Bab IV Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Linier terhadap Konsentrasi

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab IV Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Linier terhadap Konsentrasi"

Transkripsi

1 Bb IV Model Difusi Oksigen di Jingn dengn Lju Konsumsi Linie tehdp Konsentsi Poses metbolisme yng tejdi di jingn menggunkn oksigen sebgi bhn utmny. Dlm hl ini disumsikn lju konsumsi oksigen di jingn niliny begntung luus tehdp konsentsi. Sehingg g( ) pd pesmn (2.6) dpt dituliskn g( ) = κ, dengn κ dlh konstnt. IV. Solusi Kedn unk Pesmn difusi untuk deh jingn dengn konsumsi oksigen linie tehdp konsentsi dibeikn oleh ( 2 D j + ) = κ. (4.) 2 Pd Bb III, telh disumsikn bhw konsentsi oksigen di dinding kpile sm dengn nili konsentsi oksigen di dlm dh. Pd bb ini disumsikn dinding kpile mempunyi koefisien pepindhn mss h, yng didefinisikn : D j = h( k ) pd =, (4.2) dimn k dlh konsentsi oksigen di kpile, yng dlm h dil niliny konstn, k = k ( z). Pesmn (4.2) meupkn syt bts yng menghubungkn pesmn difusi di jingn dengn pesmn untuk pebedn konsentsi di dh dn di dinding kpile. Pd dinding lu jingn, lin konsentsi oksigen benili nol, sehingg (b) =. (4.3)

2 23 Di dlm kpile, tedpt kondisi kesetimbngn, yitu lju konsentsi oksigen yng bepindh ke jingn dlh sm dengn lju pengdn oksigen. Ken dinding kpile mempunyi kethnn pepindhn mss, mk pesmn untuk deh kpile dlh: u π 2d k d z = 2πh( k ), (4.4) dimn nili dihitung pd =. edpt sutu kondisi bhw konsentsi oksigen di ujung wl kpile dlh in, beti: k = in pd z =. (4.5) Mslh syt bts (4.)-(4.5) dpt dituliskn dlm bentuk tk bedimensi, dengn penskln: = in, =, z = z. Sehingg pesmn difusi untuk deh jingn dlh: = k2, (4.6) dimn k = ( κ2 D j ) 2. Pesmn konsentsi untuk deh kpile dlh: u π d k dz = 2πh( k ) pd =. (4.7) Syt bts untuk pesmn (4.6) dn (4.7) dibeikn oleh: = pd = b, (4.8) = h ( k ) D j pd =. (4.9) k = pd z =. (4.) Solusi pesmn (4.7) dengn bts (4.) dlh: [ ( ) ] 2βυ h k (z) = exp z, (4.) + βυ u

3 24 dn penyebn konsentsi untuk deh jingn dlh: (, z) = k(z) (I (k)k (k b + βυ ) + K (k)i (k b ) ), (4.2) dimn β = (κd j) 2 h set, k = ( κ2 D j ) 2, I dn K dlh fungsi Bessel emodifiksi, = I (k)k (k b ) + K (k)i (k b ), (4.3) υ = K (k)i (k b ) I (k)k (k b ). (4.4) Lngkh penyelesin pesmn (4.7) dn (4.6), se ini tedpt pd lmpin B. Gmb 4. dn 4.2 betuut-tuut menunjukkn penyebn oksigen dlm h ksil dn dil untuk pmete b =, κ = 5se, D j = 6µ 2 /se, h = µ/se, in =.2ml O 2 /ml dh, dn u = 4µ/se. kpile =.5 = z Gmb 4.: Gfik Konsentsi Oksigen dlm Ah Aksil untuk g() = k 2.

