Dari Algebraic Topology ke Aljabar

Ukuran: px
Mulai penontonan dengan halaman:

Download "Dari Algebraic Topology ke Aljabar"

Transkripsi

1

2 Motivasi Studi topologi diawali oleh studi terhadap graf dan platonic solid

3 Motivasi Studi topologi diawali oleh studi terhadap graf dan platonic solid

4 Motivasi Ada sebuah pola penting yang muncul pada platonic solids Solids Vertices Edges Faces Tetrahedron Cube Octahedron Icosahedron Dedocahedron

5 Motivasi Ada sebuah pola penting yang muncul pada platonic solids Solids Vertices Edges Faces Tetrahedron Cube Octahedron Icosahedron Dedocahedron Pola tersebut adalah V E + F = 2

6 Motivasi Ada sebuah pola penting yang muncul pada platonic solids Solids Vertices Edges Faces Tetrahedron Cube Octahedron Icosahedron Dedocahedron Pola tersebut adalah V E + F = 2 Pola ini juga berlaku untuk polihedron secara umum dan juga graf planar

7 Motivasi Ada sebuah pola penting yang muncul pada platonic solids Solids Vertices Edges Faces Tetrahedron Cube Octahedron Icosahedron Dedocahedron Pola tersebut adalah V E + F = 2 Pola ini juga berlaku untuk polihedron secara umum dan juga graf planar Hal ini terjadi karena, secara topologi, semua polihedron dan graf planar adalah ekivalen

8 Tentang Ekivalensi Homotopi, secara kasar, adalah ekivalensi topologi saat sebuah bentuk dapat diubah menjadi bentuk lain secara kontinu tanpa harus memotong atau menempel

9 Tentang Ekivalensi Homotopi, secara kasar, adalah ekivalensi topologi saat sebuah bentuk dapat diubah menjadi bentuk lain secara kontinu tanpa harus memotong atau menempel Pada saat ini klasifikasi lengkap hanya ada untuk dimensi 2 Theorem Jika M merupakan suatu permukaan, maka M pasti salah satu dari berikut: Bola (+batas) Bola ditambah beberapa pegangan (+batas) Bola ditambah beberapa crosscaps (+batas)

10 Bagaimana dengan dimensi lebih tinggi?

11 Bagaimana dengan dimensi lebih tinggi? Masalah: Tidak mudah untuk membuktikan 2 bentuk sama atau berbeda, terutama pada dimensi tinggi

12 Bagaimana dengan dimensi lebih tinggi? Masalah: Tidak mudah untuk membuktikan 2 bentuk sama atau berbeda, terutama pada dimensi tinggi Contoh: Apakah R 3 berbeda dengan S 3? Apakah R 3 berbeda dengan R 4?

13 Ide Dasar Algebraic Topology Salah satu ide dasar di Matematika adalah mencari/mendefiniskan invariant

14 Ide Dasar Algebraic Topology Salah satu ide dasar di Matematika adalah mencari/mendefiniskan invariant Di Algebraic Topology, ada banyak jenis invariant

15 Ide Dasar Algebraic Topology Salah satu ide dasar di Matematika adalah mencari/mendefiniskan invariant Di Algebraic Topology, ada banyak jenis invariant Euler Characteristic

16 Ide Dasar Algebraic Topology Salah satu ide dasar di Matematika adalah mencari/mendefiniskan invariant Di Algebraic Topology, ada banyak jenis invariant Euler Characteristic Genus Betti Number

17 Ide Dasar Algebraic Topology Salah satu ide dasar di Matematika adalah mencari/mendefiniskan invariant Di Algebraic Topology, ada banyak jenis invariant Euler Characteristic Genus Betti Number Fundamental Group Homotopy Group

18 Ide Dasar Algebraic Topology Salah satu ide dasar di Matematika adalah mencari/mendefiniskan invariant Di Algebraic Topology, ada banyak jenis invariant Euler Characteristic Genus Betti Number Fundamental Group Homotopy Group Homology

19 Ide Dasar Algebraic Topology Salah satu ide dasar di Matematika adalah mencari/mendefiniskan invariant Di Algebraic Topology, ada banyak jenis invariant Euler Characteristic Genus Betti Number Fundamental Group Homotopy Group Homology Cohomology

20 Ide Dasar Algebraic Topology Salah satu ide dasar di Matematika adalah mencari/mendefiniskan invariant Di Algebraic Topology, ada banyak jenis invariant Euler Characteristic Genus Betti Number Fundamental Group Homotopy Group Homology Cohomology K-Theory

21 Ide Dasar Algebraic Topology Misalkan terdapat bentuk Topologi X, Y dan fungsi kontinu f : X Y, maka terdapat:

22 Ide Dasar Algebraic Topology Misalkan terdapat bentuk Topologi X, Y dan fungsi kontinu f : X Y, maka terdapat: Grup π n (X ) dan π n (Y ) serta homomorfisma grup π n (f ) : π n (X ) π n (Y )

23 Ide Dasar Algebraic Topology Misalkan terdapat bentuk Topologi X, Y dan fungsi kontinu f : X Y, maka terdapat: Grup π n (X ) dan π n (Y ) serta homomorfisma grup π n (f ) : π n (X ) π n (Y ) Grup abel H n (X ) dan H n (Y ) serta homomorfisma grup H n (f ) : H n (X ) H n (Y )

24 Ide Dasar Algebraic Topology Misalkan terdapat bentuk Topologi X, Y dan fungsi kontinu f : X Y, maka terdapat: Grup π n (X ) dan π n (Y ) serta homomorfisma grup π n (f ) : π n (X ) π n (Y ) Grup abel H n (X ) dan H n (Y ) serta homomorfisma grup H n (f ) : H n (X ) H n (Y ) Ring H n (X ) dan H n (Y ) serta homomorfisma grup H n (f ) : H n (Y ) H n (X )

25 Ide Dasar Algebraic Topology Misalkan terdapat bentuk Topologi X, Y dan fungsi kontinu f : X Y, maka terdapat: Grup π n (X ) dan π n (Y ) serta homomorfisma grup π n (f ) : π n (X ) π n (Y ) Grup abel H n (X ) dan H n (Y ) serta homomorfisma grup H n (f ) : H n (X ) H n (Y ) Ring H n (X ) dan H n (Y ) serta homomorfisma grup H n (f ) : H n (Y ) H n (X ) Familiar dengan konsep di atas?

26 De Rham Cohomology Pada geometri diferensial, diperlukan suatu cara mendefinisikan integral pada differentiable manifolds

27 De Rham Cohomology Pada geometri diferensial, diperlukan suatu cara mendefinisikan integral pada differentiable manifolds Formalisasi aljabar dari notasi Leibniz di kalkulus (dx) disebut diffential forms

28 De Rham Cohomology Pada geometri diferensial, diperlukan suatu cara mendefinisikan integral pada differentiable manifolds Formalisasi aljabar dari notasi Leibniz di kalkulus (dx) disebut diffential forms Contoh pada R 3 : 0-form, fungsi yang memiliki turunan 1-form, f (x, y, z)dx + g(x, y, z)dy 2-form, f (x, y, z)dxdy + g(x, y, z)dydz 3-form, f (x, y, z)dxdydz

29 De Rham Cohomology Pada geometri diferensial, diperlukan suatu cara mendefinisikan integral pada differentiable manifolds Formalisasi aljabar dari notasi Leibniz di kalkulus (dx) disebut diffential forms Contoh pada R 3 : 0-form, fungsi yang memiliki turunan 1-form, f (x, y, z)dx + g(x, y, z)dy 2-form, f (x, y, z)dxdy + g(x, y, z)dydz 3-form, f (x, y, z)dxdydz Turunan: d(fdx) = f x dx dx + f y dy dx + f z dz dx = f y dxdy f z dxdz

30 De Rham Cohomology 0-form(X ) 1-form(X ) 2-form(X ) 3-form(X )

31 De Rham Cohomology 0-form(X ) 1-form(X ) 2-form(X ) 3-form(X ) Dari Kalkulus Multivariable, kita tahu bahwa d 2 = 0, akibatnya rantai di atas adalah co-chain complex (Im d Ker d)

32 De Rham Cohomology 0-form(X ) 1-form(X ) 2-form(X ) 3-form(X ) Dari Kalkulus Multivariable, kita tahu bahwa d 2 = 0, akibatnya rantai di atas adalah co-chain complex (Im d Ker d) Barisan di atas bukan merupakan barisan eksak, untuk mengetahui seberapa jauh barisan di atas menyimpang dari barisan eksak, kita definisikan H n = Kerd/Imd

33 De Rham Cohomology 0-form(X ) 1-form(X ) 2-form(X ) 3-form(X ) Dari Kalkulus Multivariable, kita tahu bahwa d 2 = 0, akibatnya rantai di atas adalah co-chain complex (Im d Ker d) Barisan di atas bukan merupakan barisan eksak, untuk mengetahui seberapa jauh barisan di atas menyimpang dari barisan eksak, kita definisikan H n = Kerd/Imd Darimana struktur ring dan kontravarian De Rham cohomology berasal?

34 Simplicial Homology Permukaan dapat di-triangulasi, dan bentuk topologi bisa dipecah menjadi simplex

35 Simplicial Homology Permukaan dapat di-triangulasi, dan bentuk topologi bisa dipecah menjadi simplex n-simplex [v 0, v 1,..., v n ] didefinisikan sebagai himpunan konveks terkecil yang memuat n buah titik (n vektor bebas linear)

36 Simplicial Homology Permukaan dapat di-triangulasi, dan bentuk topologi bisa dipecah menjadi simplex n-simplex [v 0, v 1,..., v n ] didefinisikan sebagai himpunan konveks terkecil yang memuat n buah titik (n vektor bebas linear) 0-simplex adalah sebuah titik, 1-simplex adalah sebuah sisi, 2-simplex adalah sebuah segitiga, 3-simplex adalah sebuah tetrahedron, dst

37 Simplicial Homology Permukaan dapat di-triangulasi, dan bentuk topologi bisa dipecah menjadi simplex n-simplex [v 0, v 1,..., v n ] didefinisikan sebagai himpunan konveks terkecil yang memuat n buah titik (n vektor bebas linear) 0-simplex adalah sebuah titik, 1-simplex adalah sebuah sisi, 2-simplex adalah sebuah segitiga, 3-simplex adalah sebuah tetrahedron, dst batas dari 1-simplex didefinisikan sebagai 0-simplex, batas dari 2-simplex adalah 2 buah 1-simplex, batas dari 3-simplex adalah 3 buah 2-simplex, dst

38 Simplicial Homology

39 Simplicial Homology Batas dari suatu simplex didefinisikan sebagai: d[v 0, v 1,..., v n ] = ( 1) i [v 0,..., ˆv i,..., v n ]

40 Simplicial Homology Batas dari suatu simplex didefinisikan sebagai: d[v 0, v 1,..., v n ] = ( 1) i [v 0,..., ˆv i,..., v n ] Dapat diperiksa bahwa d 2 = 0, sehingga rantai di bawah merupakan chain complex

41 Simplicial Homology Batas dari suatu simplex didefinisikan sebagai: d[v 0, v 1,..., v n ] = ( 1) i [v 0,..., ˆv i,..., v n ] Dapat diperiksa bahwa d 2 = 0, sehingga rantai di bawah merupakan chain complex 3 (X ) 2 (X ) 1 (X ) 0 (X )

42 Simplicial Homology Batas dari suatu simplex didefinisikan sebagai: d[v 0, v 1,..., v n ] = ( 1) i [v 0,..., ˆv i,..., v n ] Dapat diperiksa bahwa d 2 = 0, sehingga rantai di bawah merupakan chain complex 3 (X ) 2 (X ) 1 (X ) 0 (X ) Grup Homologi didefinisikan sebagai H n (X ) = Kerd/Imd

43 Simplicial Homology Contoh, grup homologi dari torus adalah: H n (T ) = 0 untuk n > 2, H 2 (T ) = Z, H 1 (T ) = Z Z, H 0 (T ) = Z

44 Simplicial Homology Contoh, grup homologi dari torus adalah: H n (T ) = 0 untuk n > 2, H 2 (T ) = Z, H 1 (T ) = Z Z, H 0 (T ) = Z

45 Simplicial Homology Contoh, grup homologi dari torus adalah: H n (T ) = 0 untuk n > 2, H 2 (T ) = Z, H 1 (T ) = Z Z, H 0 (T ) = Z Simplicial Topology memang relatif mudah dihitung, tapi apakah peta dari simplex juga merupakan simplex?

46 Aplikasi di Algebraic Topology Teorema-teorema di Simplicial Homology tidak mudah dibuktikan, oleh karena itu didefinisikan Singular Homology

47 Aplikasi di Algebraic Topology Teorema-teorema di Simplicial Homology tidak mudah dibuktikan, oleh karena itu didefinisikan Singular Homology Singular Homology secara definisi sangat cocok untuk pembuktian, dan ekivalensi antara Simplicial Homology dan Singular Homology pada dasarnya adalah 5-lemma

48 Aplikasi di Algebraic Topology Teorema-teorema di Simplicial Homology tidak mudah dibuktikan, oleh karena itu didefinisikan Singular Homology Singular Homology secara definisi sangat cocok untuk pembuktian, dan ekivalensi antara Simplicial Homology dan Singular Homology pada dasarnya adalah 5-lemma Peralatan utama dalam perhitungan grup homologi adalah barisan Mayer-Vietoris yang pada dasarnya adalah Snake-lemma Theorem Jika A adalah subruang (tutup) topologi dari X maka terdapat barisan eksak H n (A) H n (X ) H n (X /A) H n 1 (A) H n 1 (X )

49 Derived Categories Kelemahan pertama (co)homology: Cohomology adalah Homology dari dual sebuah chain complex bukan dual dari Homology sebuah chain complex, karena pengambilan homology tidaklah double dual. Masalah: (co)chain complex tidak invarian terhadap homotopy, (co)chain complex perlu dimodifikasi

50 Derived Categories Kelemahan pertama (co)homology: Cohomology adalah Homology dari dual sebuah chain complex bukan dual dari Homology sebuah chain complex, karena pengambilan homology tidaklah double dual. Kelemahan kedua (co)homology: Pengambilan homology mengurangi informasi Masalah: (co)chain complex tidak invarian terhadap homotopy, (co)chain complex perlu dimodifikasi

51 Derived Categories Kelemahan pertama (co)homology: Cohomology adalah Homology dari dual sebuah chain complex bukan dual dari Homology sebuah chain complex, karena pengambilan homology tidaklah double dual. Kelemahan kedua (co)homology: Pengambilan homology mengurangi informasi Ide dari derived category adalah tidak mengambil (co)homology tapi mengamati (co)chain complex Masalah: (co)chain complex tidak invarian terhadap homotopy, (co)chain complex perlu dimodifikasi

52 Derived Categories Bagaimana bentuk homotopy di (co)chain complex?

53 Derived Categories Bagaimana bentuk homotopy di (co)chain complex? Misalkan X dan Y dua buah bentuk topologi yang telah dipecah menjadi simplex. X dan Y homotopik jika terdapat Z dan pemetaan simplex X Z Y yang menginduksi ( ) n (X ) ( ) n (Z) ( ) n (Y )

54 Derived Categories Bagaimana bentuk homotopy di (co)chain complex? Misalkan X dan Y dua buah bentuk topologi yang telah dipecah menjadi simplex. X dan Y homotopik jika terdapat Z dan pemetaan simplex X Z Y yang menginduksi ( ) n (X ) ( ) n (Z) ( ) n (Y ) Modifikasi yang dilakukan adalah me-lokalisasi semua pemetaan yang invarian terhadap homotopy

55 Derived Categories Bagaimana bentuk homotopy di (co)chain complex? Misalkan X dan Y dua buah bentuk topologi yang telah dipecah menjadi simplex. X dan Y homotopik jika terdapat Z dan pemetaan simplex X Z Y yang menginduksi ( ) n (X ) ( ) n (Z) ( ) n (Y ) Modifikasi yang dilakukan adalah me-lokalisasi semua pemetaan yang invarian terhadap homotopy Yaitu, jika terdapat ( ) n (Z) sehingga terdapat chain map ( ) n (X ) ( ) n (Z) ( ) n (Y ) maka dianggap terdapat isomorfisma g : ( ) n (X ) ( ) n (Y )

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari BAB II TEORI DASAR Pada skripsi ini, akan dipelajari perbedaan sifat grup fundamental yang dimiliki beberapa ruang topologi, yaitu 2 S, torus, 2 P dan figure eight. Ruang topologi adalah suatu himpunan

Lebih terperinci

HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE)

HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE) Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 98 102 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE) RISCHA DEVITA Program Studi Matematika,

Lebih terperinci

PENGGUNAAN TEOREMA HOMEOMORPHY 2-MANIFOLD DAN TEOREMA EULER POINCARE PADA TORUS T DAN SIMPLICIAL COMPLEX K QOWIYYUL AMIN SIREGAR

PENGGUNAAN TEOREMA HOMEOMORPHY 2-MANIFOLD DAN TEOREMA EULER POINCARE PADA TORUS T DAN SIMPLICIAL COMPLEX K QOWIYYUL AMIN SIREGAR PENGGUNAAN TEOREMA HOMEOMORPHY 2-MANIFOLD DAN TEOREMA EULER POINCARE PADA TORUS T DAN SIMPLICIAL COMPLEX K QOWIYYUL AMIN SIREGAR DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

GRUP HOMOLOGI DARI RUANG TOPOLOGI. Denik Agustito 1, Sriwahyuni 2

GRUP HOMOLOGI DARI RUANG TOPOLOGI. Denik Agustito 1, Sriwahyuni 2 Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 GRUP HOMOLOGI DARI RUANG TOPOLOGI Denik Agustito 1, Sriwahyuni 2 Mahasiswa

Lebih terperinci

BAB III FUNGSI UJI DAN DISTRIBUSI

BAB III FUNGSI UJI DAN DISTRIBUSI BAB III FUNGSI UJI DAN DISTRIBUSI Bab ini membahas tentang fungsi uji dan distribusi di mana ruang yang memuat keduanya secara berturut-turut dinamakan ruang fungsi uji dan ruang distribusi. Ruang fungsi

Lebih terperinci

HIMPUNAN KUBIK ASIKLIK DAN KUBUS DASAR

HIMPUNAN KUBIK ASIKLIK DAN KUBUS DASAR Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 43 49 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HIMPUNAN KUBIK ASIKLIK DAN KUBUS DASAR WIWI ULMAYANI Program Studi Matematika, Fakultas Matematika dan

Lebih terperinci

Pengantar Topologi - MK : Prinsip Matematika

Pengantar Topologi - MK : Prinsip Matematika Pengantar Topologi - MK : Prinsip Matematika Topologi merupakan kajian pemetaan dari suatu obyek dalam ruang baik dalam struktur global maupun dalam struktur lokal yang lebih halus. Dapat dikatakan bahwa

Lebih terperinci

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia rio.yohanes@sci.ui.ac.id,

Lebih terperinci

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 58 62 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE SISKA NURMALA SARI Program Studi Matematika, Fakultas

Lebih terperinci

ON SOLUTIONS OF THE DISCRETE-TIME ALGEBRAIC RICCATI EQUATION. Soleha Jurusan Matematika, Institut Teknologi Sepuluh Nopember Surabaya

ON SOLUTIONS OF THE DISCRETE-TIME ALGEBRAIC RICCATI EQUATION. Soleha Jurusan Matematika, Institut Teknologi Sepuluh Nopember Surabaya ON SOLUTIONS OF THE DISCRETE-TIME ALGEBRAIC RICCATI EQUATION Soleha Jurusan Matematika, Institut Teknologi Sepuluh Nopember Surabaya Abstract. On solving the optimal control for the linear discrete-time

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan 5 BAB II TINJAUAN PUSTAKA A. Teori Graf 1. Dasar-dasar Graf Graf G didefinisikan sebagai pasangan himpunan (V, E) ditulis dengan notasi G = (V, E), dimana V adalah himpunan titik yang tidak kosong (vertex)

Lebih terperinci

Integral Tak Tentu. Modul 1 PENDAHULUAN

Integral Tak Tentu. Modul 1 PENDAHULUAN Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

SUBRUANG MARKED. Suryoto Jurusan Matematika, FMIPA-UNDIP Semarang. Abstrak

SUBRUANG MARKED. Suryoto Jurusan Matematika, FMIPA-UNDIP Semarang. Abstrak SUBRUANG MARKED Suryoto Jurusan Matematika, FMIPA-UNDIP Semarang Abstrak Misalkan V suatu ruang vektor berdimensi hingga atas lapangan kompleks C, T operator linier nilpoten pada V dan W subruang T-invariant

Lebih terperinci

PENGANTAR ANALISIS FUNGSIONAL

PENGANTAR ANALISIS FUNGSIONAL PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

FUNGTOR HOM DAN FUNGTOR TENSOR PADA HOMOMORFISMA MODUL. Abstrak

FUNGTOR HOM DAN FUNGTOR TENSOR PADA HOMOMORFISMA MODUL. Abstrak Jurnal Euclid, Vol.4, No.2, pp.710 FUNGTOR HOM DAN FUNGTOR TENSOR PADA HOMOMORFISMA MODUL Denik Agustito Universitas Sarjanawiyata Tamansiwa; rafaelagustito@gmail.com Abstrak Sebuah modul adalah pasangan

Lebih terperinci

GRUP MONOTETIK TOPOLOGI DISKRIT BERHINGGA PADA DUALITAS PONTRYAGIN

GRUP MONOTETIK TOPOLOGI DISKRIT BERHINGGA PADA DUALITAS PONTRYAGIN Saintia Matematika Vol. 1, No. 6 (2013), pp. 591 602. GRUP MONOTETIK TOPOLOGI DISKRIT BERHINGGA PADA DUALITAS PONTRYAGIN L.F.D. Bali, Tulus, Mardiningsih Abstrak. Dalam teori grup topologi kompak lokal,

Lebih terperinci

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari. BAB III Standard Kompetensi 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring menggunakannya dalam kehidupan sehari-hari. Kompetensi Dasar: Mahasiswa diharapkan dapat 3.1 Menyebutkan definisi

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi 1 BAB I PENDAHULUAN 1.1. Latar Belakang Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi tersebut adalah modul. Untuk membahas pengertian tentang suatu modul harus dimengerti lebih

Lebih terperinci

Matematika Dasar INTEGRAL PERMUKAAN

Matematika Dasar INTEGRAL PERMUKAAN Matematika asar INTEGRAL PERMUKAAN Misal suatu permukaan yang dinyatakan dengan persamaan z = f( x,y ) dan merupakan proyeksi pada bidang XOY. Bila diberikan lapangan vektor F( x,y,z ) = f( x,y,z ) i +

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika 1 BAB I PENDAHULUAN A. Latar Belakang Struktur aljabar merupakan salah satu bidang kajian dalam matematika yang dikembangkan untuk menunjang pemahaman mengenai struktur bilangan. Struktur atau sistem aljabar

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL Jurnal Matematika Murni dan Terapan Vol 5 No Juni 0: 43-5 TES FORMAL MOUL PROJEKTIF AN MOUL BEBAS ATAS RING OPERATOR IFERENSIAL Na imah Hijriati Program Studi Matematika Universitas Lambung Mangkurat Jl

Lebih terperinci

SYARAT PERLU LAPANGAN PEMISAH. Bambang Irawanto Jurusan Matematika FMIPA UNDIP. Abstact. Keywords : extension fields, elemen algebra

SYARAT PERLU LAPANGAN PEMISAH. Bambang Irawanto Jurusan Matematika FMIPA UNDIP. Abstact. Keywords : extension fields, elemen algebra JURNAL MATEMATIKA DAN KOMPUTER Vol 4 No 2, 65-70, Agustus 2001, ISSN : 1410-8518 SYARAT PERLU LAPANGAN PEMISAH Bambang Irawanto Jurusan Matematika FMIPA UNDIP Abstact Field is integral domain and is a

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat

Lebih terperinci

Teori Dasar Graf (Lanjutan)

Teori Dasar Graf (Lanjutan) Teori Dasar Graf (Lanjutan) MATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. Matriks-matriks yang dapat menyajikan

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

Teori Dasar Graf (Lanjutan)

Teori Dasar Graf (Lanjutan) Teori Dasar Graf (Lanjutan) ATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. atriks-matriks yang dapat menyajikan

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 10 11 12 Materi Kuliah Transformasi Linier Kernel dan Image dari Transformasi Linier isomorfisma Teorema Rank plus Nullity 1/11/2014 Yanita FMIPA Matematika Unand 2 Transformasi Linier

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teori titik tetap merupakan teori matematika yang sering digunakan untuk menjamin eksistensi solusi masalah nilai awal dan syarat batas persamaan diferensial

Lebih terperinci

Teorema Jacobson Density

Teorema Jacobson Density Teorema Jacobson Density Budi Santoso 1, Fitriani 2, Ahmad Faisol 3 Jurusan Matematika FMIPA, Unila, Bandar Lampung, Indonesia 1,2,3 E-mail: budi.klik@gmail.com Abstrak. Misalkan adalah ring (tidak harus

Lebih terperinci

Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf

Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf Nunung Nurhidayah, Rizky Rosjanuardi, Isnie Yusnitha Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia Correspondent

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL)

MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL) MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL) KATA PENGANTAR Puji dan Syukur kami panjatkan ke Hadirat Tuhan Yang Maha Esa, karena berkat limpahan Rahmat dan Karunia-nya sehingga kami dapat menyusun makalah

Lebih terperinci

KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA)

KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) 2 Deskripsi Mata Kuliah 2017/2018 2. KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM 2.1 Kelompok Mata Kuliah

Lebih terperinci

15 Polihedron Reguler dan Rumus Euler

15 Polihedron Reguler dan Rumus Euler 15 Polihedron Reguler dan Rumus Euler Di antara pembaca mungkin ada yang bertanya-tanya, mengapa Archimedes tidak menggunakan polihedron reguler (beraturan) untuk menaksir volume dan luas permukaan bola,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 65-70, Agustus 2001, ISSN : SYARAT PERLU LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 65-70, Agustus 2001, ISSN : SYARAT PERLU LAPANGAN PEMISAH JURNAL MATEMATIKA DAN KOMPUTER Vol 4 No 2, 65-70, Agustus 2001, ISSN : 1410-8518 SYARAT PERLU LAPANGAN PEMISAH Bambang Irawanto Jurusan Matematika FMIPA UNDIP Abstact Field is integral domain and is a

Lebih terperinci

KAJIAN SIMPLICIAL COMPLEX DAN K TH BETTI NUMBER PADA CAKUPAN JARINGAN PENGUAT SINYAL GSM INDOOR FACHRI ADITYA

KAJIAN SIMPLICIAL COMPLEX DAN K TH BETTI NUMBER PADA CAKUPAN JARINGAN PENGUAT SINYAL GSM INDOOR FACHRI ADITYA KAJIAN SIMPLICIAL COMPLEX DAN K TH BETTI NUMBER PADA CAKUPAN JARINGAN PENGUAT SINYAL GSM INDOOR FACHRI ADITYA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

Aljabar Linier Elementer. Kuliah 27

Aljabar Linier Elementer. Kuliah 27 Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi

Lebih terperinci

SIFAT-SIFAT INTEGRAL LIPAT

SIFAT-SIFAT INTEGRAL LIPAT TUGAS KALKULUS LANJUT SIFAT-SIFAT INTEGAL LIPAT Oleh: KAMELIANI 46 JUUSAN MATEMATIKA FAKULTAS MATEMATIKA AN ILMU PENGETAHUAN ALAM UNIVESITAS NEGEI MAKASSA 4 SIFAT-SIFAT INTEGAL LIPAT A. SIFAT-SIFAT INTEGAL

Lebih terperinci

Metrik Finsler Pseudo-Konveks Kuat pada Bundel Vektor Holomorfik

Metrik Finsler Pseudo-Konveks Kuat pada Bundel Vektor Holomorfik Metrik Finsler Pseudo-Konveks Kuat pada Bundel Vektor Holomorfik Haripamyu FMIPA Universitas Andalas Email: harpamyu@gmail.com Jenizon FMIPA Universitas Andalas Email: jenizon@gmail.com I Made Arnawa FMIPA

Lebih terperinci

Modul 6 berisi pengertian integral garis (kurva), sifat-sifat dan penerapannya. Pengintegralan sepanjang kurva, kita harus memperhatikan arah kurva,

Modul 6 berisi pengertian integral garis (kurva), sifat-sifat dan penerapannya. Pengintegralan sepanjang kurva, kita harus memperhatikan arah kurva, ix T Tinjauan Mata Kuliah ujuan mempelajari mata kuliah ini adalah agar Anda memiliki kemampuan dalam menjelaskan aljabar vektor, turunan dan integral fungsi vektor, serta mampu menerapkannya dalam geometri

Lebih terperinci

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK HASIL KALI TENSO: KONSTUKSI, EKSISTENSI AN KAITANNYA ENGAN BAISAN EKSAK Samsul Arifin samsul_arifin@mail.ugm.ac.id Mahasiswa S Matematika FMIPA UGM alam tulisan ini akan dibahas mengenai konstruksi hasil

Lebih terperinci

Art Gallery Problem II. POLIGON DAN VISIBILITAS. A. Poligon I. PENDAHULUAN. B. Visibilitas

Art Gallery Problem II. POLIGON DAN VISIBILITAS. A. Poligon I. PENDAHULUAN. B. Visibilitas Art Gallery Problem Nanda Ekaputra Panjiarga - 13509031 Program StudiTeknikInformatika SekolahTeknikElektrodanInformatika InstitutTeknologiBandung, Jl. Ganesha 10 Bandung40132, Indonesia arga_nep@yahoo.com

Lebih terperinci

Meningkatkan Pengenalan Masyarakat terhadap Jenis Bangun Ruang melalui Platonic Solid

Meningkatkan Pengenalan Masyarakat terhadap Jenis Bangun Ruang melalui Platonic Solid Jurnal EduMatSains, 2 (1) Juli 2017, 71-82 Meningkatkan Pengenalan Masyarakat terhadap Jenis Bangun Ruang melalui Platonic Solid Maslina Simanjuntak* Prodi Pendidikan Matematika, Universitas Kristen Indonesia,

Lebih terperinci

ABSTRAK 1 PENDAHULUAN

ABSTRAK 1 PENDAHULUAN EKSISTENSI SOLUSI LOKAL DAN KETUNGGALAN SOLUSI MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL TUNDAAN Muhammad Abdulloh Mahin Manuharawati Matematika, Fakultas Ilmu Pengetahuan Alam Matematika, Universitas Negeri

Lebih terperinci

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )

Lebih terperinci

2. Terminologi Graph

2. Terminologi Graph 2. Terminologi Graph Oleh : Ade Nurhopipah Pokok Bahasan : 1. Graph dan Subgraph 2. Derajat Titik 3. Path dan Cycle 4. Graph Regular dan Graph Bipartit Sumber : Aldous, Joan M.,Wilson, Robin J. 2004. Graph

Lebih terperinci

BAB I INTEGRAL TAK TENTU

BAB I INTEGRAL TAK TENTU BAB I INTEGRAL TAK TENTU TUJUAN PEMBELAJARAN: 1. Setelah mempelajari materi ini mahasiswa dapat menentukan pengertian integral sebagai anti turunan. 2. Setelah mempelajari materi ini mahasiswa dapat menyelesaikan

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA VARIABEL RANDOM Misalkan (Ω, A, P) ruang probabilitas dan R = {x < x < } dan B : Borel field pada R. Andaikan X : Ω R dan untuk setiap A R, kita definisikan

Lebih terperinci

Teorema Pemetaan Buka

Teorema Pemetaan Buka dan Lemma Schwarz dan Lemma Schwarz dan Lemma Schwarz dan Lemma Schwarz Peta dari sebuah himpunan buka terhadap pemetaan analitik yang tidak konstan senantiasa buka. Misalkan f : C C suatu fungsi analitik

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU SILABUS Mata Pelajaran : Matematika Satuan Pendidikan : SMA Ungguan BPPT Darus Sholah Jember kelas : XII IPA Semester : Ganjil Jumlah Pertemuan : 44 x 35 menit (22 pertemuan) STANDAR 1. Menggunakan konsep

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

GENERALISASI RANTAI KOMPLEKS DAN RANTAI HOMOTOPI

GENERALISASI RANTAI KOMPLEKS DAN RANTAI HOMOTOPI GENERALISASI RANTAI KOMPLEKS DAN RANTAI HOMOTOPI HARIS RABBANI 109094000028 PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARI HIDAYATULLAH JAKARTA 2015 M/1436 H GENERALISASI

Lebih terperinci

Soal Ujian Komprehensif

Soal Ujian Komprehensif Soal Ujian Komprehensif Bahan ujian komprehensif memuat konsep-konsep penting pada bidang: Kalkulus, dan Matriks / Aljabar Linear. Logika, Soal ujian disediakan secara terbuka, dapat diperoleh setiap saat

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II KALKULUS MULTIVARIABEL II Integral Garis Medan Vektor dan (Minggu ke-8) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia 1 Integral Garis Medan Vektor 2 Terkait Lintasan Teorema Fundamental untuk

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

INTEGRAL MATERI 12 IPS ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL MATERI 12 IPS ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL MATERI 12 IPS ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp.

Lebih terperinci

BAB I PENDAHULUAN. Analisis fungsional merupakan salah satu cabang dari kelompok analisis

BAB I PENDAHULUAN. Analisis fungsional merupakan salah satu cabang dari kelompok analisis BAB I PENDAHULUAN 1.1 Latar Belakang Analisis fungsional merupakan salah satu cabang dari kelompok analisis yang membahas operator, operator linear dan sifat-sifatnya. Sebuah pemetaan antar ruang bernorm

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA)

KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) 2 Deskripsi Mata Kuliah 2014 2. KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM 2.1 Kelompok Mata Kuliah Matematika

Lebih terperinci

TINJAUAN MATA KULIAH... MODUL 1: LOGIKA MATEMATIKA 1.1 Kegiatan Belajar 1: Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... MODUL 1: LOGIKA MATEMATIKA 1.1 Kegiatan Belajar 1: Latihan Rangkuman Tes Formatif Daftar Isi TINJAUAN MATA KULIAH... i MODUL 1: LOGIKA MATEMATIKA 1.1 Pernyataan, Negasi, DAN, ATAU, dan Hukum De Morgan...... 1.3 Latihan... 1.18 Rangkuman... 1.20 Tes Formatif 1...... 1.20 Jaringan Logika

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036

Lebih terperinci

Aljabar Linier. Kuliah 2 30/8/2014 2

Aljabar Linier. Kuliah 2 30/8/2014 2 30/8/2014 1 Aljabar Linier Kuliah 2 30/8/2014 2 Bab 1 Subpokok Bahasan Ruang Vektor Subruang Subruang Lattice Jumlah Langsung Himpunan Pembangun dan Bebas Linier Dimensi Ruang Vektor Basis Terurut dan

Lebih terperinci

PROSIDING ISBN : Dzikrullah Akbar 1), Sri Wahyuni 2)

PROSIDING ISBN : Dzikrullah Akbar 1), Sri Wahyuni 2) Modul Strongly Supplemented A 6 Dzikrullah Akbar 1), Sri Wahyuni 2) 1) Mahasiswa S2 Matematika Jurusan Matematika FMIPA UGM Email : dzikoebar@yahoo.com 2) Dosen PS S2 Matematika Jurusan Matematika FMIPA

Lebih terperinci

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50 TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan

Lebih terperinci

KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3

KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3 Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 71 77 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3 FAIZAH, NARWEN Program Studi Matematika, Fakultas

Lebih terperinci

BAB 3 PRODUK SILANG DAN PENDAHULUAN ALJABAR TOEPLITZ

BAB 3 PRODUK SILANG DAN PENDAHULUAN ALJABAR TOEPLITZ BAB 3 PRODUK SILANG DAN PENDAHULUAN ALJABAR TOEPLITZ Pada bab ini diberikan salah satu konsep aljabar-c yaitu produk silang dari suatu sistem dinamik. Selanjutnya dibahas beberapa konsep aljabar Toeplitz

Lebih terperinci

KARAKTERISASI ALJABAR PADA GRAF BIPARTIT. Soleha, Dian W. Setyawati Institut Teknologi Sepuluh Nopember, Surabaya

KARAKTERISASI ALJABAR PADA GRAF BIPARTIT. Soleha, Dian W. Setyawati Institut Teknologi Sepuluh Nopember, Surabaya KARAKTERISASI ALJABAR PADA GRAF BIPARTIT Soleha, Dian W. Setyawati Institut Teknologi Sepuluh Nopember, Surabaya ABSTRAK. Pada artikel ini dibahas penggunaan teknik aljabar linier untuk mempelajari graf

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu ilmu pengetahuan yang berperan penting dalam perkembangan teknologi. Ilmu Matematika juga merupakan ilmu dasar yang banyak

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd BUKU DIKTAT ANALISA VARIABEL KOMPLEKS OLEH : DWI IVAYANA SARI, M.Pd i DAFTAR ISI BAB I. BILANGAN KOMPLEKS... 1 I. Bilangan Kompleks dan Operasinya... 1 II. Operasi Hitung Pada Bilangan Kompleks... 1 III.

Lebih terperinci

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange Pertemuan Minggu ke-11 1. Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange 1. BIDANG SINGGUNG, HAMPIRAN Tujuan mempelajari: memperoleh persamaan bidang singgung terhadap permukaan z

Lebih terperinci

BAB 1 PENDAHULUAN. Kalkulus merupakan salah satu prestasi tertinggi dari kecerdasan manusia.

BAB 1 PENDAHULUAN. Kalkulus merupakan salah satu prestasi tertinggi dari kecerdasan manusia. BAB 1 PENDAHULUAN 1.1 Latar Belakang Kalkulus merupakan salah satu prestasi tertinggi dari kecerdasan manusia. Disiplin ilmu Matematika ini secara umum berasal dari penyelidikan oleh Isaac Newton (1642-1727)

Lebih terperinci

Grup USp(2n,C) 1. Definisi dan Parameterisasi Grup USp ( 2, C )

Grup USp(2n,C) 1. Definisi dan Parameterisasi Grup USp ( 2, C ) Grup USp(2n,C) Kevin Frankly Samuel Pardede 1 1 Institut Teknologi Bandung Definisi beserta pembuktian sifat grup USp(2n, C) akan diberikan. Untuk kasus n=1, pembuktian bahwa grup USp(2, C) adalah sebuah

Lebih terperinci

Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal

Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal Jurnal Matematika Integratif Volume 12 No. 2, Oktober 2016, pp. 117-124 p-issn:1412-6184, e-issn:2549-903 doi:10.24198/jmi.v12.n2.11928.117-124 Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal

Lebih terperinci

4 DIFERENSIAL. 4.1 Pengertian derivatif

4 DIFERENSIAL. 4.1 Pengertian derivatif Diferensial merupakan topik yang cukup 'baru' dalam matematika. Dimulai sekitar tahun 1630 an oleh Fermat ketika menghadapi masalah menentukan garis singgung kurva, dan juga masalah menentukan maksimum

Lebih terperinci

Candi Gebang Permai Blok R/6 Yogyakarta Telp. : ; Fax. :

Candi Gebang Permai Blok R/6 Yogyakarta Telp. : ; Fax. : ii Aljabar Linear Kata Pengantar iii iv Aljabar Linear ALJABAR LINEAR Oleh : Setiadji Edisi Pertama Cetakan Pertama, 2008 Hak Cipta 2008 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak

Lebih terperinci

RING STABIL BERHINGGA

RING STABIL BERHINGGA RING STABIL BERHINGGA Samsul Arifin Program Studi Pendidikan Matematika, STKIP Surya, Tangerang Email: samsul.arifin@stkipsurya.ac.id ABSTRACT Dalam tulisan ini akan dibahas mengenai karakteristik ring

Lebih terperinci

BAB I DERIVATIF (TURUNAN)

BAB I DERIVATIF (TURUNAN) BAB I DERIVATIF (TURUNAN) Pada bab ini akan dipaparkan pengertian derivatif suatu fungsi, beberapa sifat aljabar derivatif, aturan rantai, dan derifativ fungsi invers. A. Pengertian Derivatif Pengertian

Lebih terperinci

Bab 3 Gelanggang Polinom Miring

Bab 3 Gelanggang Polinom Miring Bab 3 Gelanggang Polinom Miring Dalam bab ini akan dibahas mengenai Gelanggang Poliom Miring mulai dengan bentuk yang sederhana (satu variabel) sampai ke bentuk yang lebih kompleks (banyak variabel) berikut

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) terhadap satu atau lebih dari variabel-variabel bebas (independent

II. TINJAUAN PUSTAKA. 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) terhadap satu atau lebih dari variabel-variabel bebas (independent 4 II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) Persamaan differensial adalah suatu persamaan yang memuat turunan terhadap satu atau lebih dari variabel-variabel bebas (independent

Lebih terperinci

Analisis Real. Johan Matheus Tuwankotta 1. December 3,

Analisis Real. Johan Matheus Tuwankotta 1. December 3, Analisis Real Johan Matheus Tuwankotta December 3, 200 Departemen Matematika, FMIPA, Institut Teknologi Bandung, jl. Ganesha no. 0, Bandung, Indonesia. mailto:theo@dns.math.itb.ac.id 2 Daftar Isi Sistem

Lebih terperinci

Tinjauan Terhadap Grup Cogenerated secara Hingga

Tinjauan Terhadap Grup Cogenerated secara Hingga Jurnal Matematika Integratif ISSN 112-618 Volume 10 No 1, April 201, hal 63-67 Tinjauan Terhadap Grup Cogenerated secara Hingga Edi Kurniadi Program Studi Matematika FMIPA Universitas Padjadjaran Jalan

Lebih terperinci

BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU

BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60 Abstract. Let g [0 ] [0] is piecewise continuous monotone

Lebih terperinci

GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA

GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA 07934028 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS PADANG 2011 ABSTRAK Misalkan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci