PDB ORDE SATU PADA KURVA TRAYEKTORI ORTOGONAL Oleh: 1 Ir. Sigit Kusmaryanto, M.Eng

Ukuran: px
Mulai penontonan dengan halaman:

Download "PDB ORDE SATU PADA KURVA TRAYEKTORI ORTOGONAL Oleh: 1 Ir. Sigit Kusmaryanto, M.Eng"

Transkripsi

1 PDB ORDE SATU PADA KURVA TRAYEKTORI ORTOGONAL Oleh: 1 Ir. Sigit Kusmaryanto, M.Eng 1 Teknik Elektro UB, Pengantar: Modul ini mempelajari penerapan Persamaan Diferensial orde satu untuk menentukan persamaan kurva yang tegak lurus terhadap kurva lain(disebut dengan Trajektori Ortogonal). Dijelaskan juga metode simulasi Matlab untuk menentukan persamaan kurva Trayektori Ortogonal. Digambarkan hasil kurva Trayektori Ortogonal dengan Matlab..1 Trayektori Ortogonal Tujuan Instruksional Khusus: Mahasiswa dapat memahami definisi trajektori orthogonal Mahasiswa dapat menentukan persamaan kurva trajektori orthogonal Mahasiswa dapat membuat program Matlab untuk menggambar kurva dan menentukan persamaan kurva trajektori ortogonal Definisi Jika diketahui keluarga kurva pada bidang XY yang dinyatakan oleh persamaan F(x, y, k)= 0 dengan k = konstanta variabel. Kurva yang memotong tegak lurus kurva-kurva tersebut dinamakan trayektori ortogonal dari kurva F. Contoh: Diberikan keluarga kurva y = mx dan y + x = k yang disajikan pada satu sistem koordinat kartesius seperti tampak pada Gambar berikut. Keluarga Kurva y = mx dan y + x = k Terlihat bahwa grafik fungsi garis berpotongan dengan kurva lingkaran. Kurva lingkaran dan grafik garis berpotongan saling tegak lurus atau ortogonal, karena itu kedua kurva dikatakan ortogonal di titik potongnya. Dengan kata lain garis lurus y = mx adalah trayektori ortogonal dari keluarga 1

2 lingkaran tersebut. Sebaliknya dapat dikatakan juga bahwa setiap lingkaran merupakan trayektori ortogonal dari garis y = mx. Prosedur menentukan trayektori ortogonal untuk keluarga kurva F(x, y, k) = 0 adalah: Langkah 1. Turunkan persamaan garis/kurva, sehingga didapatkan persamaan diferensial orde-1 untuk keluarga kurva, yaitu F (x, y, k) = 0 Langkah. Langkah 3. Substitusikan k = F(x, y) pada F (x, y, k) = 0 untuk memperoleh persamaan diferensial implisit bagi F(x, y) = 0 berbentuk = (,) Buat persamaan diferensial yang berkaitan untuk keluarga ortogonal menjadi bentuk berikut: = 1 (, ) Langkah 4. Selesaikan persamaan diferensial baru. Penyelesaiannya adalah keluarga trayektori ortogonal. Contoh Tentukan keluarga trayektori ortogonal dari keluarga kurva berikut ini: y = cx. Penyelesaian Langkah I Langkah Langkah 3 Langkah 4 Persamaan diferensial untuk keluarga kurva y = cx yaitu = Disubstitusikan = untuk memperoleh persamaan diferensial implisit: = = Persamaan diferensial untuk keluarga ortogonal yaitu = 1 (,) = 1 = Selesaikan persamaan diferensial baru = = = = =

3 Jadi, persamaan trayektori ortogonal untuk keluarga kurva y = cx adalah: + = 6 keluarga kurva *y +x -k dan k*x -y 4 y x Trayektori Ortogonal Kurva = dan + = Program MATLAB sebagai berikut: %Program MATLAB untuk kurva + = dan y = cx % clear all; clc; syms x y k f1='k*x^-y' for k=1:1:10 ezplot(eval(f1)),axis square,axis equal,hold on,grid on,end for k=-10:1:-1 ezplot(eval(f1)),axis square,axis equal,hold on,grid on,end f='*y^+x^-k^' for k=-8:1:8 ezplot(eval(f)),axis square,axis equal,hold on,grid on,end title('keluarga kurva *y^+x^-k^ dan k*x^-y') Contoh: Tentukan keluarga trayektori ortogonal dari keluarga kurva berikut ini. + = 3

4 Penyelesaian: Langkah I Langkah Langkah 3 Langkah 4 PD untuk keluarga kurva + = yaitu + = = mensubstitusikan = untuk memperoleh persamaan diferensial implisit: = Persamaan diferensial untuk keluarga ortogonal yaitu = 1 (,) = menyelesaikan PD + = +, jika y=u.x maka + + = sehingga:..(.) +. =. =. 1.. = = = untuk penyelesaian konstannya: = 0,.+.3 = 0. = 0 jadi y=u.x = 0 untuk penyelesaian tak konstan(penyelesaian umum PD). = = 1. dengan integrasi fungsi parsial didapatkan: = 1 89(.) 89(. +1) = 89()+ 4

5 . 1+. =, 0 dengan substitusi y=u.x atau u=y/x, didapatkan: + = Penyelesaian implisit PD di atas dan u=0 atau y=0 merupakan trayektori ortogonal kurva + =. 6 keluarga kurva y +x -kx dan x +y -ky 4 y x Kurva + = dan + = Program MATLAB sebagai berikut: %Program MATLAB kurva + = ; dan + = % clear all; clc; syms x y k f1='y^+x^-*k*x' for k=-3:0.1:3 ezplot(eval(f1)),axis square,axis equal,hold on,grid on,end for k=3:-0.1:-3 5

6 ezplot(eval(f1)),axis square,axis equal,hold on,grid on,end f='x^+y^-k*y' for k=-5:1:5 ezplot(eval(f)),axis square,axis equal,hold on,grid on,end title('keluarga kurva y^+x^-kx dan x^+y^-ky') Contoh Penyelesaian dengan Program MATLAB: Tentukan trayektori ortogonal dari keluarga kurva = >> syms x y k; >> y=k*x y =k*x >> dy=diff('k*x','x') dy =k >> k=solve('dy=k','k') k =dy >> edif=subs('y-k*x=0','k',k) edif =y - dy*x = 0 >> edif_ortog=subs(edif,'dy','-1/dy') edif_ortog =y + x/dy = 0 >> Dy=solve(edif_ortog,'Dy') Dy =-x/y >> y_ortog=dsolve('dy =-x/y','x') y_ortog = ^(1/)*(C3 - x^/)^(1/) -^(1/)*(C3 - x^/)^(1/) >> figure,for C3=1:6,ezplot(eval(y_ortog(1)),[-3,3]), axis square,axis equal,hold on,grid on,end >> for C3=1:6,ezplot(eval(y_ortog()),[-3,3]), axis square,axis equal,hold on,grid on,end >> for k=-1.5:0.5:1.5,ezplot(eval(y),[-3,3]),hold on, grid on,end 6

7 keluarga kurva y=kx dan trayektori ortogonalnya x Kurva = dan Trayektori Ortogonalnya Contoh Penyelesaian dengan Program MATLAB: Tentukan trayektori ortogonal dari keluarga kurva = < = >> syms x y k >> y=k/(1+x^) y =k/(x^ + 1) >> dy=diff('k/(1+x^)','x') dy =-(*k*x)/(x^ + 1)^ >> k=solve('dy=-(*k*x)/(x^ + 1)^','k') k =-(dy*(x^ + 1)^)/(*x) >> edif=subs('y-k/(1+x^)=0','k',k) edif =y + (dy*(x^ + 1))/(*x) = 0 >> edif_ortog=subs(edif,'dy','-1/dy') edif_ortog =y - (x^ + 1)/(*Dy*x) = 0 >> Dy=solve(edif_ortog,'Dy') Dy =(x^ + 1)/(*x*y) >> y_ortog=dsolve('dy =(x^ + 1)/(*x*y)','x') y_ortog = ^(1/)*(C14 + log(x)/ + x^/4)^(1/) -^(1/)*(C14 + log(x)/ + x^/4)^(1/) 7

8 >> edif_y_ortog=subs(y_ortog,'x',abs(x)) edif_y_ortog = ^(1/)*(abs(x)^/4 + C14 + log(abs(x))/)^(1/) -^(1/)*(abs(x)^/4 + C14 + log(abs(x))/)^(1/) >>figure,for k=-1.5:0.5:1.5,ezplot(eval(y),[-3,3]),hold on, grid on,end >> for C1=1:6,ezplot(eval(edif_y_ortog(1)),[-3,3]),axis square,axis equal,hold on,grid on,end >> for C1=1:6,ezplot(eval(edif_y_ortog()),[-3,3]),axis square,axis equal,hold on,grid on,end, title('keluarga kurva y=k/(1+x^) dan trayektori ortogonalnya') keluarga kurva y=k/(1+x ) dan trayektori ortogonalnya x Kurva = < = dan Trayektori Ortogonalnya Latihan Soal: Tentukan Trayektori Ortogonal pada persamaan kurva berikut, kemudian gambarkan grafik kurvakurva tersebut: 1. +( >) =. = 3 3. = + 4. = +> 8

9 5. = = +> 6. = ln()+>.1.1 Rangkuman Kurva yang memotong kurva lain secara tegak lurus dinamakan trayektori ortogonal Prosedur menentukan trayektori ortogonal untuk keluarga kurva F(x, y, k) = 0 adalah: Langkah 1. Turunkan persamaan garis/kurva, sehingga didapatkan persamaan diferensial orde-1 untuk keluarga kurva, yaitu F (x, y, k) = 0 Langkah. Substitusikan k = F(x, y) pada F (x, y, k) = 0 untuk memperoleh persamaan diferensial implisit bagi F(x, y) = 0 berbentuk Langkah 3. = (,) Buat persamaan diferensial yang berkaitan untuk keluarga ortogonal menjadi bentuk berikut: = 1 (, ) Langkah 4. Selesaikan persamaan diferensial baru. Penyelesaiannya adalah keluarga trayektori ortogonal..1. Test Formatif Untuk 1-8, tentukan Trayektori Ortogonal pada persamaan kurva berikut, kemudian gambarkan grafik kurva-kurva tersebut: 1. + = >. +( >) = 3. = >? 4. = > 5. = 6. = 7. = > 8. +( > ) = 1+. Daftar Pustaka [1] Sigit Kusmaryanto, Buku Ajar Matematika Teknik I,01 [] Kreyszig, Erwin, Matematika Teknik lanjutan. Jakarta: Gramedia, [3] Stroud, K.A., Matematika untuk Teknik. Jakarta: Penerbit Erlangga, [4] Farlow, Stanley J., An Introduction to Diffrenential Equations and Their Applications, McGraw-Hill, Singapore, 1994 [5] Howard, P., Solving ODE in MATLAB, Fall, 007 9

10 [6] Thompson, S., Gladwell, I., Shampine, L.F., Solving ODEs with MATLAB, Cambridge University Press, 003 [7] Rosenberg, J.M., Lipsman, R.L., Hunti, B.R., A Guide to MATLAB for Beginners and Experienced Users, Cambridge University Press,

11 11

BAB III Penerapan PDB orde satu

BAB III Penerapan PDB orde satu BAB III Penerapan PDB orde satu Tujuan Instruksional: Mampu memahami dan menyelesaikan trayektori orthogonal Mampu memahami pembuatan model Persamaan Diferensial pada rangkaian RL dan RC seri Mampu menyelesaiakan

Lebih terperinci

PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE 2 Oleh: Ir. Sigit Kusmaryanto, M.Eng

PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE 2 Oleh: Ir. Sigit Kusmaryanto, M.Eng PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE 2 Oleh: Ir. Sigit Kusmaryanto, M.Eng http://sigitkus@ub.ac.id Pengantar: Persamaan Diferensial Linier Homogen Orde 2 menjadi dasar penyelesaian persamaan diferensial

Lebih terperinci

PENGANTAR Ketua Jurusan Teknik Elektro Fakultas Teknik UB

PENGANTAR Ketua Jurusan Teknik Elektro Fakultas Teknik UB PENGANTAR Ketua Jurusan Teknik Elektro Fakultas Teknik UB Proses pembelajaran melalui transfer ilmu pengetahuan dan teknologi merupakan faktor penting dalam mewujudkan keberhasilan mahasiswa untuk memahami

Lebih terperinci

PENYELESAIAN MODEL RANGKAIAN LISTRIK RL DAN RC SERI Oleh: 1 Ir. SIGIT KUSMARYANTO, M.Eng.

PENYELESAIAN MODEL RANGKAIAN LISTRIK RL DAN RC SERI Oleh: 1 Ir. SIGIT KUSMARYANTO, M.Eng. PENYELESAIAN MODEL RANGKAIAN LISTRIK RL DAN RC SERI Oleh: 1 Ir. SIGIT KUSMARYANTO, M.Eng. 1 Teknik Elektro, http://sigitkus@ub.ac.id Pengantar: Modul ini menjelaskan pemodelan rangkaian listrik RL dan

Lebih terperinci

Penyelesaian Model Sistem Gerak Bebas Teredam

Penyelesaian Model Sistem Gerak Bebas Teredam Penyelesaian Model Sistem Gerak Bebas Teredam Oleh: 1 Ir. Sigit Kusmaryanto, M.Eng. 1 Teknik Elektro, sigitkus@ub.ac.id Sistem Gerak Bebas Teredam adalah sistem gerak dengan parameter Gaya Luar F(t)=0

Lebih terperinci

FAKTOR INTEGRASI PERSAMAAN DIFERENSIAL LINIER ORDE-1 UNTUK MENYELESAIKAN RANGKAIAN RC SIGIT KUSMARYANTO

FAKTOR INTEGRASI PERSAMAAN DIFERENSIAL LINIER ORDE-1 UNTUK MENYELESAIKAN RANGKAIAN RC SIGIT KUSMARYANTO FAKTOR INTEGRASI PERSAMAAN DIFERENSIAL LINIER ORDE- UNTUK MENYELESAIKAN RANGKAIAN RC SIGIT KUSMARYANTO http://sigitkus.lecture.ub.ac.id Persamaan Diferensial Linier Orde- yang berbentuk + PPPP = QQ, P

Lebih terperinci

PENYELESAIAN MODEL RANGKAIAN LISTRIK ORDE-2 Oleh: Ir. Sigit Kusmaryanto, M.Eng

PENYELESAIAN MODEL RANGKAIAN LISTRIK ORDE-2 Oleh: Ir. Sigit Kusmaryanto, M.Eng PENYELESAIAN MODEL RANGKAIAN LISTRIK ORDE-2 Oleh: Ir. Sigit Kusmaryanto, M.Eng Dua fenomena fisik berbeda (yaitu: sistem gerak benda pada pegas dan rangkaian listrik) menghasilkan model persamaan matematika

Lebih terperinci

R +1 R= UR V+1 R= ( ) R +1 R= ( )

R +1 R= UR V+1 R= ( ) R +1 R= ( ) Penyelesaian Model Rangkaian Listrik orde-2 Dua fenomena fisik berbeda (yaitu: sistem gerak benda pada pegas dan rangkaian listrik) menghasilkan model persamaan matematika dan solusi yang sama. Perilaku

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU PDB orde satu dapat dinyatakan dalam: atau dalam bentuk: Penyelesaian PDB orde satu dengan integrasi secara langsung Jika PDB dapat disusun dalam bentuk,

Lebih terperinci

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO REFERENSI E-BOOK REFERENSI ONLINE SOS Mathematics http://www.sosmath.com/diffeq/diffeq.html Wolfram Research Math World http://mathworld.wolfram.com/ordinarydifferentialequation.h

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU PDB orde satu dapat dinyatakan dalam: atau dalam bentuk: = f(x, y) M(x, y) + N(x, y) = 0 Penyelesaian PDB orde satu dengan integrasi secara langsung Jika

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA (PDB) ORDE SATU

BAB II PERSAMAAN DIFERENSIAL BIASA (PDB) ORDE SATU BAB II PERSAMAAN DIFERENSIAL BIASA (PDB) ORDE SATU Tujuan Instruksional: Mampu memahami dan menyelesaikan PD orde-1 dg integrasi langsung, pemisahan variael. Mampu memahami dan menyelesaikan Persamaan

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II c. Metoda Persamaan Differensial Pasti (Exact) Pada kalkulus bahwa jika suatu fungsi u(x,y) mempunyai turunan parsial yang sifatnya kontinyu, turunan pasti

Lebih terperinci

PERSAMAAN DIFERENSIAL ORDE SATU

PERSAMAAN DIFERENSIAL ORDE SATU Kode Modul MTL. OTO 207-02 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif PERSAMAAN DIFERENSIAL ORDE SATU i L C d i V i = L ----- d t Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

BAB XI PERSAMAAN GARIS LURUS

BAB XI PERSAMAAN GARIS LURUS BAB XI PERSAMAAN GARIS LURUS A. Pengertian Pesamaan Garis Lurus Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini

Lebih terperinci

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU 1 Persamaan diferensial orde satu Persamaan diferensial menyatakan hubungan dinamik antara variabel bebas dan variabel tak bebas, maksudnya

Lebih terperinci

c. 2 d Jika suatu garis mempunyai persamaan 2x + y + 4 = 0, maka gradiennya adalah a. 2 b. ½ c. 2 d. ½

c. 2 d Jika suatu garis mempunyai persamaan 2x + y + 4 = 0, maka gradiennya adalah a. 2 b. ½ c. 2 d. ½ 1 SOAL LATIHAN UH MATEMATIKA PERSAMAAN GARIS LURUS KELAS 8 SMP I. Pilihan Ganda GRADIEN (m) 1. Persamaan garis y = x, maka gradiennya adalah a. b. 4 c. d.. Persamaan garis y = x, maka gradiennya adalah

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

MODUL 8 FUNGSI LINGKARAN & ELLIPS

MODUL 8 FUNGSI LINGKARAN & ELLIPS MODUL 8 FUNGSI LINGKARAN & ELLIPS 8.1. LINGKARAN A. PERSAMAAN LINGKARAN DENGAN PUSAT PADA TITIK ASAL DAN JARI-JARI R Persamaan lingkaran dengan pusat (0,0) dan jari jari R adalah : x 2 + y 2 = R 2 B. PERSAMAAN

Lebih terperinci

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y BAB 3 FUNGSI LINIER DAN PERSAMAAN GARIS LURUS 3.1 Pengantar Fungsi linier adalah bentuk fungsi yang paling sederhana. Banyak hubungan antara variable ekonomi, dalam jangka pendek dianggap linier. Pengetahuan

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Modul 1 Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Drs. Sardjono, S.U. M PENDAHULUAN odul 1 ini berisi uraian tentang persamaan diferensial, yang mencakup pengertian-pengertian dalam

Lebih terperinci

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a LEMBAR AKTIVITAS SISWA DIFFERENSIAL (TURUNAN) Nama Siswa : y f(a h) f(a) x (a h) a Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.21 Memahami konsep turunan dengan menggunakan konteks matematik atau konteks

Lebih terperinci

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1. Pertemuan Kesatu Matematika III Oleh Mohammad Edy Nurtamam, S.Pd., M.Si Page 1 Materi 1. Persamaan Diferensial Orde I Pengenalan bentuk dasar Pers. Diff. Orde I. Definisi Derajat,Orde. Konsep Pemisahan

Lebih terperinci

FUNGSI. Riri Irawati, M.Kom 3 sks

FUNGSI. Riri Irawati, M.Kom 3 sks FUNGSI Riri Irawati, M.Kom 3 sks Agenda 1. Sistem Koordinat Kartesius. Garis Lurus 3. Grafik persamaan Tujuan Agar mahasiswa dapat : Menggunakan sistem koordinat untuk menentukan titik-titik dan kurva-kurva.

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial Orde Satu Jurusan Matematika FMIPA-Unud Senin, 18 Desember 2017 Orde Satu Daftar Isi 1 Pendahuluan 2 Orde Satu Apakah Itu? Solusi Pemisahan Variabel Masalah Gerak 3 4 Orde Satu Pendahuluan Dalam subbab

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

Notasi turunan. Penggunaan turunan. 6. Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah.

Notasi turunan. Penggunaan turunan. 6. Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah. Turunan fungsi adalah fungsi lain dari suatu fungsi sebelumnya misalkan fungsi f menjadi f' TURUNAN Notasi turunan y' atau f'(x) atau dy/dx fungsi naik Penggunaan turunan fungsi turun persamaan garis singgung

Lebih terperinci

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran.

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran. /8/205 Peta Konsep Jurnal Materi MIPA Peta Konsep Lingkaran Daftar Hadir MateriA LINGKARAN 2 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Kedudukan Titik dan Garis Terhadap Lingkaran

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS

CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS 1. Diketahui titik-titik pada bidang koordinat Cartesius sebagai berikut. a. (10, 5) c. ( 7, 3) e. ( 4, 9) b. (2, 8) d. (6, 1) Tentukan absis dan ordinat

Lebih terperinci

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK DOSEN Fitri Yulianti, SP, MSi. Fungsi Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan : 1. Variabel bebas yaitu variabel yang besarannya

Lebih terperinci

UJIAN AKHIR SEMESTER METODE NUMERIS I

UJIAN AKHIR SEMESTER METODE NUMERIS I PETUNJUK UJIAN AKHIR SEMESTER METODE NUMERIS I DR. IR. ISTIARTO, M.ENG. KAMIS, 8 JUNI 017 OPEN BOOK 150 MENIT 1. Saudara tidak boleh menggunakan komputer untuk mengerjakan soal ujian ini.. Tuliskan urutan/cara/formula

Lebih terperinci

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a Nama Siswa Kelas : : aasdaa. PENGERTIAN DIFERENSIAL (TURUNAN) Turunan fungsi atau diferensial didefinisikan sebagai laju perubahan fungsi sesaat dan dinotasikan f (x). LEMBAR AKTIVITAS SISWA DIFFERENSIAL

