjakan soal atau ia bahagia Premis : Dasikin belajar Kesimpulan yang sah

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Waktu : 210 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) 0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :

Lebih terperinci

SOAL TRY OUT MATEMATIKA 2009

SOAL TRY OUT MATEMATIKA 2009 SOAL TRY OUT MATEMATIKA 009. Diberikan premis-premis :. jika semua siswa SMA di DKI Jakarta lulus ujian, maka Pak Gubernur DKI Jakarta sujud syukur. Pak Gubernur DKI Jakarta tidak sujud syukur negasi kesimpulan

Lebih terperinci

PILIHLAH SALAH SATU JAWABAN YANG BENAR

PILIHLAH SALAH SATU JAWABAN YANG BENAR PETOENJOEK OEMOEM. Periksa Soal Try Out (IPA) dan Nomor Tes sebelum Anda menjawab. Jumlah soal sebanyak 0 butir soal yang terdiri dari :. Pengisian pada lembar jawaban (LJK) yang disediakan PILIHLAH SALAH

Lebih terperinci

SMA/MA MATEMATIKA FISIKA KIMIA BIOLOGI BAHASA INDONESIA BAHASA INGGRIS

SMA/MA MATEMATIKA FISIKA KIMIA BIOLOGI BAHASA INDONESIA BAHASA INGGRIS PREDIKSI UJIAN NASIONAL SMA/MA MATEMATIKA FISIKA KIMIA BIOLOGI BAHASA INDONESIA BAHASA INGGRIS SEMOGA SUKSES PAKET PREDIKSI UJIAN NASIONAL SMA/MA Mata Pelajaran : MATEMATIKA Tanggal : - Waktu : MENIT PETUNJUK

Lebih terperinci

SOAL SEMIFINAL LCCM BEREGU TINGKAT SMA

SOAL SEMIFINAL LCCM BEREGU TINGKAT SMA SOAL SEMIFINAL LCCM BEREGU TINGKAT SMA By : Bayu Kencana PUTARAN Soal Tertulis. Dari segitiga samasisi ABC, diketahui panjang sisinya adalah. Titik A terletak pada sumbu- positif, titik B pada kuadran

Lebih terperinci

Soal Latihan Matematika

Soal Latihan Matematika Soal Latihan Matematika www.oke.or.id Soal berikut terdiri dari 6 soal Yang merupakan rangkuman dari berbagai latihan, isi dari soal berikut meliputi : Pernyerderhanaan Persamaan grafis akar kuadrat fungsi

Lebih terperinci

Bab1. Sistem Bilangan

Bab1. Sistem Bilangan Modul Pra Kalkulus -0. Bab. Sistim Bilangan Bab. Sistem Bilangan. Sistim Bilangan Jenis bilangan berkembang sejalan dengan perkembangan peradaban dan ilmu pengetahuan. Jenis bilangan yang pertama kali

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/0 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui premis premis : () Jika Badu rajin belajar dan patuh pada orang tua, maka Ayah membelikan bola basket () Ayah tidak membelikan

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 21 YOGYAKARTA55281 lmnas@ugm.ac.id http://lmnas.fmipugm.ac.id

Lebih terperinci

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah.

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah. . Diketahui premis premis : () Jika Badu rajin belajar dan, maka Ayah membelikan bola basket () Ayah tidak membelikan bola basket Kesimpulan yang sah A. Badu rajin belajar dan Badu patuh pada orang tua

Lebih terperinci

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013 Soal dan Pembahasan UN Matematika SMA IPA Tahun 013 LOGIKA MATEMATIKA p siswa rajin belajar ; q mendapat nilai yang baik r siswa tidak mengikuti kegiatan remedial ~ r siswa mengikut kegiatan remedial Premis

Lebih terperinci

b c a b a c 1. Bentuk sederhanaa dari

b c a b a c 1. Bentuk sederhanaa dari 7 a b c. Bentuk sederhanaa dari 6 6a b c c A. a b b B. a c C. b a c bc D. a E. 7 7 c a b. Dalam kantong kantong diambil dua kelereng sekaligus, maka peluang mendapatkan kelereng satu berwarna merah dan

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)

Lebih terperinci

D. 90 meter E. 95 meter

D. 90 meter E. 95 meter 1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI 5 BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/05 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 132

Pembahasan Matematika IPA SNMPTN 2012 Kode 132 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode Oleh Tutur Widodo. Lingkaran (x 6) + (y + ) = menyinggung garis x = di titik... (, 6) d. (, ) (, 6) e. (, ) c. (,

Lebih terperinci

TAHUN PELAJARAN 2009 / 2010 MATEMATIKA SMA PROGRAM STUDI IPA. Rabu, 3 Februari Menit

TAHUN PELAJARAN 2009 / 2010 MATEMATIKA SMA PROGRAM STUDI IPA. Rabu, 3 Februari Menit Try Out TAHUN PELAJARAN 009 / 00 MATEMATIKA SMA PROGRAM STUDI IPA Rabu, Februari 00 0 Menit PETUNJUK :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer (LJK) yang tersedia dengan menggunakan pensil

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-25 Babak Penyisihan Tingkat SMA Minggu, 9 November 20 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI 5 BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/05 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

BANK SOAL MATEMATIKA IPS

BANK SOAL MATEMATIKA IPS BANK SOAL MATEMATIKA IPS Tim Guru Matematika SMAN 1 Kendari KENDARI 2013 1. Bentuk sederhana dari adalah... A. B. E. Jawaban : E Bentuk sederhana dari : 2. Nilai x yang memenuhi persamaan adalah... A.

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci