GRUP HOMOLOGI DARI RUANG TOPOLOGI. Denik Agustito 1, Sriwahyuni 2

Ukuran: px
Mulai penontonan dengan halaman:

Download "GRUP HOMOLOGI DARI RUANG TOPOLOGI. Denik Agustito 1, Sriwahyuni 2"

Transkripsi

1 Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 GRUP HOMOLOGI DARI RUANG TOPOLOGI Denik Agustito 1, Sriwahyuni 2 Mahasiswa S2, Jurusan Matematika, Universitas Gajah Mada : Yogyakarta e_mail: agusto_ugm@yahoo.co.id Abstrak Dalam tulisan ini hasil yang diperoleh adalah jika X adalah ruang terhubung lintasan maka, jika X adalah ruang topologi dan adalah komponen lintasannya maka serta jika X adalah ruang topologi dan subset kompaknya maka. Kata kunci: kompak, terhubung lintasan, topologi. adalah himpunan semua PENDAHULUAN Dalam tulisan ini akan disurvei beberapa sifat dari grup homologi dari ruang topologi tertentu, terutama ruang topologi terhubung lintasan dan sembarang ruang topologi bersama dengan subset kompaknya. Sifat grup homologinya memiliki peranan penting dalam teori homologi singular diantaranya adalah untuk menghitung grup homologi dari sphere, sell dan manifold. Batasan masalah dalam tulisan ini terfokus pada tiga ruang yaitu ruang topologi terhubung lintasan, komponen lintasan dari suatu ruang topologi dan himpunan semua subset kompak pada suatu ruang topologi. Teori kategori dalam tulisan ini akan memainkan peranan penting. Pertama dengan bahasa kategori,kategori dari ruang topologi bersama dengan pemetaan kontinyunya akan dinotasikan dengan TOP, kategori dari grup abelian bersama dengan homomorfismanya akan dinotasikan dengan GRP, kategori dari kompleks rantai singular bersama dengan pemetaan rantai singularnya akan dinotasikan dengan CC dan kategori dari grup graded bersama dengan homomorfismanya akan dinotasikan dengan GG. Kedua akan diberikan salah satu dari struktur internal dalam suatu kategori yaitu mengenai direc limit. PEMBAHASAN 1. Fungtor Homologi Singular Diberikan sebuah ruang topologi X maka sebuah p-simpleks singular pada ruang topologi X adalah sebuah pemetaan kontinyu dengan. Kemudian dengan fungtor grup bebas dibentuk sebuah grup abelian bebas yang dibangkitkan melalui himpunan semua p-simpleks singular pada ruang topologi X yang dinotasikan dengan. Karena p bergerak secara membesar maka didapat sebuah grup graded yang dinotasikan dengan. Selanjutnya dengan grup graded dapat dikonstruksi sebuah operator batas yang memenuhi sifat untuk. Grup graded yang dilengkapi dengan operator batas dinamakan kompleks rantai singular dan dinotasikan dengan. Selanjutnya diberikan dua buah kompleks singular rantai dan maka dikatakan pemetaan rantai singular (morfisma diantara kompleks rantai singular) jika adalah sebuah koleksi homomorfisma grup dengan dan diagram berikut adalah komutatif M-253

2 Denik Agustito / Grup Homologi Dari [gambar 1] Jadi diperoleh sebuah kategori yang objek-objeknya adalah kompleks rantai singular dan morfismanya adalah pemetaan rantai singular yang dinotasikan dengan CC. Akibatnya terdapat sebuah fungtor kovariant dari TOP ke CC yang membangkitkan sebuah ruang topologi X menjadi sebuah kompleks rantai singular dan membangkitkan sebuah pemetaan kontinyu menjadi sebuah pemetaan rantai singular. Fungtor tersebut dinamakan fungtor rantai singular. Sekarang diberikan sebuah kompleks rantai singular. Kompleks rantai singular tersebut dapat diilustrasikan dalam barisan grup abelian bebas bersama dengan homomorfismanya (operator batas) yaitu sebagai berikut [gambar 2] Pada kompleks rantai singular dalam gambar 2 bahwa operator batas memenuhi sifat untuk dan sifat ini ekuivalen dengan. Sekarang tulis dan. Jelas bahwa dan adalah subgroup dari grup abelian bebas. Subgrup dinamakan boundaries berdimensi p-1 dan subgrup dinamakan cycle berdimensi p-1. Karena p bergerak secara membesar maka boundaries dan cycles berturut-turut dapat dipandang sebagai grup graded dan dinotasikan dengan dan. Diperoleh fakta bahwa adalah subgrup dari maka dapat dikonstruksi sebuah grup baru yaitu grup faktor. Grup faktor dinamakan grup homologi singular bedimensi-p. Karena p bergerak secara membesar maka grup homologi singular dapat dinotasikan dengan. Jika diberikan dua buah grup homologi dan maka pemetaan dikatakan pemetaan diantara grup homologi singular jika terdiri dari koleksi dengan adalah homomorfisma grup. Pemetaan merupakan homomorfisma grup graded berderajat-0. Jadi terdapat sebuah kategori yang objek-objeknya adalah grup homologi singular dan morfismannya adalah homomorfisma grup berderajat-0 yang disebut dengan kategori grup homologi singular. Karena grup homologi singular adalah grup graded maka kategori tersebut akan dinotasikan dengan GG. Jadi terdapat sebuah fungtor dari CC ke GG yang membangkitkan sebuah kompleks rantai singular menjadi grup homologi dan membangkitkan sebuah pemetaan rantai singular menjadi homomorfisma grup berderajat-0. Fungtor tersebut dinamakan fungtor homologi singular. 2. Grup Homologi dari Ruang Topologi Terhubung Lintasan Pada bagian ini akan diaplikasikan fungtor homologi singular dari ruang topologi tertentu. Sekarang diberikan suatu ruang topologi yang hanya terdiri dari satu titik dan dinotasikan dengan. Himpunan semua p-simpleks singular dari X hanya ada satu. Jadi untuk nilai p manapun diperoleh sebuah grup abelian bebas dan bila dinyatakan dalam barisan grup abelian bebas bersama dengan homomorfismanya menjadi [gambar 3] M-254

3 Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 Barisan tersebut menghasilkan sebuah grup homologi sebagai berikut Grup homologi dari ruang topologi yang hanya terdiri dari satu titik digunakan untuk menghitung grup homologi dari ruang topologi yang bisa dikontraksi (contractible). Selanjutnya akan diaplikasikan fungtor homologi singular untuk ruang topologi terhubung lintasan. Pengertian ruang topologi terhubung lintasan akan diberikan dalam definisi berikut ini. Definisi 1. Misalkan X adalah ruang topologi, titik x dan y berada pada X. Sebuah lintasan dalam X dari titik x ke titik y adalah sebuah pemetaan kontinyu sedemikian hingga dan. Ruang topologi X dikatakan terhubung lintasan jika setiap dua titiknya dapat dihubungkan melalui sebuah lintasan dalam X. Sebuah ruang topologi terhubung lintasan dapat dijumpai pada sebuah sel tertutup satuan dari ruang Euclidean yang dinotasikan dengan dengan karena untuk setiap dua titik dan y dalam maka terdapat sebuah lintasan dari x ke y yaitu yang didefinisikan dengan untuk. Begitu juga setiap himpunan bagian dari ruang Euclidean yang konveks adalah sebuah ruang topologi terhubung lintasan dengan topologinya dibangkitkan melalui topologi pada. Diberikan sebuah ruang topologi terhubung lintasan X. Maka 0-simpleks singular pada X dapat diidentifikasi dengan sebuah tittik pada X, akibatnya adalah grup abelian bebas yang dibangun oleh semua titik-titik pada X. Kemudian untuk 1- simpleks singular pada X dapat diidentifikasi sebagai sebuah lintasan dari suatu titik pada X ke titik yang lain, akibatnya adalah grup abelian bebas yang dibangun oleh semua lintasan dalam X. Kemudian pandang barisan grup abelian bebas bersama dengan homomorfismanya berikut ini. [gambar 4] Dari gambar 4 jelas bahwa. Jadi untuk setiap dapat dinyatakan secara tunggal sebagai hampir semua. Selanjutnya grup homologi berdimensi-0 dari ruang topologi terhubung lintasan akan diberikan dalam teorema berikut. Teorema 1.1. Misalkan X adalah ruang topologi terhubung lintasan. Maka. Bukti dari Teorema ini adalah mundur dengan mengaplikasikan teorema fundamental homomorfisma grup, untuk menghitung cukup ditunjukkan terdapat sebuah epimorfisma grup dengan. Pilih pemetaan yang didefinisikan dengan. Ambil sembarang dan dalam. Maka. Jadi dengan mendefinisikan sebuah homomorfisma grup. Ambil sembarang. Maka untuk sembarang berlaku. Jadi dengan adalah pemetaan surjektif. Akibatnya dengan adalah sebuah epimorfisma grup. Kemudian ditunjukkan bahwa. Ambil sembarang 1- simpleks singular pada X yaitu. Karena diidentifikasi sebagai sebuah lintasan dalam X katakan dari titik x ke titik y maka dan akibatnya. Karena berakibat maka. Selanjutnya ambil sembarang. Maka Pilih dan karena X adalah terhubung lintasan, untuk setiap terdapat 1- simpleks singular dengan dan untuk a dan b anggota. Jadi. Maka M-255

4 Denik Agustito / Grup Homologi Dari dan. Akibatnya. Karena dan maka. Karena maka. Contoh 1. Grup homologi berdimensi-0 dari sebuah sel tertututp satuan dengan dan himpunan konveks dalam ruang Euclidean isomorfik ke grup siklik tak hingga. 4. Grup Homologi dari Komponen Lintasan dalam suatu Ruang Topologi Untuk mengetahui sifat homologi dari komponen lintaan dalam suatu ruang topologi terlebih dahulu kembali mengkaji beberapa hal mengenai kompleks rantai singular yang terkait dengan hasil tambah langsung. Definisi 2. Misalkan X adalah ruang topologi dan dengan adalah koleksi berideks dari kompleks rantai singular. Maka hasil tambah langsung dari untuk dinotasikan dengan. Hasil tambah langsung dari kompleks rantai singular yaitu adalah sebuah kompleks rantai singular dengan operator batasnya didefinisikan dengan. Teorema 2.1. Misalkan X adalah ruang topologi dan dengan adalah koleksi berideks dari kompleks rantai singular. Maka. Diketahui adalah koleksi berindeks dari kompleks rantai singular. Maka dan. Jadi. Diberikan sebuah ruang topologi X dan didefinisikan suatu relasi ekuivalen diantara titik x dan titik y dalam X yaitu sebagai berikut: jika dan hanya jika terdapat sebuah lintasan dalam ruang topologi X dari x ke y. Teorema 2.2. Miaslkan X adalah ruang topologi. Maka relasi adalah relasi ekuivalen. (i). Ambil sembarang titik x dalam X. Pilih pemetaan kontinyu yang didefinisikan dengan untuk. Jelas bahwa. Jadi relasi bersifat refleksif. (ii). Ambil sembarang x dan y dalam X. Tulis adalah suatu lintasan dalam X yang menjadikan. Kemudian pilih yang didefinisikan dengan untuk. Jelas dan. Jelas. Jadi relasi bersifat simetris. (iii). Ambil sembarang titik x, y dan z dalam X. Misalkan adalah suatu lintasan dalam X yang menjadikan dan adalah suatu lintasan dalam X yang menjadikan. Pilih sebuah lintasan yang didefinisikan dengan. Jelas dan. Akibatnya. Jadi relasi bersifat transitif. Kelas ekuivalensi terhadap relasi yang memuat suatu titik x pada X dikatakan komponen lintasan dari X. Contoh 2. Misalkan adalah himpunan bilangan real dengan topologi biasa dan adalah subruang dari yang terdiri dari semua bilangan rasional dengan topologinya diabngkitkan oleh topologi pada. Maka komponen lintasan dari adalah singelton dan merupakan himpunan terbuka dalam. M-256

5 Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 Teorema 2.3. Misalkan X adalah ruang topologi dan adalah komponen lintasan dari X, maka. Definisikan pemetaan dengan. Dibuktikan bahwa pemetaan tersebut adalah homomorfisma grup. Ambil sembarang anggota dan maka. Jadi adalah homomorfisma grup. Ambil sembarang anggota. Jelas. Akibatnya. Jadi haruslah. Jadi dan. Jadi monomorfisma. Ambil sembarang p- simpleks singular pada X yaitu. Karena adalah terhubung lintasan (karena konveks) maka termuat dalam suatu. Karena termuat dalam suatu maka terdapat secara tunggal dengan. Jadi adalah epimorfisma. Akibatnya adalah isomorfisma dan tulis. Berdasarkan Teorema 2.1 dipeoleh. Contoh 3. Mengacu pada Contoh 2, dengan mengaplikasikan Teorema 2.3 dan homologi dari ruang topologi yang terdiri dari satu titik maka dengan adalah banyaknya komponen lintasan dari. 5. Grup Homologi dari Ruang Topologi bersama dengan Subset Kompaknya Pada bagian ini akan digunakan suatu struktur internal dari suatu kategori yang dinamakan sebagai direct limit. Sebelum mendefinisikan direct limit terlebih dahulu didefinisikan sebuah directed set pada suatu himpunan yaitu sebagi berikut. Definisi 3. Himpunan I dikatakan directed set dengan relasi terurut sebagian sedemikian hingga untuk setiap a dan b dalam I terdapat c di I dengan dan. Kemudian setelah mendefinisikan directed set maka didefinisikan direct system dari suatu himpunan yaitu sebagai berikut. Definisi 4. Sebuah direct system dari suatu himpunan adalah keluarga dari himpunan dimana I adalah directed set, dan sebuah fungsi apabila yang mengikuti pernyataan berikut: (i). adalah pemetaan identitas pada untuk setiap ; (ii). Jika maka. Dari Definisi 4, sebuah direct system akan diaplikasikan pada keluarga subgrup dari grup abelian. Diberikan adalah keluarga subgrup dari grup abelian A, adalah homomorfisma grup dan adalah direct system dari subgrup dari grup abelian A bersama dengan homomorfismanya. Kemudian definisikan sebuah subgrup R dari dengan. Definisi 5. Misalkan A adalah grup abelian dan adalah direct system dari subgrup dari grup abelian A bersama dengan homomorfismanya. Maka direct limit dari sistem adalah Catat: Jika dan maka mereka akan sama dalam direct limit jika untuk suatu k dalam I, dan dan. Sifat selanjutnya adalah hubungan diantara grup homologi dari suatu ruang topologi bersama M-257

6 Denik Agustito / Grup Homologi Dari dengan grup homologi dari semua subset kompaknya. Teorema 5.1. Misalkan X adalah ruang topologi dan adalah keluarga dari semua subset kompaknya dengan relasi terurut sebagian. Maka keluarga grup homologi membentuk sebuah direct system dimana homomorfismanya dibangkitkan melalui pemetaan inklusi. (i). Untuk sembarang maka mendefiniskan pemetaan identitas. Dengan fungtor homologi singular diperoleh adalah homomorfisma identitas diantara grup homologi. Untuk setiap. (ii). Untuk sembarang i,j dan k dalam I yang memenuhi sifat. Maka terdapat sebuah komposisi dari pemetaan. Dengan fungtor homologi singular diperoleh sebuah komposisi dari homomorfisma diantara grup homologi yaitu. Jadi membentuk sebuah direct system bersama dengan homomorfismanya. Setelah menunjukkan bahwa membentuk sebuah direct system bersama dengan homomorfismanya, akan ditunjukkan bahwa grup homologi dari ruang topologi X isomorfik ke direct limit dari grup homologi dari semua subset kompaknya. Teorema 5.2. Misalkan X adalah ruang topologi dan adalah keluarga dari semua subset kompaknya dengan relasi terurut sebagian..maka. Untuk setiap subset kompak dari X yaitu maka dengan fungtor homologi singular pemetaan inklusi membangkitkan homomorfisma inklusi diantara grup homologi. Selanjutnya pandang. Sekarang andaikan bahwa dalam R. Maka terdapat subset kompak dari X yang memenuhi sifat untuk setiap k dan dalam. Pandang diagram komutatif berikut ini. g [gambar 5] Jelas bahwa dan R termuat dalam. Jadi g membangkitkan sebuah homomorfisma. Dibuktikan bahwa adalah isomorfisma. Pertama dibuktikan bahwa adalah surjektif. Ambil sembarang kelas homologi dalam. Maka x bisa dinyatakan melalui sebuah cycle. Karena adalah kompak maka kompak dalam X untuk setiap j. Maka adalah supported pada himpunan, yang mana adalah kompak karena jumlahnya adalah berhingga. Jadi untuk suatu I dan menjadi suatu kelas homologi dalam. Akibatnya dan x adalah peta dari. Jadi adalah surjektif. Kedua dibuktikan bahwa adalah injektif. Misalkan dalam dengan. Setiap dapat dinyatakan dalam cycle. Karena cycle ini terbatas maka terdapat sejumlah n + 1 dari dalam X dengan Definisikan sebuah subset X dengan. Jelas adalah kompak. Karena sejumlah n + 1 di dalam dengan M-258

7 Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 Jadi maka adalah boundary dalam dan dalam. Jadi dalam R dan R adalah maka adalah injektif. adalah isomorfisma grup. KESIMPULAN Kesimpulan yang diperoleh dari tulisan ini adalah jika X adalah ruang topologi yang hanya terdiri dari satu titik maka struktur grup homologinya adalah ruang topologi terhubung lintasan maka adalah komponen lintasan dari X, maka. Jika X adalah ruang topologi dan. Jika X adalah.terakhir jika X adalah ruang topologi dan adalah koleksi semua subset kompaknya maka. DAFTAR PUSTAKA Agustito., D, Fungtor Homologi Singular, Prosiding Seminar Nasional Aljabar, Universitas Negeri Yogyakarta, Schubert., H, Categories, Springer-Verlag, Berlin Heiderberg, Spanier., E. H, Algebraic Topology, Tata McGraw-Hill, New-York, Vick, James. W, Homology Singular, An Introduction to Algebraic Topology, Springer-Verlag, New- York, M-259

8 Denik Agustito / Grup Homologi Dari M-260

FUNGTOR HOM DAN FUNGTOR TENSOR PADA HOMOMORFISMA MODUL. Abstrak

FUNGTOR HOM DAN FUNGTOR TENSOR PADA HOMOMORFISMA MODUL. Abstrak Jurnal Euclid, Vol.4, No.2, pp.710 FUNGTOR HOM DAN FUNGTOR TENSOR PADA HOMOMORFISMA MODUL Denik Agustito Universitas Sarjanawiyata Tamansiwa; rafaelagustito@gmail.com Abstrak Sebuah modul adalah pasangan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan autokomutator yang akan digunakan dalam penelitian. Pada bagian pertama ini akan dibahas tentang teori

Lebih terperinci

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi 1 BAB I PENDAHULUAN 1.1. Latar Belakang Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi tersebut adalah modul. Untuk membahas pengertian tentang suatu modul harus dimengerti lebih

Lebih terperinci

FUNGTOR KOVARIAN PADA KATEGORI. Soleh Munawir dan Y.D. Sumanto

FUNGTOR KOVARIAN PADA KATEGORI. Soleh Munawir dan Y.D. Sumanto FUNGTOR KOVARIAN PADA KATEGORI Soleh Munawir YD Sumanto Program Studi Matematika Jurusan Matematika Fakultas Sains Matematika Universitas Diponegoro Jalan Prof H Soedarto, SH Tembalang Semarang 50275 e-mail

Lebih terperinci

HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE)

HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE) Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 98 102 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE) RISCHA DEVITA Program Studi Matematika,

Lebih terperinci

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari BAB II TEORI DASAR Pada skripsi ini, akan dipelajari perbedaan sifat grup fundamental yang dimiliki beberapa ruang topologi, yaitu 2 S, torus, 2 P dan figure eight. Ruang topologi adalah suatu himpunan

Lebih terperinci

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia rio.yohanes@sci.ui.ac.id,

Lebih terperinci

FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN

FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN Agus Suryanto, Nikken Prima Puspita, Robertus Heri S. U. Jurusan Matematika Fakultas Sains dan Matematika Universitas Diponegoro Jalan Prof. H. Soedarto, SH. Tembalang

Lebih terperinci

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang

Lebih terperinci

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Grup Siklik, Grup Permutasi dan Homomorfisma

Lebih terperinci

Bab 3 Gelanggang Polinom Miring

Bab 3 Gelanggang Polinom Miring Bab 3 Gelanggang Polinom Miring Dalam bab ini akan dibahas mengenai Gelanggang Poliom Miring mulai dengan bentuk yang sederhana (satu variabel) sampai ke bentuk yang lebih kompleks (banyak variabel) berikut

Lebih terperinci

II. KONSEP DASAR GRUP. abstrak (abstract algebra). Sistem aljabar (algebraic system) terdiri dari suatu

II. KONSEP DASAR GRUP. abstrak (abstract algebra). Sistem aljabar (algebraic system) terdiri dari suatu II KONSEP DASAR GRUP Suatu cabang matematika yang mempelajari struktur aljabar dinamakan aljabar abstrak abstract algebra Sistem aljabar algebraic system terdiri dari suatu himpunan obyek satu atau lebih

Lebih terperinci

Karakteristik Koproduk Grup Hingga

Karakteristik Koproduk Grup Hingga Jurnal Matematika Integratif ISSN 1412-6184 Vol. 9 No. 2, Oktober 2013 pp. 31-37 Karakteristik Koproduk Grup Hingga Edi Kurniadi, Stanley P.Dewanto, Alit Kartiwa Jurusan Matematika FMIPA Universitas Padjadjaran

Lebih terperinci

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK HASIL KALI TENSO: KONSTUKSI, EKSISTENSI AN KAITANNYA ENGAN BAISAN EKSAK Samsul Arifin samsul_arifin@mail.ugm.ac.id Mahasiswa S Matematika FMIPA UGM alam tulisan ini akan dibahas mengenai konstruksi hasil

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung proses penelitian. 2.1 Teori Grup Definisi 2.1.1 Operasi Biner Suatu operasi biner pada suatu himpunan adalah

Lebih terperinci

GEOMETRI ALJABARIK I: RUANG AFFINE DENIK AGUSTITO

GEOMETRI ALJABARIK I: RUANG AFFINE DENIK AGUSTITO GEOMETRI ALJABARIK I: RUANG AFFINE DENIK AGUSTITO Tulisan ini didukung oleh AJM (Arsip Jurnal Matematika), Indonesia Email: denikagustito@yahoo.co.id Selesai pada 28 Pebruari 2011 ABSTRAK. Terdapat sebuah