4 25 z= z= z= Gmb 4.2: Gfik Konsentsi Oksigen dlm Ah Rdil untuk g() = k 2. Untuk deh kpile, penyebn oksigen dlm h dil telh disumsikn benili konstn. Sedngkn dlm h ksil, semkin bes jk di inlet konsentsi oksigen semkin keil. Ken tedpt kethnn pepindhn mss pd dinding kpile, mk penyebn oksigen pd dinding kpile tidk kontinu. Sejln dengn betmbh besny jk di dinding kpile, nili konsentsi oksigen di jingn menuun. Pd ksus lju konsumsi oksigen linie ini, dikji jug bebep kedn fisis di pembuluh kpile beset jingn yng melingkupiny. IV.. Jingn yng ipis Jik jk nt sebuh kpile dengn kpile yng linny bedektn, mk deh jingn mempunyi ukun tipis. Bedskn pesmn (4.2)- (4.), untuk b, penyebn konsentsi oksigen di kpile dn jingn ditunjukkn oleh Gmb 4.3 dn Gmb 4.4. Pmete yng digunkn dlh b =.3, h = µ/se, κ = 5se, D j = 6µ 2 /se.

5 26.5 kpile =.4 = z Gmb 4.3: Gfik Konsentsi Oksigen dlm Ah Aksil untuk b..4 z=.2 z= z= Gmb 4.4: Gfik Konsentsi Oksigen dlm Ah Rdil untuk b. Kondisi jingn yng tipis, menyebbkn jumlh oksigen yng dikonsumsi oleh jingn dlh sedikit. Sehingg oksigen yng dilepskn di kpile pun tidk bes. Ken dinding kpile mempunyi kethnn pepindhn mss, mk konsentsi oksigen di dinding kpile tidk kontinu. IV..2 Jingn yng ebl Untuk jingn yng sngt tebl, b, mk I (x). Hl tesebut kn membeikn solusi yng tidk tebts. Oleh ken itu fungsi Bessel

6 27 yng digunkn hnylh K (k), dn kondisi bts (4.5) tidk digunkn (liht lmpin B). Fungsi konsentsi pd jingn dlh: (, z) = k(z) exp (k) exp ( k) [( + 2k) D j 2h + ], (4.5) dn fungsi konsentsi pd kpile dlh: [ ( ) ] 2h k (z) = exp u [( + 2k) D b + ] z. (4.6) 2h Kondisi jingn yng sngt tebl (b ), menyebbkn besny jumlh oksigen yng dikonsumsi oleh jingn. Bedskn Gmb 4.5, konsentsi oksigen di kpile dlm h ksil menuun dengn tjm. Dlm h dil, konsentsi oksigen di jingn menuun seiing dengn betmbhny ji-ji. kpile =.5 = z Gmb 4.5: Penyebn Konsentsi Oksigen dlm Ah Aksil untuk b.

7 28 z=.8 z= z= Gmb 4.6: Penyebn Konsentsi Oksigen dlm Ah Rdil untuk b. Bedskn pemodeln tesebut, dpt dikethui lsn mengp di tubuh kit tedpt kpile dengn jumlh sngt bnyk. Jik jk nt kpile yng stu dengn yng linny bejuhn mk kebutuhn oksigen di jingn tidklh dpt diukupi oleh kpile-kpile tesebut. Oleh ken itu, jk nt kpile yng stu dengn yng linny huslh sling bedektn. Bedskn Ross J [6], dlm otot sebet kg memut kpile dengn pnjng 9 km, set lus pemukn kpile 2 m 2. IV..3 Koefisien Pepindhn Mss inggi Ketik koefisien pepindhn mss mempunyi nili yng tinggi, dinding kpile sngt mudh ditembus oleh oksigen. Sehingg belku: k (z) = (, z) (4.7) Untuk h, mk pesmn (4.2) dn (4.) menjdi (, z) = I (k)k (k b) + K (k)i (k b) k (z), (4.8) dn k (z) = exp [ 2υ ( kdj u 2 ) 2 z ]. (4.9)

8 29 Gmb 4.7 dn Gmb 4.8 betuut-tuut menunjukkn penyebn konsentsi oksigen dlm h dil dn ksil, dengn pmete b =, D j = 6µ 2 /se, dn κ = 5se. z= z= z= Gmb 4.7: Gfik Konsentsi Oksigen dlm Ah Rdil untuk h. kpile =2 = z Gmb 4.8: Gfik Konsentsi Oksigen dlm Ah Aksil untuk h. Bedskn Gmb 4.7 dn Gmb 4.8, konsentsi oksigen di jingn menuun seiing dengn betmbhny ji-ji. Ken dinding kpile tidk mempunyi kethnn pepindhn mss, oksigen dpt lngsung bepindh

9 3 ke jingn. Sehingg konsentsi oksigen di kpile dlm h ksil menuun lebih ept jik dibndingkn dengn h <. IV..4 Koefisien Pepindhn Mss menuju nol Ketik koefisien tnsfe mss benili mendekti nol (β ), dinding kpile sngt sulit ditembus oleh penetnt, sehingg di seluuh deh jingn tidk mendpt psokn oksigen di kpile. Fungsi konsentsi di jingn: lim (, z) = lim k (I (k)k (k b β β + βυ ) + K (k)i (k b ) ) (4.2) = (4.2) Sedngkn untuk deh kpile, ken tidk d oksigen yng bepindh ke jingn, mk fungsi konsentsi pd deh ini benili konstn, yitu sm dengn pd posisi z =. ( [ ] ) 2βυ h lim k(z) = lim exp z h h + βυ u (4.22) = (4.23) IV.2 Solusi Kedn idk unk dengn Alin Dh Besift Pulstil Ketik t = konsentsi oksigen di deh jingn dimislkn konstn, yitu sebes. Kemudin mengli dh di dlm kpile. Ken lin dh di kpile besift pulstil, mk untuk t > disumsikn nili konsentsi di = besift peiodik. Pesmn konsentsi oksigen untuk deh jingn dlh: dengn bts ( 2 t + D j + ) = κ, 2 (, t) = + sin( 2π t), (4.24) (b, t) =, (4.25) (, ) =, (4.26)

10 3 dimn dlh peiode. Bedskn bts (4.24), dpt dikethui bhw (, 3 4 ) = f(t) t Gmb 4.9: Gfik (, t) untuk = dn =.5. Ag vibel dn pmete tidk bedimensi, dilkukn penskln: =, =, t = 2 D j t. Sehingg dipeoleh: dengn bts: t = k, (4.27) (, t) = + sin( 2π t), (4.28) ( ) b, t =, (4.29) (, ) =, (4.3) dimn k = κ2 D j, = D j 2. Untuk menyedehnkn mslh nili wl dn syt bts tesebut, dibut pemisln: (, t) = (, t) + 2 (, t) + 3 (, t), dn skem penyelesin mslh (4.27)-(4.3) tedpt pd Gmb 4..

11 32 Mislkn (, t) = (, t) + 2 (, t) + 3 (, t) - t t t b ( ) 2 b ( ) 3 b ( ) sin 2 t Mislkn (, ) t u + u -w t + w + w ( b ) u ( b ) w Gmb 4.: Skem Penyelesin. Solusi untuk 2 (, t). Mislkn 2 (, t) = Φ()Ψ(t), mk Φ()Ψ (t) + Φ ()Ψ(t) + Φ ()Ψ(t) kφ()ψ(t) =, Φ () Φ() + Φ () Φ() k = Ψ (t) Ψ(t) = λ2. Akibtny dipeoleh du buh pesmn difeensil, yitu: Ψ (t) + λ 2 Ψ(t) = dn (4.3) Φ () + Φ () + (λ 2 k)φ() =. (4.32) Solusi untuk pesmn (4.3) dlh Ψ(t) = C exp( λ 2 t), dimn C dlh konstnt. Mislkn σ 2 = λ 2 k, mk Φ() = C 2 J (σ) + C 3 Y (σ), dimn C 2, C 3 meupkn konstnt, J dn Y msing-msing meupkn fungsi Bessel ode nol. Bedskn syt bts, mk = C 2 J (σ) + C 3 Y (σ), = C 2 σj (σ b ) C 3σY (σ b ).

12 33 Ag solusi tidk tivil, mk huslh σ meupkn solusi di J (σ)y (σ b ) + Y (σ)j (σ b ) =. (4.33) Nili C 2 dn C 3 betuut-tuut dlh Y (σ) dn J (σ), sehingg Φ() = Y (σ)j (σ) J (σ)y (σ). (4.34) 2 (, t) = C Φ() exp( λ 2 t). (4.35) Ken pesmn diffeensilny homogen dn tedpt tk hingg buh σ yng memenuhi (4.33) mk kombinsi linie di (4.35) jug meupkn solusi. Sehingg: 2 (, t) = dimn α n Φ n () exp( λ 2 nt), n= Φ n () = Y (σ n )J (σ n ) J (σ n )Y (σ n ). (4.36) Untuk mempeoleh nili α n, kit puny nili wl 2 (, ) =, mk Sehingg = α n Φ n (). n= b/ Φ n ()d α n = b/ Φ 2 n()d πj 2 b = (σ n ) J 2(σ n) J 2(σ n b). Solusi untuk (, t). Bedskn bgn (, t) = u() + w(, t). Solusi untuk u() (liht Lmpin D) dlh u() = I ( k)k ( k b ) + K ( k)i ( k b ) I ( k)k ( k b ) + K ( k)i ( k b ). (4.37)

13 34 Untuk meni w(, t), posesny sm sepeti meni 2 (, t), yng membedkn dlh koefisien untuk kombinsi linieny. w(, t) = β n Φ n () exp( λ 2 nt), n= dimn β n = R b/ u()φ n()d R b/ Φ 2 n()d = [R b/ u()φ n()d]j 2 (σn b )π2 σ 2 n 2[J 2 (σn) J2 (σn b )]. Nili β n dihitung dengn bntun pogm Mpple 9. Solusi untuk 3 (, t). Solusi 3 (, t) dii dengn menggunkn teoem Duhmel, yitu 3 (, t) = t s(, t τ) d sin ( ) 2πτ dτ, dτ dimn s(, t) meupkn solusi di pesmn diffeensil tesebut dengn bts benili dn nili wl nol, dengn kt lin s(, t) = (, t). Ken (, t) telh dipeoleh pd bgin sebelumny, mk 3 (, t) = t t 2π 2π ( ) 2πτ u() os dτ + [ ] ( 2πτ β n Φ n () exp( λ 2 n (t τ)) os n= ) dτ. Sehingg (liht Lmpin C) dipeoleh: ( ) 2πt 3 (, t) = u() sin + [ 2π 2π β n Φ n () sin ( 2πt n= ) + λ 2 n os ( ) 2πt λ 2 n exp( λ 2 n ) t) ] 2. + λ 4 n ( 2π Gmb 4. menunjukkn pebndingn solusi nlitik dengn numeik. Bedskn gmb tesebut, solusi nlitik dn numeik membeikn hsil yng sm.

14 t=6 Anlitik Numeik 2.8 t=2 Anlitik Numeik * * Gmb 4.: Pebndingn Solusi Numeik dn Anlitik. Gmb 4.2 menunjukkn poses penyebn konsentsi oksigen di jingn untuk pmete b =, = 8.89, k =.28. Ken kondisi bts pd = beup fungsi peiodik, mk konsentsi oksigen di jingn teus menglmi peubhn. Pd deh jingn, tedpt dimn untuk < nili konsentsi oksigen menglmi peubhn mengikuti nili konsentsi di dinding kpile, dn untuk >, nili konsentsi oksigen tidk tepenguh oleh penyedin di dinding kpile. * Gmb 4.2: Poses Penyebn Oksigen di Jingn dengn Lju Konsumsi Linie.

Bab V Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Berdasarkan Prinsip Michaelis-Menten

Bab V Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Berdasarkan Prinsip Michaelis-Menten Bb V Model Difusi Oksigen di Jingn dengn Lju Konsumsi Bedskn Pinsip Mihelis-Menten Pd Bb V ini kn dikji poses penyebn konsentsi oksigen di jingn dengn lju konsumsi memenuhi pinsip kinetik Mihelis-Menten,

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Hl di 9 NILAI EIGEN DAN VEKTOR EIGEN 7. Definisi Sebuh mtiks buju sngk dengn ode n n mislkn A, dn sebuh vekto kolom X. Vekto X dlh vekto dlm ung Euklidin dengn sebuh pesmn: n R yng dihubungkn AX X (7.)

Lebih terperinci

Sabar Nurohman, M.Pd

Sabar Nurohman, M.Pd Sb Nuohmn, M.Pd Bu mi Jupite Buln Mekuius Ms Venus Stunus Mthi 05 07!,309-07 07, /,, - /,3 /,9,7-07-039: 0 58 /03,3,9,,7-07,/, 5,/, 8,, 8,9: 9 9 4 :8 0 58 90780-:9 05 07,, 80,3, 9:,3 8,, 9 ;0 947 0,7

Lebih terperinci

Gaya dan Medan Magnet

Gaya dan Medan Magnet Gy dn Medn Mgnet Kutub ut mgnetik Kutub ut gegfi Medn mgnet Sumbu tsi Sumbu mgnetik Sebgimn hlny dengn knsep medn listik, knsep medn mgnet jug dipelukn untuk menjelskn gy nt du bend yng tidk sling besentuhn.

Lebih terperinci

matematika WAJIB Kelas X KUADRAN SUDUT Kurikulum 2013 A. Besar Sudut pada Setiap Kuadran

matematika WAJIB Kelas X KUADRAN SUDUT Kurikulum 2013 A. Besar Sudut pada Setiap Kuadran Kuikulum 03 Kels mtemtik WAJIB KUADRAN SUDUT Tujun Pembeljn Setelh mempelji ini, kmu dihpkn memiliki kemmpun beikut.. Memhmi bes sudut di setip kudn.. Memhmi pebndingn tigonometi sudut-sudut di setip kudn.

Lebih terperinci

MODEL POTENSIAL 1 DIMENSI

MODEL POTENSIAL 1 DIMENSI MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

Fisika Dasar I (FI-321) 3) Gerak dalam Dua dan Tiga Dimensi Posisi dan Perpindahan Kecepatan Percepatan Gerak Parabola Gerak Melingkar

Fisika Dasar I (FI-321) 3) Gerak dalam Dua dan Tiga Dimensi Posisi dan Perpindahan Kecepatan Percepatan Gerak Parabola Gerak Melingkar Fisik Ds I (FI-31) Topik hi ini (minggu 3) Gek dlm Du dn Tig Dimensi Posisi dn Pepindhn Kecepn Pecepn Gek Pbol Gek Melingk Gek dlm Du dn Tig Dimensi Menggunkn nd u idk cukup unuk menjelskn sec lengkp gek

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

ELEKTROMAGNETIK. Medan Magnet Statis. Wayan Suparta, PhD https://wayansuparta.wordpress.com/ 12 & 19 April 2018

ELEKTROMAGNETIK. Medan Magnet Statis. Wayan Suparta, PhD https://wayansuparta.wordpress.com/ 12 & 19 April 2018 ELEKTROMGNETIK Medn Mgnet Sttis Wyn Supt, PhD https://wynsupt.wodpess.com/ 1 & 19 pil 18 POKOK-POKOK BHSN Hukum Biot-Svt Hukum mpee Cul Keptn Fluksi Mgnetik dn Hukum Guss Teoem STOKES 1. Hukum Biot-Svt

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

,, % ,, % -0: 0 -0: 0! 2 % 26, &

,, % ,, % -0: 0 -0: 0! 2 % 26, & PERSAMAAN LINIER GAUSS-SIEDEL METHOD Simultneous Liner Equtions Oleh : Purwnto,S.Si Bentuk Umum x + x + 3 x 3 + + n x n = b Sebuh persmn linier dengn : n peubh : x, x, x 3,, x n n konstnt :,, 3,, n Contoh

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

adalah jika sebuah benda bergerak membentuk suatu lingkaran dengan kecepatan konstan. v1 = v2 = v

adalah jika sebuah benda bergerak membentuk suatu lingkaran dengan kecepatan konstan. v1 = v2 = v Gek Melingk Betun (GMB) dlh jik sebuh bend begek ebentuk sutu lingkn dengn keceptn konstn. 1 = = Peceptn dlh bes peubhn keceptn selng wktu t, h keceptn jug enyebbkn peceptn. 1 = peubhn keceptn t = peubhn

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Pert 9 (mengjrkomputer.wordpress.com) NILAI EIGEN DAN VEKTOR EIGEN 9. Definisi Sebuh mtriks bujur sngkr dengn orde n n mislkn A, dn sebuh vektor kolom X. Vektor X dlh vektor dlm rung Euklidin n R yng dihubungkn

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. Penulisn Modul e Lening ini diiyi oleh dn DIPA BLU UNY TA Sesui dengn Sut Pejnjin Pelksnn e Lening Nomo./H./PL/ Tnggl Juli

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

BAB 7. LIMIT DAN LAJU PERUBAHAN

BAB 7. LIMIT DAN LAJU PERUBAHAN BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 )

BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 ) BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS KERAPATAN FLUKS LISTRIK Fluk litik bemul di mutn poitif dn bekhi di mutn negtif ( tu bekhi di tk tehingg klu tidk d mutn negtif (b + - + -~ Gi fluk ( (b

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT . PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persmn Kudrt. Bentuk umum persmn kudrt : x + bx + c = 0, 0. Nili determinn persmn kudrt : D = b c. Akr-kr persmn kudrt dpt dicri dengn memfktorkn tupun

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

Aplikasi Teori Permainan Lawan pemain (punya intelegensi yang sama). Setiap pemain mempunyai beberapa strategi untuk saling mengalahkan.

Aplikasi Teori Permainan Lawan pemain (punya intelegensi yang sama). Setiap pemain mempunyai beberapa strategi untuk saling mengalahkan. Apliksi Teori Perminn Lwn pemin (puny intelegensi yng sm) Setip pemin mempunyi beberp strtegi untuk sling menglhkn Two-Person Zero-Sum Gme Perminn dengn pemin dengn perolehn (keuntungn) bgi slh stu pemin

Lebih terperinci

SIMAK UI 2011 Matematika Dasar

SIMAK UI 2011 Matematika Dasar SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls

Lebih terperinci

Teorema Dasar Integral Garis

Teorema Dasar Integral Garis ISBN: 978-979-79-55-9 Teorem Dsr Integrl Gris Erdwti Nurdin Progrm Studi Pendidikn Mtemtik FKIP UIR d_1910@yhoo.com Abstrk Slh stu generlissi integrl tentu (definite integrl) f x dx diperoleh dengn menggnti

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

Medan Magnet. Tahun 1820 Oersted menemukan bahwa arus listrik yang mengalir pada sebuah penghantar dapat menghasilkan

Medan Magnet. Tahun 1820 Oersted menemukan bahwa arus listrik yang mengalir pada sebuah penghantar dapat menghasilkan MEDAN MAGNET Gejl kemgnetn mirip dengn p yng terjdi pd gejl kelistrikn Mislny : Sutu besi tu bj yng dpt ditrik oleh mgnet btngn Terjdiny pol gris-gris serbuk besi jik didektkn pd mgnet btngn nterksi yng

Lebih terperinci

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 47 Mtemtik III Deret Fourier (Pertemun X) Dr. AZ Jurusn Teknik Sipil Fkults Teknik Universits Brwijy Pendhulun Deret Fourier ditemukn oleh ilmun Perncis, Jen Bptiste Joseph Fourier (768-83) yng menytkn

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI LA - WB (Lembr Aktivits Wrg Beljr) TURUNAN FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Creted By It Yulin 33 Turunn Fungsi Kompetensi Dsr 1. Menggunkn

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

Teorema Gauss. Garis Gaya oleh muatan negatip. Garis gaya listrik. Garis gaya oleh sebuah muatan titik. Sebuah muatan negatip

Teorema Gauss. Garis Gaya oleh muatan negatip. Garis gaya listrik. Garis gaya oleh sebuah muatan titik. Sebuah muatan negatip Gs Gy Lstk Konsep fluks Teoem Guss Teoem Guss Penggunn Teoem Guss Medn oleh mutn ttk Medn oleh kwt pnjng tk behngg Medn lstk oleh plt lus tk behngg Medn lstk oleh bol solto dn kondukto Medn lstk oleh slnde

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

Two-Stage Nested Design

Two-Stage Nested Design Mteri #13 TIN309 DESAIN EKSPERIMEN Two-Stge Nested Design Nested design dlh slh stu ksus dri desin multi fktor dimn level dri slh stu fktor (misl: fktor B) serup tpi tidk identik untuk setip level yng

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2009

TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2009 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 009 Bidng Mtemtik Wktu :,5 Jm DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Mtriks Definisi. (Anton, Howrd. ). Mtriks dlh sutu susunn bilngn berbentuk segi empt. Bilngn-bilngn dlm susunn itu disebut nggot dlm mtriks tersebut. Ukurn (size) sutu mtriks dinytkn

Lebih terperinci

AUTOMATA SEBAGAI MODEL PENGENAL BAHASA

AUTOMATA SEBAGAI MODEL PENGENAL BAHASA JMP : Volume Nomor Oktober 9 AUTOMATA SEBAGAI MODEL PENGENAL BAHASA Eddy Mrynto Fkults Sins dn Teknik Universits Jenderl Soedirmn Purwokerto Indonesi emil: eddy_mrynto@unsoed.c.id Abstrct. A deterministic

Lebih terperinci

LATAR BELAKANG TRIGONOMETRI

LATAR BELAKANG TRIGONOMETRI LATAR BELAKANG TRIGNMETRI A. Lt Belkng Seseong ng ingin menguku tinggi sebuh pohon, men, gedung betingkt tupun sesutu ng memiliki ketinggin tetentu mk tidklh mungkin se fisik kn menguku di bwh ke ts (punk)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Pengetin Regesi Istilh egesi petm kli digunkn oleh Fncis Glton. Dlm ppeny yng tekenl Glton menemukn bhw meskipun tedpt tendensi tu kecendeungn bhw ong tu yng tinggi kn mempunyi nk

Lebih terperinci

Bab 3 M M 3.1 PENDAHULUAN

Bab 3 M M 3.1 PENDAHULUAN B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model

Lebih terperinci

Penerapan Model Matematika pada Kinetika Reaksi Oksidasi Fero Sulfat Menjadi Feri Sulfat dengan Katalis Kupri Sulfat

Penerapan Model Matematika pada Kinetika Reaksi Oksidasi Fero Sulfat Menjadi Feri Sulfat dengan Katalis Kupri Sulfat Semin Nsionl Teknologi Infomsi, Komuniksi dn Industi (SNTIKI) 8 ISSN : 285-992 Penepn Model Mtemtik pd Kinetik Reksi Oksidsi Feo Sulft Menjdi Fei Sulft dengn Ktlis Kupi Sulft Neneng Punmwt 1, Leo dh Effendi

Lebih terperinci

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013 10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil

Lebih terperinci

BAB ALJABAR MARIX Dlm pokok bhsn ini kn disjikn dsr-dsr opersi ljbr mtrix yng berhubungn dengn nlisis struktur dengn menggunkn metode mtrix kekkun (stiffness method)... Pengertin Mtrix Mtrix merupkn sutu

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

DETERMINAN DAN INVERS MATRIKS BLOK 2 2

DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok

Lebih terperinci

MODEL SIR (SUSCEPTIBLES, INFECTION, RECOVERY) UNTUK PENYEBARAN WABAH PENYAKIT PADA SUATU POPULASI TERTUTUP

MODEL SIR (SUSCEPTIBLES, INFECTION, RECOVERY) UNTUK PENYEBARAN WABAH PENYAKIT PADA SUATU POPULASI TERTUTUP MODEL IR (UCEPTIBLE, INFECTION, RECOVERY) UNTUK PENYEBARAN WABAH PENYAKIT PADA UATU POPULAI TERTUTUP Dosen Pengmpu : Dr Lin Aryti DIUUN OLEH: Nm : Muh Zki Riynto Nim : 2/56792/PA/8944 Progrm tudi : Mtemtik

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

Integral Agus Yodi Gunawan

Integral Agus Yodi Gunawan Integrl Agus Yodi Gunwn Teknik pengintegrln.. Metode substitusi pd integrl tk tentu. Mislkn g() sutu fungsi yng terdiferensilkn. Mislkn pul F () merupkn ntiturunn dri fungsi f(). Jik u = g(), mk f(g())g

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

KUIS I PROSES TRANSFER Hari, tanggal : Rabu, 8 November 2006 Waktu : 120 menit Sifat : Tabel Terbuka

KUIS I PROSES TRANSFER Hari, tanggal : Rabu, 8 November 2006 Waktu : 120 menit Sifat : Tabel Terbuka KUIS I POSES ANSFE Hri, tnggl : bu, 8 November 2006 Wktu : 120 menit Sift : bel erbuk 1. entukn distribusi keceptn fluid yng menglir mellui pip silinder, jik fluid yng digunkn dlh fluid dengn model Ellis,

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin MODUL KULIAH STRUKTUR BETON BERTULANG I Minggu ke : 9 Tulngn Rngkp Oleh Resmi Bestri Muin PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dn PERENCANAAN UNIVERSITAS MERCU BUANA 2010 DAFTAR ISI DAFTAR ISI i IX

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

MODEL MATEMATIKA SIR

MODEL MATEMATIKA SIR MODEL MATEMATKA R (UCEPTBLE, NFECTON, RECOVERY UNTUK PENYEBARAN WABAH PENYAKT PADA UATU POPULA TERTUTUP Muhmd Zki Riynto NM: 2/56792/PA/8944 E-mil: zki@milugmcid http://zkimthwebid Dosen Pembimbing: Dr

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

GEOMETRI PADA BIDANG: VEKTOR

GEOMETRI PADA BIDANG: VEKTOR GEOMETRI PADA BIDANG: VEKTOR A. Kurv Bidng: Representsi Prmetrik Sutu kurv bidng ditentukn oleh sepsng persmn prmetrik: x f () t, y f () t t dlm intervl I dengn f dn g kontinu pd intervl I. Secr umum,

Lebih terperinci

ω = kecepatan sudut poros engkol

ω = kecepatan sudut poros engkol Kerj Untuk Mengtsi Gesekn 1. Pomp Tnp Bejn Udr Telh dijelskn pd bgin muk bhw pd wl dn khir lngkh hisp mupun lngkh tekn, tidk terjdi kerugin hed kibt gesekn. Kerugin hed mksimum hny terjdi pd pertenghn

Lebih terperinci

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

PENYELESAIAN SOAL UJIAN TENGAH SEMESTER 2010

PENYELESAIAN SOAL UJIAN TENGAH SEMESTER 2010 PNYLSAIAN SOAL UJIAN TNGAH SMSTR SOAL A Pengolhn dt nnul series curh hujn hrin mximum, H mm, di sutu stsiun ARR menunjukkn bhw sebrn probbilits sutu besrn curh hujn, p H (h), dpt dinytkn dengn sutu ungsi

Lebih terperinci

Aplikasi turunan dan integral dalam persoalan ekonomi

Aplikasi turunan dan integral dalam persoalan ekonomi Apliksi turunn dn integrl dlm persoln ekonomi Fungsi Produksi ( ) Fungsi q f K, L menghubungkn input (kpitl dn teng kerj) dengn output. Kren tidk dibtsi oleh spesifiksi tertentu, mk teori ini dpt dipliksikn

Lebih terperinci

POTENSIAL LISTRIK Oleh : Sabar Nurohman,M.Pd

POTENSIAL LISTRIK Oleh : Sabar Nurohman,M.Pd POTNSIL LISTRIK Oleh : S Nuohmn,M.Pd Ke Menu Utm Liht Tmpiln eikut: POTNSIL LISTRIK il seuh ptikel emutn egek dlm seuh medn listik, mk medn itu kn mengehkn seuh gy yng dpt melkukn kej pd ptikel teseut.

Lebih terperinci

BAB III PEMODELAN SIMULASI SISTEM

BAB III PEMODELAN SIMULASI SISTEM BAB DLA SULAS SST d bgin ini dijelskn enng pemodeln sisem Tubo Convoluionl, Tubo Block dn Tubo Gbungn sepei yng diunjukkn pd Gmb 3., Gmb 3., dn Gmb 3.3 sec beuun. emodeln esebu beup poses pembngkin d bi

Lebih terperinci

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn

Lebih terperinci

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung imit & Kontinuits Oleh: Hnung N. Prsetyo Clculus/Hnung N. Bb. IMIT.1. Du mslh undmentl klkulus... Gris Tngen.. Konsep imit.4. Teorem imit.5. Konsep kontinuits Clculus/Hnung N. Du Mslh Fundmentl Klkulus

Lebih terperinci

Grafik Komputer : Transformasi Geometri 2 Dimensi

Grafik Komputer : Transformasi Geometri 2 Dimensi Grfik Komputer dn Pengolhn Citr Grfik Komputer : rnsformsi Geometri Dimensi Universits Gundrm 6 Grfik Komputer : rnsformsi Geometri D / Grfik Komputer dn Pengolhn Citr triks dn rnsformsi Geometri Representsi

Lebih terperinci