Aljabar Linier. Kuliah

Ukuran: px
Mulai penontonan dengan halaman:

Download "Aljabar Linier. Kuliah"

Transkripsi

1 Aljabar Linier Kuliah

2 Materi Kuliah Transformasi Linier Kernel dan Image dari Transformasi Linier isomorfisma Teorema Rank plus Nullity 1/11/2014 Yanita FMIPA Matematika Unand 2

3 Transformasi Linier Definisi: Misalkan V dan W ruang vector atas lapangan F. Fungsi T: V W adalah transformasi linier jika T ru + sv = rt u + st(v) Untuk semua scalar r, s F dan vector u, v V. Catatan: Definisi ini ekivalen dengan Misalkan V dan W ruang vector atas lapangan F. Fungsi T: V W adalah transformasi linier jika T u + v = T u + T(v) T ru = rt u Untuk semua scalar r F dan vector u, v V. 1/11/2014 Yanita FMIPA Matematika Unand 3

4 Catatan: 1. Himpunan semua transformasi linier dari V ke W disimbolkan dengan L(V, W). 2. Operator Linier = Endomorfisma : Transformasi linier dari V ke V. 3. Operator riil : Transformasi linier dari V ke V dengan V ruang vector atas bilangan riil. 4. Operator kompleks: Transformasi linier dari V ke V dengan V ruang vector atas bilangan kompleks. 5. Fungsional linier: Transformasi linier dari V ke F. 6. Himpunan semua fungsional linier pada V disimbolkan dengan V, disebut ruang dual V. 7. Homomorfisma = transformasi linier. 8. Monomorfisma = transformasi linier yang injektif. 9. Epimorfisma = transformasi linier yang surjektif. 10. Isomorfisma = transformasi linier yang bijektif. 11. Automorfisma = operator linier yang bijektif 1/11/2014 Yanita FMIPA Matematika Unand 4

5 Contoh: 1. Derivatif D: V V adalah operator linier dengan V himpunan semua fungsi terdifferensial tak hingga pada R. 2. Operator integral τ: F[x] F[x] yang didefinisikan x dengan τ f = 0 f t dt adalah operator linier pada F[x]. 3. Misalkan A matriks m n atas F. Fungsi τ A : F n F m didefinisikan τ A v = Av, di mana semua vektor ditulis sebagai vektor kolom adalah transformasi linier dari F n ke F m 1/11/2014 Yanita FMIPA Matematika Unand 5

6 Teorema Himpunan L(V, W) adalah ruang vector atas F dengan penjumlahan fungsi dan perkalian scalar fungsi biasa. 2. Jika σ L(V, W) dan τ L(V, W), maka komposisi τσ L(V, W). 3. Jika τ L V, W adalah bijektif, maka τ 1 L(V, W). 4. Ruang vectorl(v) adalah aljabar, dimana perkalian adalah fungsi komposisi. Pemetaan identitas i L(V) adalah identitas untuk multipilikatif dan pemetaan 0 adalah identitas untuk penjumlahan. 1/11/2014 Yanita FMIPA Matematika Unand 6

7 1/11/2014 Yanita FMIPA Matematika Unand 7

8 Teorema 2.2 Misalkan V dan W ruang vector dan misalkan B = v i i I adalah basis untuk V. Maka dapat didefinisikan transformasi linier τ L(V, W) dengan τ a 1 v 1 + a 2 v a n v n = a 1 τ v 1 + a 2 τ v a n τ v n Proses ini mendefinisikan transformasi linier yang tunggal, yaitu jika τ, σ L(V, W) memenuhi τ v i = σ v i untuk semua v i B maka τ = σ. 1/11/2014 Yanita FMIPA Matematika Unand 8

9 Kernel dan Image dari Transformasi Linier Definisi: Misalkan τ L V, W. Himpunan ker τ = v V τ v = 0 disebut kernel dari τ dan Himpunan im τ = τ(v) v V disebut image dari τ. Dimensi dari ker(τ) disebut nullity dari τ, disimbolkan dengan null(τ). Dimensi dari im(τ) disebut rank dari τ dan disimbolkan dengan rk(τ). Catatan: ker τ = v V τ v = 0 adalah subruang di V dan im τ = τ(v) v V subruang di W. 1/11/2014 Yanita FMIPA Matematika Unand 9

10 Sifat Teorema 2.3 Misalkan τ L V, W. Maka: 1. τ surjektif jika dan hanya jika im τ = W. 2. τ injektif jika dan hanya jika ker τ = 0 1/11/2014 Yanita FMIPA Matematika Unand 10

11 Bukti Teorema 2.3 (1) 1/11/2014 Yanita FMIPA Matematika Unand 11

12 Bukti Teorema 2.3 (2) 1/11/2014 Yanita FMIPA Matematika Unand 12

13 Isomorfisma Definisi: Misalkan V dan W ruang vektor atas F dan τ: V W adalah transformasi linier. τ disebut isomorfisma jika τ bijektif. Jika isomorfisma dari V ke W ada, maka dikatakan V dan W isomorfik dan ditulis V W. Contoh: Misalkan dim V = n. Untuk sebarang basis terurut B di V, pemetaan koordinat φ B : V F n, yaitu setiap vektor v V dibawa ke koordinat matriknya v B F n adalah isomorfisma. Oleh karena itu sebarang ruang vektor berdimensi-n atas lapangan Fadalah isomorphik ke F n. 1/11/2014 Yanita FMIPA Matematika Unand 13

14 Teorema 2.4: Misalkan τ L V, W adalah isomorphisma dan S V. Maka: 1. S spans V jika dan hanya jika τ(s) spans W. 2. S bebas linier di V jika dan hanya jika τ(s) bebas linier di W. 3. S basis untuk V jika dan hanya jika τ(s) basis untuk W. Catatan. Jika τ L V, W dan S V, maka τ S = τ(s) s S 1/11/2014 Yanita FMIPA Matematika Unand 14

15 Bukti Teorema 2.4 (3) Diketahui τ L V, W, τ isomorphisma, S V, dan S basis untuk V. Akan dibuktikan τ(s) basis untuk W. Misalkan S = v 1, v 2,, v n. Untuk membuktikan τ(s) basis di W, berarti harus dibuktikan W = span(τ S ) dan τ(s) bebas linier. Akan dibuktikan W = span(τ S ). Ambil sebarang w W. Karena τ isomorphism (berarti surjektif dan injektif), maka terdapat v V sehingga τ v = w. Karena S = v 1, v 2,, v n basis untuk V berarti v = a 1 v 1 + a 2 v a n v n. Berarti τ v = τ a 1 v 1 + a 2 v a n v n = w. Karena τ L V, W, berarti τ a 1 v 1 + a 2 v a n v n = a 1 τ v 1 + a 2 τ v a n τ v n = w.artinya w kombinasi linier dari τ v 1, τ v 2,, τ v n Dengan kata lain τ v 1, τ v 2,, τ v n span W atau W = span τ v 1, τ v 2,, τ v n = span(τ S ). 1/11/2014 Yanita FMIPA Matematika Unand 15

16 Bukti Teorema 2.4 (3) - Sambungan Akan dibuktikan τ(s) bebas linier. Bentuk a 1 τ v 1 + a 2 τ v a n τ v n = 0, akan dibuktikan a i = 0 untuk i = 1,2,, n. Karena τ L V, W, berarti a 1 τ v 1 + a 2 τ v a n τ v n = τ a 1 v 1 + a 2 v a n v n = 0. Artinya a 1 v 1 + a 2 v a n v n ker τ. Karena τ injektif berarti ker τ = {0} (Teorema 2.3(2)). Berarti a 1 v 1 + a 2 v a n v n = 0. Karena v 1, v 2,, v n bebas linier ( v 1, v 2,, v n basis V) berarti hanya dipenuhi oleh a 1 = 0, a 2 = 0,, a n = 0. Jadi a 1 τ v 1 + a 2 τ v a n τ v n = 0 hanya dipenuhi oleh a 1 = 0, a 2 = 0, a n = 0. Dengan kata lain {τ v 1, τ v 2,, τ v 2 } bebas linier atau τ(s) bebas linier. Terbukti {τ v 1, τ v 2,, τ v 2 } atau τ(s) basis untuk W. 1/11/2014 Yanita FMIPA Matematika Unand 16

17 Teorema 2.5 Suatu transformasi linier τ L V, W adalah isomorphis jika dan hanya jika terdapat basis B untuk V dimana τ B basis untuk W. Dalam kasus ini, τ memetakan sebarang basis untuk V ke basis untuk W. Teorema 2.6 Misalkan V dan W ruang vektor atas F. jika dan hanya jika dim V = dim W. Maka V W 1/11/2014 Yanita FMIPA Matematika Unand 17

18 Teorema Rank Plus Nullity Teorema 2.8 Misalkan τ L V, W. 1. Komplemen dari ker(τ) isomorphik dengan im(τ). 2. dim(ker(τ)) + dim (im(τ)) = dim(v) atau dengan kata lain rk τ + null τ = dim(v). Korolari 2.9 Misalkan τ L V, W, dim V = dim(w) <. Maka τ injektif jika dan hanya jika τ surjektif. 1/11/2014 Yanita FMIPA Matematika Unand 18

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 13 14 15 Materi Kuliah Transformasi Linier dari F n ke F m Perubahan Matriks Basis Matriks dari Transformasi Linier Perubahan Basis untuk Transformasi Linier Matriks-matriks Ekivalen

Lebih terperinci

adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker ( ) )+dim(im ( )

adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker ( ) )+dim(im ( ) The Rank Plus Nullity Theorem L(V,W) 1) Sembarang komplemen dari ker () adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker () )+dim(im () ) = dim(v) Teorema 2.8. Misal atau rk() +

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

Aljabar Linier Elementer. Kuliah 27

Aljabar Linier Elementer. Kuliah 27 Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

RING FAKTOR DAN HOMOMORFISMA

RING FAKTOR DAN HOMOMORFISMA BAB 8 RING FAKTOR DAN HOMOMORFISMA Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Faktor dan Homomorfisma Ring Tujuan Instruksional

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan autokomutator yang akan digunakan dalam penelitian. Pada bagian pertama ini akan dibahas tentang teori

Lebih terperinci

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari. BAB III Standard Kompetensi 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring menggunakannya dalam kehidupan sehari-hari. Kompetensi Dasar: Mahasiswa diharapkan dapat 3.1 Menyebutkan definisi

Lebih terperinci

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand Aljabar Linier Kuliah 3 5/9/2014 Yanita FMIPA Matematika Unand 1 Materi Kuliah 3 Jumlah Langsung, Hasilkali Langsung Himpunan Pembangun (Spans) dan Bebas Linier 5/9/2014 Yanita FMIPA Matematika Unand 2

Lebih terperinci

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan:

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan: Dimensi dari Suatu Ruang Vektor Jika suatu ruang vektor V memiliki suatu himpunan S yang merentang V, maka ukuran dari sembarang himpunan di V yang bebas linier tidak akan melebihi ukuran dari S. Teorema

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat

Lebih terperinci

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi 1 BAB I PENDAHULUAN 1.1. Latar Belakang Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi tersebut adalah modul. Untuk membahas pengertian tentang suatu modul harus dimengerti lebih

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL Jurnal Matematika Murni dan Terapan Vol 5 No Juni 0: 43-5 TES FORMAL MOUL PROJEKTIF AN MOUL BEBAS ATAS RING OPERATOR IFERENSIAL Na imah Hijriati Program Studi Matematika Universitas Lambung Mangkurat Jl

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR A. DEFINISI DASAR 1. Definisi-1 Suatu pemetaan f dari ruang vektor V ke ruang vektor W adalah aturan perkawanan sedemikian sehingga setiap vektor v V dikawankan

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak Kajian mengenai Konstruksi Aljabar Simetris Kiri Menggunakan Fungsi Linier Sofwah Ahmad Departemen Matematika FMIPA UI Kampus UI Depok 16424 sofwahahmad@sciuiacid Abstrak Aljabar merupakan suatu ruang

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah,

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, 3 II. LANDASAN TEORI Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, definisi-definisi dan teorema-teorema yang berhubungan dengan penelitian ini. 2.1 Geometri Insidensi

Lebih terperinci

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang

Lebih terperinci

Aljabar Linier. Kuliah 2 30/8/2014 2

Aljabar Linier. Kuliah 2 30/8/2014 2 30/8/2014 1 Aljabar Linier Kuliah 2 30/8/2014 2 Bab 1 Subpokok Bahasan Ruang Vektor Subruang Subruang Lattice Jumlah Langsung Himpunan Pembangun dan Bebas Linier Dimensi Ruang Vektor Basis Terurut dan

Lebih terperinci

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari 8.1 Transformasi Linier Umum Bukan lagi transformasi R n R m, tetapi transformasi linier dari ruang vektor V vektor W. Definisi Jika T: V W adalah suatu fungsi dari suatu ruang vektor V ke ruang vektor

Lebih terperinci

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Grup Siklik, Grup Permutasi dan Homomorfisma

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN...

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN... 1 A. LATAR BELAKANG MASALAH... 1 B. PEMBATASAN MASALAH... 2 C.

Lebih terperinci

Keberlakuan Teorema pada Beberapa Struktur Aljabar

Keberlakuan Teorema pada Beberapa Struktur Aljabar PRISMA 1 (2018) https://journal.unnes.ac.id/sju/index.php/prisma/ Keberlakuan Teorema pada Beberapa Struktur Aljabar Mashuri, Kristina Wijayanti, Rahayu Budhiati Veronica, Isnarto Jurusan Matenmatika FMIPA

Lebih terperinci

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor)

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Outline TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Drs. Antonius Cahya Prihandoko, M.App.Sc PS. Pendidikan Matematika PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

Fungsi. Hidayati Rais, S.Pd.,M.Si. October 26, Program Studi Pendidikan Matematika STKIP YPM Bangko. Rollback Malaria :)

Fungsi. Hidayati Rais, S.Pd.,M.Si. October 26, Program Studi Pendidikan Matematika STKIP YPM Bangko. Rollback Malaria :) Program Studi Pendidikan Matematika STKIP YPM Bangko October 26, 2014 Definisi Misalkan A dan B adalah himpunan. Suatu fungsi dari A ke B adalah suatu himpunan f yang elemen-elemennya adalah pasangan terurut

Lebih terperinci

HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE)

HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE) Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 98 102 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE) RISCHA DEVITA Program Studi Matematika,

Lebih terperinci

Teorema Jacobson Density

Teorema Jacobson Density Teorema Jacobson Density Budi Santoso 1, Fitriani 2, Ahmad Faisol 3 Jurusan Matematika FMIPA, Unila, Bandar Lampung, Indonesia 1,2,3 E-mail: budi.klik@gmail.com Abstrak. Misalkan adalah ring (tidak harus

Lebih terperinci

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,

Lebih terperinci

Aljabar Linier Lanjut. Kuliah 1

Aljabar Linier Lanjut. Kuliah 1 Aljabar Linier Lanjut Kuliah 1 Materi Kuliah (Review) Multiset Matriks Polinomial Relasi Ekivalensi Kardinal Aritmatika 23/8/2014 Yanita, FMIPA Matematika Unand 2 Multiset Definisi Misalkan S himpunan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ruang vektor adalah suatu grup abelian yang dilengkapi dengan operasi pergandaan skalar atas suatu lapangan. Suatu ruang vektor dapat dikawankan dengan ruang

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL. Na imah Hijriati, Saman Abdurrahman, Thresye

IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL. Na imah Hijriati, Saman Abdurrahman, Thresye DEAL DFEENSAL DAN HOMOMOFSMA DFEENSAL Na imah Hijriati, Saman Abdurrahman, Thresye Program Studi Matematika Universitas Lambung Mangkurat l. end. A. Yani Km. 36 Kampus Unlam Banjarbaru Email : imah_math@yahoo.co.id

Lebih terperinci

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia rio.yohanes@sci.ui.ac.id,

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd TRANSFORMASI LINEAR Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu : Abdul Aziz Saefudin, M.Pd Disusun oleh : Kelompok 7/ Kelas III A Endar Alviyunita 34400094 Ahmat Sehari ---------------

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

GRUP HOMOLOGI DARI RUANG TOPOLOGI. Denik Agustito 1, Sriwahyuni 2

GRUP HOMOLOGI DARI RUANG TOPOLOGI. Denik Agustito 1, Sriwahyuni 2 Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 GRUP HOMOLOGI DARI RUANG TOPOLOGI Denik Agustito 1, Sriwahyuni 2 Mahasiswa

Lebih terperinci

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni 14144100115 2. Emi Suryani 14144100126

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

HOMOMORFISMA. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

HOMOMORFISMA. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang HOMOMORFISMA Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com May 19, 2013 1 Daftar Isi 1 Tujuan 3 2 Homomorfisma 3 3 Sifat-sifat Homomorfisma

Lebih terperinci

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut RUANG VEKTOR REAL Aksioma ruang vektor, dinyatakan dlam definisi beikut, dimana aksiona merupakan aturan permainan dalam ruang vektor. Definisi : Jika V merupakan suatu himpunan tidak kosong dari objek

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 7 Transformasi Linear Sub Pokok Bahasan Definisi Transformasi Linear Matriks Transformasi Kernel dan Jangkauan Aplikasi Transformasi Linear Grafika Komputer Penyederhanaan

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

DEKOMPOSISI PRA A*-ALJABAR

DEKOMPOSISI PRA A*-ALJABAR Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 13 20 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND DEKOMPOSISI PRA A*-ALJABAR RAHMIATI ABAS Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Aljabar Linier Elementer. Kuliah ke-9

Aljabar Linier Elementer. Kuliah ke-9 Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor

Lebih terperinci

Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain :

Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain : Transformasi Linier Objektif:. definisi transformasi linier umum.. definisi transformasi linier dari R n ke R m. 3. invers transformasi linier. 4. matrix transformasi 5. kernel dan jangkauan 6. keserupaan.definisi

Lebih terperinci

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR 7//5 RUANG VEKTOR UMUM Yang dibahas.. Ruang vektor umum. Subruang. Hubungan dependensi linier 4. Basis dan dimensi 5. Ruang baris, ruang kolom, ruang nul, rank dan nulitas AKSIOMA RUANG VEKTOR V disebut

Lebih terperinci

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1 Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler Karyati Jurusan Pendidikan Matematika Universitas Negeri Yogyakarta E-mail: yatiuny@yahoocom Abstrak Pada kajian

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 58 62 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE SISKA NURMALA SARI Program Studi Matematika, Fakultas

Lebih terperinci

BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL

BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL Pada bagian ini akan dibahas konsep yang terkait dengan representasi yaitu homomorfisma-*, representasi nondegenerate, representasi faithful, representasi siklik,

Lebih terperinci

Bab I PENDAHULUAN 1.1 Latar Belakang Masalah

Bab I PENDAHULUAN 1.1 Latar Belakang Masalah Bab I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu struktur aljabar yang harus dikuasai oleh seorang matematikawan adalah grup yaitu suatu himpunan tak kosong G yang dilengkapi dengan satu operasi

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No. 2 Desember 2010: IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING

Jurnal Matematika Murni dan Terapan Vol. 4 No. 2 Desember 2010: IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING Saman Abdurrahman Program Studi Matematika Universitas Lambung Mangkurat Jl. Jend. A. Yani km 35, 8 Banjarbaru ABSTRAK Penelitian ini membahas ideal near-ring yang

Lebih terperinci

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK HASIL KALI TENSO: KONSTUKSI, EKSISTENSI AN KAITANNYA ENGAN BAISAN EKSAK Samsul Arifin samsul_arifin@mail.ugm.ac.id Mahasiswa S Matematika FMIPA UGM alam tulisan ini akan dibahas mengenai konstruksi hasil

Lebih terperinci

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA

Lebih terperinci

FUNGSI. range. Dasar Dasar Matematika I 1

FUNGSI. range. Dasar Dasar Matematika I 1 FUNGSI Pada bagian sebelumnya telah dibahas tentang relasi yaitu aturan yang menghubungkan elemen dua himpunan. Pada bagian ini akan dibahas satu jenis relasi yang lebih khusus yang dinamakan fungsi Suatu

Lebih terperinci

FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN

FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN Agus Suryanto, Nikken Prima Puspita, Robertus Heri S. U. Jurusan Matematika Fakultas Sains dan Matematika Universitas Diponegoro Jalan Prof. H. Soedarto, SH. Tembalang

Lebih terperinci

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung proses penelitian. 2.1 Teori Grup Definisi 2.1.1 Operasi Biner Suatu operasi biner pada suatu himpunan adalah

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

SEMIGRUP BEBAS DAN MONOID BEBAS PADA HIMPUNAN WORD. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia

SEMIGRUP BEBAS DAN MONOID BEBAS PADA HIMPUNAN WORD. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia SEMIGRUP BEBS DN MONOID BEBS PD HIMPUNN WORD Novia Yumitha Sarie, Sri Gemawati, Rolan Pane Mahasiswa Program S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan lam Univeritas

Lebih terperinci

PROYEKSI ORTOGONAL PADA RUANG HILBERT. Skripsi

PROYEKSI ORTOGONAL PADA RUANG HILBERT. Skripsi PROYEKSI ORTOGONAL PADA RUANG HILBERT Skripsi Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna Memenuhi Gelar Sarjana

Lebih terperinci

Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal

Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal Jurnal Matematika Integratif Volume 12 No. 2, Oktober 2016, pp. 117-124 p-issn:1412-6184, e-issn:2549-903 doi:10.24198/jmi.v12.n2.11928.117-124 Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal

Lebih terperinci

PENGANTAR PADA TEORI GRUP DAN RING

PENGANTAR PADA TEORI GRUP DAN RING Handout MK Aljabar Abstract PENGANTAR PADA TEORI GRUP DAN RING Disusun oleh : Drs. Antonius Cahya Prihandoko, M.App.Sc, Ph.D e-mail: antoniuscp.ilkom@unej.ac.id Staf Pengajar Pada Program Studi Sistem

Lebih terperinci

Bab 3 Gelanggang Polinom Miring

Bab 3 Gelanggang Polinom Miring Bab 3 Gelanggang Polinom Miring Dalam bab ini akan dibahas mengenai Gelanggang Poliom Miring mulai dengan bentuk yang sederhana (satu variabel) sampai ke bentuk yang lebih kompleks (banyak variabel) berikut

Lebih terperinci

KOMPLEMEN GRAF FUZZY

KOMPLEMEN GRAF FUZZY PROSIDING ISBN : 978 979 65 KOMPLEMEN GRAF FUZZY A Lucia Ratnasari, Y.D. Sumanto dan Tina Anggitta Novia Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universiats Diponegoro Abstrak

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

BAB 2 KONSEP DASAR 2.1 HIMPUNAN DAN FUNGSI

BAB 2 KONSEP DASAR 2.1 HIMPUNAN DAN FUNGSI BAB 2 KONSEP DASAR Pada bab 2 ini, penulis akan memperkenalkan himpunan, fungsi dan sejumlah konsep awal yang terkait dengan semigrup, dimana sebagian besar akan sangat diperlukan hingga bagian akhir dari

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

Candi Gebang Permai Blok R/6 Yogyakarta Telp. : ; Fax. :

Candi Gebang Permai Blok R/6 Yogyakarta Telp. : ; Fax. : ii Aljabar Linear Kata Pengantar iii iv Aljabar Linear ALJABAR LINEAR Oleh : Setiadji Edisi Pertama Cetakan Pertama, 2008 Hak Cipta 2008 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak

Lebih terperinci

BAB III PEMBAHASAN. Dalam tesis ini akan dibahas definisi alajabar klasik dan definisi aljabar

BAB III PEMBAHASAN. Dalam tesis ini akan dibahas definisi alajabar klasik dan definisi aljabar 4 BAB III PEMBAHASAN 3. Aljabar atas Lapangan Dalam tesis ini akan dibahas definisi alajabar klasik dan definisi aljabar melalui karakterisasi hasilkali tensor. Berikutnya akan ditunjukkan bahwa setiap

Lebih terperinci

Table of Contents. Table of Contents 1

Table of Contents. Table of Contents 1 Table of Contents Table of Contents 1 1 Pendahuluan 2 1.1 Koreksi dan deteksi pola kesalahan....................... 5 1.2 Laju Informasi.................................. 6 1.3 Efek dari penambahan paritas..........................

Lebih terperinci

DERET KOMPOSISI DARI SUATU MODUL

DERET KOMPOSISI DARI SUATU MODUL DERET KOMPOSISI DARI SUATU MODUL SKRIPSI Oleh : ANI NURHAYATI J2A 006 001 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2010

Lebih terperinci

Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf

Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf Nunung Nurhidayah, Rizky Rosjanuardi, Isnie Yusnitha Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia Correspondent

Lebih terperinci

Aljabar Atas Suatu Lapangan dan Dualitasnya

Aljabar Atas Suatu Lapangan dan Dualitasnya Vol. 12, No. 2, 105-110, Januari 2016 Aljabar Atas Suatu Lapangan dan Dualitasnya Edi Kurniadi dan Irawati Abstrak Suatu aljabar (A,.,+;k) atas suatu lapangan k adalah suatu gelanggang (A,.,+) yang dilengkapi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian,

Lebih terperinci

Kode, GSR, dan Operasi Pada

Kode, GSR, dan Operasi Pada BAB 2 Kode, GSR, dan Operasi Pada Graf 2.1 Ruang Vektor Atas F 2 Ruang vektor V atas lapangan hingga F 2 = {0, 1} adalah suatu himpunan V yang berisi vektor-vektor, termasuk vektor nol, bersama dengan

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity Chapter 5 GENERAL VECTOR SPACE 5.5. Row Space, Column Space, Nullspace 5.6. Rank & Nullity 5.5. Row Space, Column Space, Nullspace Vektor-Vektor Baris & Kolom Vektor baris A (dalam R n ) Vektor kolom A

Lebih terperinci

RING STABIL BERHINGGA

RING STABIL BERHINGGA RING STABIL BERHINGGA Samsul Arifin Program Studi Pendidikan Matematika, STKIP Surya, Tangerang Email: samsul.arifin@stkipsurya.ac.id ABSTRACT Dalam tulisan ini akan dibahas mengenai karakteristik ring

Lebih terperinci

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,

Lebih terperinci

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351)

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351) I. Aljabar Himpunan Aljabar Himpunan Dalam bab ini kita akan menyajikan latar belakang yang diperlukan untuk mempelajari analisis riil. Dua alat utama analisis riil, yakni aljabar himpunan dan fungsi,

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN KS96 KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mencari ruang baris, ruang kolom,

Lebih terperinci

Catatan Kuliah Aljabar Linier. Abstrak

Catatan Kuliah Aljabar Linier. Abstrak Catatan Kuliah Aljabar Linier Subiono subiono3@telkom.net 4 Agustus 9 Page of 3 Abstrak Dalam catatan kuliah ini diberikan beberapa materi dari mata kuliah Aljabar Linier untuk program Sarjana (S) jurusan

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian

Lebih terperinci

SUBRUANG MARKED. Suryoto Jurusan Matematika, FMIPA-UNDIP Semarang. Abstrak

SUBRUANG MARKED. Suryoto Jurusan Matematika, FMIPA-UNDIP Semarang. Abstrak SUBRUANG MARKED Suryoto Jurusan Matematika, FMIPA-UNDIP Semarang Abstrak Misalkan V suatu ruang vektor berdimensi hingga atas lapangan kompleks C, T operator linier nilpoten pada V dan W subruang T-invariant

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

BASIS DAN DIMENSI. dengan mengurangkan persamaan kedua dengan persamaan menghasilkan

BASIS DAN DIMENSI. dengan mengurangkan persamaan kedua dengan persamaan menghasilkan BASIS DAN DIMENSI Representasi Basis Jika S={v 1,v,...,v n ) adalah suatu basis dari ruang vektor V, maka tiap vektor v pada V dapat dinyatakan dalam bentuk v= c 1 v 1 + c v +... c n v n dengan cepat satu

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN II HOMOMORPHISMA MODUL Direncanakan

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

8.3 Inverse Linear Transformations

8.3 Inverse Linear Transformations 8.3 Inverse Linear Transformations Definition One to One Transformasi linear T:V W dikatakan one-to-one jika T memetakan vektor-vektor berbeda pada V ke vektorvektor berbeda pada W. Jika A adalah suatu

Lebih terperinci

HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA

HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 2008 1 Identitas Mata Kuliah 1. Nama Mata Kuliah : Analisis

Lebih terperinci