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T. Kode Modul MAT. TKF 20-03 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI Y Y = f (X) 0 a b X A b A = f (X) dx a Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan Program

Lebih terperinci

BAB V APLIKASI PD TINGKAT DUA

BAB V APLIKASI PD TINGKAT DUA BAB V APLIKASI PD TINGKAT DUA Tujuan Instruksional: Mampu membuat model PD pada Sistem Gerak Mampu memahami klasifikasi Sistem Gerak Mampu membuat model dan penyelesaian PD pada klasifikasi Sistem Gerak

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Dalam ilmu ekonomi, kita selalu berhadapan dengan variabel-variabel ekonomi seperti harga, pendapatan nasional, tingkat bunga, dan lainlain. Hubungan kait-mengkait

Lebih terperinci

Hendra Gunawan. 30 Agustus 2013

Hendra Gunawan. 30 Agustus 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 30 Agustus 2013 Latihan (Kuliah yang Lalu) Selesaikan pertaksamaan berikut: 1. x + 1 < 2/x. (sudah dijawab) 2. x 3 < x + 1. 8/30/2013 (c) Hendra

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

Luas daerah yang dibatasi oleh beberapa kurva dapat ditentukan dengan menghitung integral tertentu.

Luas daerah yang dibatasi oleh beberapa kurva dapat ditentukan dengan menghitung integral tertentu. IKA ARFIANI,S.T. Luas daerah yang dibatasi oleh beberapa kurva dapat ditentukan dengan menghitung integral tertentu. Andaikan kurva y = f(x) dan kurva y = g(x) kontinu pada interval a x b, dan kurva y

Lebih terperinci

BAB III PERSAMAAN DIFERENSIAL LINIER

BAB III PERSAMAAN DIFERENSIAL LINIER BAB III PERSAMAAN DIFERENSIAL LINIER Bentuk umum PD orde-n adalah PD yang tidak dapat dinyatakan dalam bentuk di atas dikatakan tidak linier. Contoh: Jika F(x) pada persamaan (3.1) sama dengan nol maka

Lebih terperinci

BAB 1 PERSAMAAN DIFERENSIAL ORDER SATU

BAB 1 PERSAMAAN DIFERENSIAL ORDER SATU BAB PERSAAA DIFERESIAL ORDER SATU PEDAHULUA Persamaan Diferensial adalah salah satu cabang ilmu matematika ang banak digunakan dalam memahami permasalahan-permasalahan di bidang fisika dan teknik Persamaan

Lebih terperinci

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif iii Daftar Isi TINJAUAN MATA KULIAH... xiii MODUL 1: PERSAMAAN DIFERENSIAL ORDE SATU 1.1 Pengertian PD Orde Satu dan Solusinya... 1.2 Latihan... 1.7 Rangkuman... 1.9 Tes Formatif 1..... 1.10 PD Variabel

Lebih terperinci

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN Modul 1 Fungsi Peubah Banak Prof. Dr. Bambang Soedijono PENDAHULUAN D alam modul ini dibahas masalah Fungsi Peubah Banak. Dengan sendirina para pengguna modul ini dituntut telah menguasai pengertian mengenai

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4 BAHAN BELAJAR MANDIRI 4 PERSAMAAN GARIS PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep garis, dan persamaan garis lurus yang dinyatakan ke dalam bentuk implisit maupun bentuk

Lebih terperinci

Persamaan Diferensial Orde Satu

Persamaan Diferensial Orde Satu Modul Persamaan Diferensial Orde Satu P PENDAHULUAN Prof. SM. Nababan, Ph. ersamaan Diferensial (PD) adalah salah satu cabang matematika ang banak digunakan untuk menjelaskan masalah-masalah fisis. Masalahmasalah

Lebih terperinci

BEBERAPA FUNGSI KHUSUS

BEBERAPA FUNGSI KHUSUS BEBERAPA FUNGSI KHUSUS ). Fungsi Konstan ). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN : Bilangan Riil : Mahasiswa memahami tentang Bilangan Riil :1 (Satu)...kali 1 Setelah mempelajari materi ini, diharapkan mahasiswa dapat : 1. Menjelaskan Sistem bilangan riil 2. Mengerjakan persoalan taksamaan

Lebih terperinci

SATUAN ACARA PERKULIAHAN. Sub pokok bahasan dan Rincian materi 1. Sistem Bilangan Riil 2. Ketaksamaan bilangan riil 3. Harga mutlak 4.

SATUAN ACARA PERKULIAHAN. Sub pokok bahasan dan Rincian materi 1. Sistem Bilangan Riil 2. Ketaksamaan bilangan riil 3. Harga mutlak 4. : Bilangan Riil : Mahasiswa memahami tentang Bilangan Riil :1 (Satu)...kali 1 1. Menjelaskan Sistem bilangan riil 2. Mengerjakan persoalan taksamaan bilangan riil. 3. Menentukan harga mutlak suatu bilangan

Lebih terperinci

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54101 / Kalkulus I 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

Fungsi Non-Linear. Modul 5 PENDAHULUAN

Fungsi Non-Linear. Modul 5 PENDAHULUAN Modul 5 Fungsi Non-Linear F PENDAHULUAN Drs. Wahyu Widayat, M.Ec ungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI GARIS SINGGUNG LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi garis singgung lingkaran..

Lebih terperinci

A. PERSAMAAN GARIS LURUS

A. PERSAMAAN GARIS LURUS A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam

Lebih terperinci

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) KALKULUS II. Disusun Oleh : Moh. Dahlan, ST., MT.

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) KALKULUS II. Disusun Oleh : Moh. Dahlan, ST., MT. RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) KALKULUS II Disusun Oleh : Moh. Dahlan, ST., MT. PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS MURIA KUDUS Oktober 2012 Program Studi Teknik

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS MATERI SOAL LATIHAN DAFTAR PUSTAKA PROFIL ANGGOTA PENUTUP MATERI PENGERTIAN PERSAMAAN GARIS LURUS GRADIEN GARIS LURUS GRAFIK PERSAMAAN GARIS LURUS MENENTUKAN PERSAMAAN GARIS PENGERTIAN

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Matematika Wajib

K13 Revisi Antiremed Kelas 10 Matematika Wajib K Revisi Antiremed Kelas 0 Matematika Wajib Fungsi Kuadrat - Latihan Soal Doc. Name: RKAR0MATWJB050 Version : 06-0 halaman 0. Ordinat titik balik grafik fungsi arabola y x x (5 9) adalah 5, > 0. Absis

Lebih terperinci

Integral Tak Tentu. Modul 1 PENDAHULUAN

Integral Tak Tentu. Modul 1 PENDAHULUAN Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti

Lebih terperinci

PERSAMAAN DIFFERENSIAL LINIER

PERSAMAAN DIFFERENSIAL LINIER PERSAMAAN DIFFERENSIAL LINIER Persamaan Differensial Linier Pengertian : Suatu persamaan differensial orde satu dikatakan linier jika persamaan tersebut dapat dituliskan sbb: y + p x y = r(x) (1) linier

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

Kalkulus II. Diferensial dalam ruang berdimensi n

Kalkulus II. Diferensial dalam ruang berdimensi n Kalkulus II Diferensial dalam ruang berdimensi n Minggu ke-9 DIFERENSIAL DALAM RUANG BERDIMENSI-n 1. Fungsi Dua Peubah atau Lebih 2. Diferensial Parsial 3. Limit dan Kekontinuan 1. Fungsi Dua Peubah atau

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

Pengantar Persamaan Differensial (1)

Pengantar Persamaan Differensial (1) Program Studi Modul Mata Kuliah Kode MK Disusun Oleh Sistem Komputer 01 Persamaan Differensial MKK103 Albaar Rubhasy, S.Si, MTI Pengantar Persamaan Differensial (1) Materi Pembahasan: Deskripsi Perkuliahan

Lebih terperinci

Teorema Divergensi, Teorema Stokes, dan Teorema Green

Teorema Divergensi, Teorema Stokes, dan Teorema Green TEOREMA DIVERGENSI, STOKES, DAN GREEN Materi pokok pertemuan ke 13: 1. Teorema divergensi Gauss URAIAN MATERI Untuk memudahkan perhitungan seringkali dibutuhkan penyederhanaan bentuk integral yang berdasarkan

Lebih terperinci

FUNGSI EKSPONENSIAL & FUNGSI LOGARITMA

FUNGSI EKSPONENSIAL & FUNGSI LOGARITMA FUNGSI EKSPONENSIAL & FUNGSI LOGARITMA NAMA: KELAS: 1 P a g e FUNGSI EKSPONENSIAL DAN LOGARITMA I. FUNGSI EKSPONEN Fungsi eksponen f dengan bilangan pokok a (a konstan) adalah fungsi yang didefinsikan

Lebih terperinci

4. Dibawah ini persamaan diferensial ordo dua berderajat satu adalah

4. Dibawah ini persamaan diferensial ordo dua berderajat satu adalah Pilihlah jawaban yang benar dengan cara mencakra huruf didepan jawaban yang saudara anggap benar pada lembar jawaban 1. Dibawah ini bentuk persamaan diferensial biasa linier homogen adalah a. y + xy =

Lebih terperinci

Pertemuan 2 KOORDINAT CARTESIUS

Pertemuan 2 KOORDINAT CARTESIUS Kalkulus Pertemuan 2 KOORDINAT CARTESIUS Koordinat Cartesius 1 2 3 Jarak y Hitunglah jarak dari A(3,-5) ke B(4,2) A(3,-5) maka x 1 = 3 dan y 1 = -5 B(4,9) maka x 2 = 4 dan y 2 = 2 sehingga d(a, B) = (x

Lebih terperinci

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER )

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) KELOMPOK 2 1. UMAR ATTAMIMI (01212043) 2. SITI WASI ATUL MUFIDA (01212096) 3. DEVI PRATNYA. P. (01212078) 4. POPPY MERLIANA

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci

PETUNJUK TEKNIS. Program Studi : Pendidikan Teknologi Agroindustri

PETUNJUK TEKNIS. Program Studi : Pendidikan Teknologi Agroindustri PETUNJUK TEKNIS 1. IDENTITAS MATA KULIAH Nama mata kuliah : Matematika Terapan Bobot SKS : 2 Nomor Mata Kuliah : TG300 Semester : 1 Prasyarat : Matematika Dasar Program Studi : Pendidikan Teknologi Agroindustri

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2009

Pembahasan Matematika IPA SIMAK UI 2009 Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa

Lebih terperinci

Bank Soal dan Pembahasan Persamaan Garis Lurus

Bank Soal dan Pembahasan Persamaan Garis Lurus Bank Soal dan Pembahasan Persamaan Garis Lurus 1. Garis m mempunyai persamaan y = -3x + 2. Garis tersebut memotong sumbu Y dititik... a. (0, -3) b. (0, 2) c. (0, 3) d. (0, -2) e. (0, 4) Pembahasan : Persamaan

Lebih terperinci

Matematika Teknik Dasar-2 7 Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 7 Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar- 7 Silinder Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Definisi dan Persamaan Silinder adalah sebuah permukaan yang didapatkan dari sebuah garis yang

Lebih terperinci

BAB I PENGERTIAN DASAR

BAB I PENGERTIAN DASAR BAB I PENGERTIAN DASAR Kompetensi Dasar: Menjelaskan pengertian dan klasifikasi dari persamaan diferensial serta beberapa hal yang terkait. Indikator: a. Menjelaskankan pengertian persamaan diferensial.

Lebih terperinci

RPS MATA KULIAH KALKULUS 1B

RPS MATA KULIAH KALKULUS 1B RPS MATA KULIAH KALKULUS 1B CAPAIAN PEMBELAJARAN MATA KULIAH: 1. Mempunyai pengetahuan dibidang matematika, statistika, komputasi (algoritma), dan pengetahuan dasar dalam menyelesaikan permasalahan dibidang

Lebih terperinci

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK BAB III KONDUKSI ALIRAN SEDI - DIMENSI BANYAK Untuk aliran stedi tanpa pembangkitan panas, persamaan Laplacenya adalah: + y 0 (6-) Aliran kalor pada arah dan y bisa dihitung dengan persamaan Fourier: q

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah PERSAMAAN GARIS. SIMAK UI Matematika Dasar 9, 9 Diketahui adalah garis l yang dinyatakan oleh det( A) dimana A x y, persamaan garis yang sejajar l dan melalui titik (,4) adalah... A. x y 7 C. x y E. x

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

Modul Statistika Kelas XII SMKN 1 Stabat. Lingkaran. Elips

Modul Statistika Kelas XII SMKN 1 Stabat. Lingkaran. Elips IR Lingkaran Elips 1 Smk n 1 stabat IRISAN KERUCUT Disusun Oleh : Dian Septiana 07144110049 Dalam PPL-T Unimed SMK N 1 Stabat SEKOLAH MENENGAH KEJURUAN NEGERI 1 STABAT LANGKAT 010 KATA PENGANTAR Puji syukur

Lebih terperinci

Pertemuan Minggu ke Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai

Pertemuan Minggu ke Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai Pertemuan Minggu ke-10 1. Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai 1. Keterdiferensialan Pada fungsi satu peubah, keterdiferensialan f di x berarti keujudan derivatif f (x).

Lebih terperinci

METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL

METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL Tugas Akhir Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh : Agung Christian

Lebih terperinci