Lebih terperinci

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari. BAB III Standard Kompetensi 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring menggunakannya dalam kehidupan sehari-hari. Kompetensi Dasar: Mahasiswa diharapkan dapat 3.1 Menyebutkan definisi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah,

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, 3 II. LANDASAN TEORI Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, definisi-definisi dan teorema-teorema yang berhubungan dengan penelitian ini. 2.1 Geometri Insidensi

Lebih terperinci

GRUP MONOTETIK TOPOLOGI DISKRIT BERHINGGA PADA DUALITAS PONTRYAGIN

GRUP MONOTETIK TOPOLOGI DISKRIT BERHINGGA PADA DUALITAS PONTRYAGIN Saintia Matematika Vol. 1, No. 6 (2013), pp. 591 602. GRUP MONOTETIK TOPOLOGI DISKRIT BERHINGGA PADA DUALITAS PONTRYAGIN L.F.D. Bali, Tulus, Mardiningsih Abstrak. Dalam teori grup topologi kompak lokal,

Lebih terperinci

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal

Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal Jurnal Matematika Integratif Volume 12 No. 2, Oktober 2016, pp. 117-124 p-issn:1412-6184, e-issn:2549-903 doi:10.24198/jmi.v12.n2.11928.117-124 Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No. 2 Desember 2010: IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING

Jurnal Matematika Murni dan Terapan Vol. 4 No. 2 Desember 2010: IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING Saman Abdurrahman Program Studi Matematika Universitas Lambung Mangkurat Jl. Jend. A. Yani km 35, 8 Banjarbaru ABSTRAK Penelitian ini membahas ideal near-ring yang

Lebih terperinci

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan

Lebih terperinci

K-ALJABAR. Iswati dan Suryoto Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275

K-ALJABAR. Iswati dan Suryoto Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275 K-ALJABAR Iswati Suryoto Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto, SH, Semarang 50275 ABSTRAK -aljabar adalah suatu struktur aljabar yang dibangun atas suatu grup sehingga sifat-sifat yang berlaku

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

RING FAKTOR DAN HOMOMORFISMA

RING FAKTOR DAN HOMOMORFISMA BAB 8 RING FAKTOR DAN HOMOMORFISMA Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Faktor dan Homomorfisma Ring Tujuan Instruksional

Lebih terperinci

KARAKTERISTIK KOPRODUK GRUP HINGGA

KARAKTERISTIK KOPRODUK GRUP HINGGA KARAKTERISTIK KOPRODUK GRUP HINGGA Edi Kurniadi, Stanley P. Dewanto, Alit Kartiwa Jurusan Matematika FMIPA Universitas Padjadjaran Jalan Raya Bandung Sumedang Km 21 Jatinangor 45363 E-mail: edikrnd@gmail.com;

Lebih terperinci

HOMOMORFISMA. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

HOMOMORFISMA. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang HOMOMORFISMA Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com May 19, 2013 1 Daftar Isi 1 Tujuan 3 2 Homomorfisma 3 3 Sifat-sifat Homomorfisma

Lebih terperinci

PROSIDING ISBN : Dzikrullah Akbar 1), Sri Wahyuni 2)

PROSIDING ISBN : Dzikrullah Akbar 1), Sri Wahyuni 2) Modul Strongly Supplemented A 6 Dzikrullah Akbar 1), Sri Wahyuni 2) 1) Mahasiswa S2 Matematika Jurusan Matematika FMIPA UGM Email : dzikoebar@yahoo.com 2) Dosen PS S2 Matematika Jurusan Matematika FMIPA

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN...

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN... 1 A. LATAR BELAKANG MASALAH... 1 B. PEMBATASAN MASALAH... 2 C.

Lebih terperinci

SEMIGRUP BEBAS DAN MONOID BEBAS PADA HIMPUNAN WORD. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia

SEMIGRUP BEBAS DAN MONOID BEBAS PADA HIMPUNAN WORD. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia SEMIGRUP BEBS DN MONOID BEBS PD HIMPUNN WORD Novia Yumitha Sarie, Sri Gemawati, Rolan Pane Mahasiswa Program S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan lam Univeritas

Lebih terperinci

Himpunan dan Fungsi. Modul 1 PENDAHULUAN

Himpunan dan Fungsi. Modul 1 PENDAHULUAN Modul 1 Himpunan dan Fungsi Dr Rizky Rosjanuardi P PENDAHULUAN ada modul ini dibahas konsep himpunan dan fungsi Pada Kegiatan Belajar 1 dibahas konsep-konsep dasar dan sifat dari himpunan, sedangkan pada

Lebih terperinci

ENUMERASI DIGRAF TIDAK ISOMORFIK

ENUMERASI DIGRAF TIDAK ISOMORFIK Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 ENUMERASI DIGRAF TIDAK ISOMORFIK Mulyono Jurusan Matematika FMIPA UNNES Email:

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 10 11 12 Materi Kuliah Transformasi Linier Kernel dan Image dari Transformasi Linier isomorfisma Teorema Rank plus Nullity 1/11/2014 Yanita FMIPA Matematika Unand 2 Transformasi Linier

Lebih terperinci

Diktat Kuliah. Oleh:

Diktat Kuliah. Oleh: Diktat Kuliah TEORI GRUP Oleh: Dr. Adi Setiawan UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2015 Kata Pengantar Aljabar abstrak atau struktur aljabar merupakan suatu mata kuliah yang menjadi kurikulum nasional

Lebih terperinci

STRUKTUR ALJABAR 1. Kristiana Wijaya

STRUKTUR ALJABAR 1. Kristiana Wijaya STRUKTUR ALJABAR 1 Kristiana Wijaya i ii Daftar Isi Judul Daftar Isi i iii 1 Himpunan 1 2 Partisi dan Relasi Ekuivalen 3 3 Grup 6 4 Koset Dan Teorema Lagrange, Homomorphisma Grup Dan Grup Faktor 11 Indeks

Lebih terperinci

RUANG FAKTOR. Oleh : Muhammad Kukuh

RUANG FAKTOR. Oleh : Muhammad Kukuh Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang

Lebih terperinci

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak Kajian mengenai Konstruksi Aljabar Simetris Kiri Menggunakan Fungsi Linier Sofwah Ahmad Departemen Matematika FMIPA UI Kampus UI Depok 16424 sofwahahmad@sciuiacid Abstrak Aljabar merupakan suatu ruang

Lebih terperinci

Teorema Jacobson Density

Teorema Jacobson Density Teorema Jacobson Density Budi Santoso 1, Fitriani 2, Ahmad Faisol 3 Jurusan Matematika FMIPA, Unila, Bandar Lampung, Indonesia 1,2,3 E-mail: budi.klik@gmail.com Abstrak. Misalkan adalah ring (tidak harus

Lebih terperinci

Restia Sarasworo Citra 1, Suryoto 2. Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang Jurusan Matematika FMIPA UNDIP

Restia Sarasworo Citra 1, Suryoto 2. Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang Jurusan Matematika FMIPA UNDIP ENDOMORFISMA DARI BCH-AJABAR Restia Sarasworo Citra 1 Suryoto 1 Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto S. H Tembalang Semarang Jurusan Matematika FMIPA UNDIP Abstract. BCH-algebras is an

Lebih terperinci

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

II. TINJAUAN PUSTAKA. modul yang akan digunakan dalam pembahasan hasil penelitian.

II. TINJAUAN PUSTAKA. modul yang akan digunakan dalam pembahasan hasil penelitian. II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang grup, ring, dan modul yang akan digunakan dalam pembahasan hasil penelitian. 2.1 Ring Sebelum didefinisikan pengertian

Lebih terperinci

HUBUNGAN MODUL TERBANGKIT MODUL-R DAN TERBANGKIT MODUL-R [ S

HUBUNGAN MODUL TERBANGKIT MODUL-R DAN TERBANGKIT MODUL-R [ S Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 HUBUNGAN MODUL TERBANGKIT MODUL-R DAN TERBANGKIT MODUL-R [ S Budi Surodjo

Lebih terperinci

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 58 62 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE SISKA NURMALA SARI Program Studi Matematika, Fakultas

Lebih terperinci

K-ALJABAR. Jl. Prof. H. Soedarto, S.H, Semarang 50275

K-ALJABAR. Jl. Prof. H. Soedarto, S.H, Semarang 50275 K-ALJABAR Iswati 1 Suryoto 2 1,2 Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto, SH, Semarang 50275 Abstract K-algebra is an algebra structure built on a group so that characters of a group will apply

Lebih terperinci

Beberapa Sifat Modul Tersuplemen lemah (Weakly Supplemented Module)

Beberapa Sifat Modul Tersuplemen lemah (Weakly Supplemented Module) Beberapa Sifat Modul Tersuplemen lemah (Weakly Supplemented Module) A 4 Didi Febrian 1, Sri Wahyuni 2 1 Mahasiswa S2 Jurusan Matematika Fakultas MIPA UGM, Dosen Univ. Dian Nusantara Medan email : febrian.didi@mail.ugm.ac.id

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL. Na imah Hijriati, Saman Abdurrahman, Thresye

IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL. Na imah Hijriati, Saman Abdurrahman, Thresye DEAL DFEENSAL DAN HOMOMOFSMA DFEENSAL Na imah Hijriati, Saman Abdurrahman, Thresye Program Studi Matematika Universitas Lambung Mangkurat l. end. A. Yani Km. 36 Kampus Unlam Banjarbaru Email : imah_math@yahoo.co.id

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 PENGANTAR TOPOLOGI EDISI PERTAMA Dosen Pengampu: Siti Julaeha, M.Si UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 by Matematika Sains 2012 UIN SGD, Copyright 2015 BAB 0. HIMPUNAN, RELASI, FUNGSI,

Lebih terperinci

Karakterisasi Modul Torsi dan Modul Bebas Torsi Menggunakan Preradikal

Karakterisasi Modul Torsi dan Modul Bebas Torsi Menggunakan Preradikal Karakterisasi Modul Torsi dan Modul Bebas Torsi Menggunakan Preradikal Indah Emilia Wijayanti Primastuti Indah Suryani Dwi Ertiningsih Jurusan Matematika FMIPA UGM Sekip Utara Yogyakarta 55281 Abstrak

Lebih terperinci

PENGANTAR PADA TEORI GRUP DAN RING

PENGANTAR PADA TEORI GRUP DAN RING Handout MK Aljabar Abstract PENGANTAR PADA TEORI GRUP DAN RING Disusun oleh : Drs. Antonius Cahya Prihandoko, M.App.Sc, Ph.D e-mail: antoniuscp.ilkom@unej.ac.id Staf Pengajar Pada Program Studi Sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat

Lebih terperinci

Pembelajaran Klasifikasi Geometris dari Transformasi Mӧbius Suatu Sarana Penyampaian Konsep Grup

Pembelajaran Klasifikasi Geometris dari Transformasi Mӧbius Suatu Sarana Penyampaian Konsep Grup SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Pembelajaran Klasifikasi Geometris dari Transformasi Mӧbius Suatu Sarana Penyampaian Konsep Grup PM -45 Iden Rainal Ihsan Program Studi Pendidikan

Lebih terperinci

Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring

Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring Ahmad Faisol Jurusan Matematika FMIPA Universitas Lampung Jl. Prof. Soemantri Brojonegoro No. 1 Bandar Lampung Email : faisol_mathunila@yahoo.co.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis berupa definisi teorema sifat-sifat yang berhubungan dengan teori bilangan integer modulo aljabar abstrak masalah logaritma diskret

Lebih terperinci

BAB III FUNGSI UJI DAN DISTRIBUSI

BAB III FUNGSI UJI DAN DISTRIBUSI BAB III FUNGSI UJI DAN DISTRIBUSI Bab ini membahas tentang fungsi uji dan distribusi di mana ruang yang memuat keduanya secara berturut-turut dinamakan ruang fungsi uji dan ruang distribusi. Ruang fungsi

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

Tinjauan Terhadap Grup Cogenerated secara Hingga

Tinjauan Terhadap Grup Cogenerated secara Hingga Jurnal Matematika Integratif ISSN 112-618 Volume 10 No 1, April 201, hal 63-67 Tinjauan Terhadap Grup Cogenerated secara Hingga Edi Kurniadi Program Studi Matematika FMIPA Universitas Padjadjaran Jalan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis sebagai landasan teori dalam penelitian ini yaitu teori bilangan, bilangan bulat modulo?, struktur aljabar dan masalah logaritma

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL Jurnal Matematika Murni dan Terapan Vol 5 No Juni 0: 43-5 TES FORMAL MOUL PROJEKTIF AN MOUL BEBAS ATAS RING OPERATOR IFERENSIAL Na imah Hijriati Program Studi Matematika Universitas Lambung Mangkurat Jl

Lebih terperinci

Dari Algebraic Topology ke Aljabar

Dari Algebraic Topology ke Aljabar Motivasi Studi topologi diawali oleh studi terhadap graf dan platonic solid Motivasi Studi topologi diawali oleh studi terhadap graf dan platonic solid Motivasi Ada sebuah pola penting yang muncul pada

Lebih terperinci

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,

Lebih terperinci

HIMPUNAN KUBIK ASIKLIK DAN KUBUS DASAR

HIMPUNAN KUBIK ASIKLIK DAN KUBUS DASAR Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 43 49 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HIMPUNAN KUBIK ASIKLIK DAN KUBUS DASAR WIWI ULMAYANI Program Studi Matematika, Fakultas Matematika dan

Lebih terperinci

Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf

Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf Nunung Nurhidayah, Rizky Rosjanuardi, Isnie Yusnitha Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia Correspondent

Lebih terperinci

Karakteristik Operator Positif Pada Ruang Hilbert

Karakteristik Operator Positif Pada Ruang Hilbert SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 A - 4 Karakteristik Operator Positif Pada Ruang Hilbert Gunawan Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Purwokerto gunoge@gmailcom

Lebih terperinci

Keberlakuan Teorema pada Beberapa Struktur Aljabar

Keberlakuan Teorema pada Beberapa Struktur Aljabar PRISMA 1 (2018) https://journal.unnes.ac.id/sju/index.php/prisma/ Keberlakuan Teorema pada Beberapa Struktur Aljabar Mashuri, Kristina Wijayanti, Rahayu Budhiati Veronica, Isnarto Jurusan Matenmatika FMIPA

Lebih terperinci

Modul Faktor Dari Modul Supplemented

Modul Faktor Dari Modul Supplemented Modul Faktor Dari Modul Supplemented A 16 Puguh Wahyu Prasetyo S2 Matematika FMIPA UGM, Yogyakarta Email : puguhwp@gmail.com Ari Suparwanto Jurusan Matematika FMIPA UGM, Yogyakarta Email : ari_suparwanto@ugm.ac.id

Lebih terperinci

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N 1.1.Himpunan Himpunan (set) adalah kumpulan objek-objek yang terdefenisi dengan baik (well defined). Artinya bahwa untuk sebarang objek x yang diberikan, maka kita selalu akan dapat

Lebih terperinci

Jurusan Pendidikan Matematika

Jurusan Pendidikan Matematika DESKRIPSI MATA KULIAH : STRUKTUR ALJABAR I KODE MK : MT 400 Mata kuliah ini dimaksudkan agar mahasiswa memahami konsep-konsep struktur aljabar (aljabar modern). Materinya mencakup: aljabar himpunan, pemetaan

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 2.2 Sistem Bilangan Real sebagai Lapangan Terurut Operasi Aritmetika. Sifat-sifat dasar urutan dan aritmetika dari Sistem Bilangan

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru HOMOMORFISMA DARI LEVEL SUBNEAR-RING FUZZY Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru E-mail: saman@unlam.ac.id ABSTRAK Dalam

Lebih terperinci

ORDER UNSUR DARI GRUP S 4

ORDER UNSUR DARI GRUP S 4 Jurnal Matematika UNAND Vol. VI No. 1 Hal. 142 147 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ORDER UNSUR DARI GRUP S 4 FEBYOLA, YANITA, MONIKA RIANTI HELMI Program Studi Matematika, Fakultas Matematika

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada abad ke-19, Teori Representasi secara umum dipelajari sebagai bagian dari Teori Grup. Himpunan semua endomorfisma invertibel dari ruang vektor V atas

Lebih terperinci

Syarat Perlu Dan Cukup Subaljabar Merupakan Ideal di Dalam Aljabar BCI

Syarat Perlu Dan Cukup Subaljabar Merupakan Ideal di Dalam Aljabar BCI Syarat Perlu Dan Cukup Subaljabar Merupakan Ideal di Dalam Aljabar BCI 1, 2 Yeni Susanti1, Sri Wahyuni 2 Jurusan Matematika FMIPA UGM Abstrak : Di dalam tulisan ini dibahas syarat perlu dan syarat cukup

Lebih terperinci

Syarat Perlu Suatu Modul Merupakan Modul Distributif Lemah dan Ring Endomorfisma dari Modul Distributif Lemah

Syarat Perlu Suatu Modul Merupakan Modul Distributif Lemah dan Ring Endomorfisma dari Modul Distributif Lemah Syarat Perlu Suatu Modul Merupakan Modul Distributif Lemah Ring Endomorfisma dari Modul Distributif Lemah Fitriani Jurusan Matematika FMIPA Universitas Lampung Email: fitriani_mathunila@yahoocoid AbstrakMisalkan

Lebih terperinci

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK A. Transformasi Matriks Mengawetkan Kekonvergenan Pada bagian A ini pembahasan dibagi menjadi dua bagian, yang pertama membahas mengenai transformasi

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

BAB VIII HIMPUNAN BILANGAN RASIONAL

BAB VIII HIMPUNAN BILANGAN RASIONAL 8.1 Pendahuluan BAB VIII HIMPUNAN BILANGAN RASIONAL Pada sistem bilangan bulat, bentuk persamaan yang melibatkan perkalian belum tentu memiliki solusi. Keadaan ini juga ditemui pada kasus pembagian sebuah

Lebih terperinci

FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B.

FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B. FUNGSI Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B. FUNGSI KOMPOSISI Daerah asal alami f : A B adalah semua unsur

Lebih terperinci

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi + 5 BAB II KERANGKA TEORITIS 2.1 Struktur Aljabar Struktur aljabar adalah salah satu mata kuliah dalam jurusan matematika yang mempelajari tentang himpunan (sets), proposisi, kuantor, relasi, fungsi, bilangan,

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika 1 BAB I PENDAHULUAN A. Latar Belakang Struktur aljabar merupakan salah satu bidang kajian dalam matematika yang dikembangkan untuk menunjang pemahaman mengenai struktur bilangan. Struktur atau sistem aljabar

Lebih terperinci

RELASI EKUIVALENSI PADA SUBGRUP FUZZY

RELASI EKUIVALENSI PADA SUBGRUP FUZZY RELASI EKUIVALENSI PADA SUBGRUP FUZZY R. Sulaiman Jurusan Matematika FMIPA Universitas Negeri Surabaya Jln. Ketintang, Surabaya rsulaiman2010@gmail.com ABSTRACT Without any equivalence relation on set

Lebih terperinci

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.

Lebih terperinci

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd BUKU DIKTAT ANALISA VARIABEL KOMPLEKS OLEH : DWI IVAYANA SARI, M.Pd i DAFTAR ISI BAB I. BILANGAN KOMPLEKS... 1 I. Bilangan Kompleks dan Operasinya... 1 II. Operasi Hitung Pada Bilangan Kompleks... 1 III.

Lebih terperinci

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum Bab I. Sekilas Tentang Konsep Dasar Grup antonius cp 2 1. Tertutup, yakni jika diambil sebarang dua elemen dalam G maka hasil operasinya juga akan merupakan elemen G dan hasil tersebut adalah tunggal.

Lebih terperinci

KAJIAN KEINJEKTIFAN MODUL (MODUL INJEKTIF, MODUL INJEKTIF LEMAH, MODUL MININJEKTIF)

KAJIAN KEINJEKTIFAN MODUL (MODUL INJEKTIF, MODUL INJEKTIF LEMAH, MODUL MININJEKTIF) J. Pijar MIPA, Vol. IX No.1, Maret : 42-47 ISSN 1907-1744 KAJIAN KEINJEKTIFAN MODUL (MODUL INJEKTIF, MODUL INJEKTIF LEMAH, MODUL MININJEKTIF) Baidowi 1, Yunita Septriana Anwar 2 1 Program Studi Pendidikan

Lebih terperinci

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351)

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351) I. Aljabar Himpunan Aljabar Himpunan Dalam bab ini kita akan menyajikan latar belakang yang diperlukan untuk mempelajari analisis riil. Dua alat utama analisis riil, yakni aljabar himpunan dan fungsi,

Lebih terperinci

ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc

ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2011 0 KATA PENGANTAR Aljabar abstrak

Lebih terperinci

RING STABIL BERHINGGA

RING STABIL BERHINGGA RING STABIL BERHINGGA Samsul Arifin Program Studi Pendidikan Matematika, STKIP Surya, Tangerang Email: samsul.arifin@stkipsurya.ac.id ABSTRACT Dalam tulisan ini akan dibahas mengenai karakteristik ring

Lebih terperinci

BAB II TEORI DASAR. untuk setiap e G. 4. G mengandung balikan. Untuk setiap a G, terdapat b G sehingga a b =

BAB II TEORI DASAR. untuk setiap e G. 4. G mengandung balikan. Untuk setiap a G, terdapat b G sehingga a b = BAB II TEORI DASAR 2.1. Group Misalkan operasi biner didefinisikan untuk elemen-elemen dari himpunan G. Maka G adalah grup dengan operasi * jika kondisi di bawah ini terpenuhi : 1. G tertutup terhadap.

Lebih terperinci

TEORI HEMIRING ABSTRAK

TEORI HEMIRING ABSTRAK TEORI HEMIRING Mahasiswa S1 Program Studi Matematika, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Diponegoro Jl Prof H Soedarto, SH, Semarang Indonesia 50275 email :tri_matematika@yahoocom

Lebih terperinci

BAB 1 PENDAHULUAN. satu cabang ilmu matematika yang berhubungan dengan kajian kuantitas, hubungan, dan

BAB 1 PENDAHULUAN. satu cabang ilmu matematika yang berhubungan dengan kajian kuantitas, hubungan, dan BAB 1 PENDAHULUAN 1.1 Latar Belakang Aljabar abstrak atau yang juga dikenal dengan aljabar moderen merupakan salah satu cabang ilmu matematika yang berhubungan dengan kajian kuantitas, hubungan, dan struktur

Lebih terperinci

Grup Permutasi dan Grup Siklis. Winita Sulandari

Grup Permutasi dan Grup Siklis. Winita Sulandari Grup Permutasi dan Grup Siklis Winita Sulandari Grup Permutasi Suatu Permutasi dari suatu himpunan berhingga S yang tidak kosong, dinyatakan sebagai suatu pemetaan bijektif dari himpunan S pada dirinya

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor BAB 5 GRUP FAKTOR Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci