Universitas Sumatera Utara

Ukuran: px
Mulai penontonan dengan halaman:

Download "Universitas Sumatera Utara"

Transkripsi

1 BAB 1 PENDAHULUAN 1.1. Latar Belakang Sebuah graph G adalah sebuah objek yang terdiri atas sekumpulan titik yang disebut verteks dan garis yang menghubungkan dua buah verteks yang disebut sisi atau edge. Pada graph G terdapat pengulangan setiap pasangan verteks (u, v) dan (v, u) yang dapat ditulis dengan (u, v). Sebuah graph dikatakan terhubung apabila terdapat bilangan bulat positif k, sehingga untuk pasangan verteks u dan v terdapat jalan dengan panjang k dari verteks u ke v dan dari v ke u. Sebuah graph G adalah primitif jika dan hanya jika G terhubung dan G memuat sedikitnya satu cycle ganjil, dimana cycle ganjil adalah cycle dengan panjang ganjil (Bo, 2003). Eksponen graph G adalah bilangan bulat positif terkecil k sehingga untuk setiap pasangan verteks u dan v di G terdapat jalan dengan panjang k yang menghubungkan u dan v ditulis exp(g). Andaikan G adalah sebuah graph atas n verteks {v 1, v 2,..., v n }. Sebuah matriks ketetanggaan dari graph G adalah sebuah matriks bujursangkar A yang berordo n. Matriks A adalah primitif jika setiap entri A m > 0, dan bilangan bulat positif terkecil m disebut eksponen dari graph G ditulis exp(g). Konsep dari graph primitif digunakan dalam berbagai hal, diantaranya pada jaringan Google dan Automata. Penerapan graph pada Google yaitu keterhubungan antara suatu web dengan kata kunci yang dimasukkan. Dengan kata kunci yang dimasukkan, maka Google akan mencari kata-kata pada web-web yang ada yang berkaitan dengan kata kunci tersebut. Kata-kata kunci dan web yang berkaitan membentuk sebuah graph. Page dan Brin (Langville dan Meyer, 2006) mengungkapkan bahwa graph Google harus primitif karena bila tidak primitif maka pencarian tidak akan berhasil. Selanjutnya Langville dan Meyer (2006) menambahkan graph Google harus berupa matriks bujursangkar S dengan S m > 0, dan m > 0. Dari pendapat Langville dan Meyer, graph Google adalah primitif karena semua entri dari S m adalah positif. Penggunaan graph primitif berikutnya yaitu pada Automata. Penggunaan graph primitif pada automata yaitu tentang sinkronisasi automata. Culik II, et. al. (2002) menyebutkan bahwa setiap Automata yang primitif adalah sinkron dan jika imprimitif maka automata tidak sinkron. 1

2 2 Digraph atau graph berarah merupakan bagian dari teori graph. Seperti halnya graph, sebuah digraph D adalah sebuah objek yang terdiri atas sekumpulan titik yang disebut sebagai verteks dan garis berarah yang menghubungkan dua buah verteks di D yang disebut sebagai busur atau arc. Suatu digraph D dikatakan terhubung kuat apabila untuk setiap pasangan verteks u dan verteks v atau (u, v) di D terdapat jalan dari verteks u ke verteks v dan dari verteks v ke verteks u. Sebuah digraph D dikatakan primitif jika dan hanya jika D terhubung kuat dan pembagi persekutuan terbesar dari panjang cycle-cycle di D adalah 1 (Brualdi dan Ryser, 1991). Brualdi dan Ryser (1991) menambahkan suatu digraph D adalah primitif jika dan hanya jika terdapat bilangan bulat positif k sedemikian sehingga untuk setiap pasangan verteks (u, v) di D terdapat jalan dengan panjang k. Bilangan bulat positif k bervariasi dan nilai terkecil dari k disebut sebagai ekponen dari digraph D dan ditulis dengan exp(d). Bo (2003) mendefinisikan exp(d; u, v) sebagai bilangan bulat positif terkecil k sedemikian sehingga terdapat jalan dengan panjang m dari verteks u ke verteks v untuk setiap m k dan exp(d) = max u,v V (D) exp(d; u, v). Penelitian tentang digraph primitif telah banyak dilakukan (Brualdi dan Ryser, 1991). Secara khusus Wielandt (Schneider, 2003) memberi penjelasan tentang digraph primitif D dengan n verteks. Wielandt memperlihatkan bahwa jika A adalah primitif maka A (n 1)2 +1 > 0 dan exp(d) = (n 1) 2 + 1, dimana A merupakan sebuah matriks ketetanggaan dari digraph D dengan ordo n. Kirkland (1997) tentang kasus hamiltonian pada digraph primitif D atas n verteks yang terdiri dari 2 cycle dengan n 3 dan memperlihatkan bahwa exp(d) = [(n 1) 2 + 1]/ Penelitian tentang digraph primitif terus berkembang hingga sampai kepada kelas digraph dwiwarna. Sebuah digraph dwiwarna atau disingkat D (2) adalah sebuah digraph yang busurnya memuat dua buah warna. Hal ini sejalan dengan pendapat Fornasini dan Valcher (1997) yaitu sebuah digraph dwiwarna adalah sebuah digraph yang setiap busurnya diberi warna merah atau biru. Sebuah digraph dwiwarna D (2) dikatakan primitif bila terdapat bilangan bulat positif h dan k sedemikian sehingga untuk setiap pasangan verteks u dan v di D (2) terdapat jalan dari u ke v dengan panjang h + k yang terdiri atas h busur berwarna merah dan k busur berwarna biru. Bilangan bulat positif terkecil h + k disebut sebagai eksponen dari digraph dwiwarna D (2) yang dinotasikan dengan exp(d (2) ).

3 3 Penelitian tentang eksponen dari digraph dwiwarna dimulai oleh Shader dan Suwilo (2003). Mereka memperlihatkan bahwa bila D adalah digraph dwiwarna primitif atas n verteks, maka 2-eksponen terbesar dari D terletak pada interval [ 1 2 (n3 5n 2 ), 3 2 n3 + n 2 n]. Lee dan Yang (2005) memperlihatkan untuk digraph dwiwarna primitif dengan dua cycle dengan panjang (n 1) dan (n 2), eksponen terbesarnya terletak diantara [2n 2 8n + 7, 2n 2 5n + 3]. Gao dan Shao (2005) memperlihatkan bila digraph dwiwarna D terdiri dari dua cycle dengan selisih satu, exp(d) = 2n 2 3n + 1. Suwilo (2009) memerlihatkan digraph dwiwarna primitif yang asimetrik yang terdiri atas n verteks dan terdapat cycle s dengan s n, eksponennya terletak antara [(n 2 1)/2, 3n 2 + 2n 2] ketika n ganjil dan [n 2 /2, 3n 2 +2n 2] ketika n genap. Suwilo (2012) memperlihatkan untuk digraph dwiwarna primitif yang terdiri dari dua cycle yaitu C 1 dan C 2, ekponen dari D (2) adalah exp(d (2) ) = l(c 1 )l r + l(c 2 )l b. Lebih lanjut Gao dan Shao (2009) mengembangkan konsep eksponen lokal dari digraph ke eksponen lokal dari digraph dwiwarna. Eksponen lokal keluar dari sebuah verteks v i pada sebuah digraph dwiwarna D (2), expout(d (2), v i ), adalah bilangan bulat positif terkecil s+t sehingga untuk setiap verteks v j, j = 1, 2,..., n di D (2) terdapat jalan dari v i ke v j yang terdiri atas s busur merah dan t busur biru. Eksponen lokal keluar dari beberapa kelas-kelas tertentu digraph dwiwarna yang terdiri atas dua cycle telah dibicarakan dalam literatur Gao dan Shao (2009), Suwilo (2011), Syahmarani dan Suwilo (2012). Namun demikian, eksponen lokal untuk kelas digraph dari dua cycle secara umum belum terdapat dalam literatur. Digraph dwiwarna dua cycle adalah semua digraph dwiwarna yang terdiri atas dua cycle, baik bersinggungan maupun berpotongan. Sejalan dengan ekponen lokal keluar, pada penelitian ini difokuskan pada eksponen lokal masuk. Eksponen lokal masuk dari sebuah verteks v i di D (2), dinotasikan expin(d (2), v i ), didefinisikan sebagai bilangan bulat positif terkecil s + t sehingga untuk setiap verteks v k, k = 1, 2,..., n di D (2) terdapat sebuah jalan dari verteks v k menuju ke verteks v i yang terdiri atas s busur merah dan t busur biru. Bila R dan B masing-masing adalah matriks ketetanggaan merah dan biru dari digraph dwiwarna D (2), maka eksponen lokal masuk dari verteks v i, i = 1, 2,..., n dapat dipandang sebagai persoalan optimisasi expin(d (2), v i ) = min s,t, 0 {s + t : (R, B) (s,t ) (:, i) > 0} dimana (R, B) (s,t ) (:, i) adalah kolom ke i dari (R, B) (s,t ).

4 4 Hasil-hasil dari penelitian ini penting bagi penentuan batas bawah bagi reset treshold untuk automata tersinkronkan. Sebuah automata atas n state {v 1, v 2,..., v n } dan dua alpabet {a, b} dikatakan tersinskronkan apabila terdapat sebuah state u sehingga untuk setiap state v i dapat bergerak ke state u dengan menggunakan sebuah barisan yang terdiri dari h alpabet a dan k alpabet b. Reset treshold dari sebuah automata A, dinotasikan dengan rt(a), adalah bilangan bulat terkecil h + k sehingga A adalah tersinkronkan. Bila D (2) adalah representasi digraph dwiwarna dari automata A dengan dua alpabet, maka expin(d (2) ) rt(a) Perumusan Masalah Penelitian tentang eksponen digraph sampai ke eksponen digraph dwiwarna telah dilakukan sejak tahun Penelitian yang telah dilakukan membahas tentang eksponen dan eksponen lokal keluar. Namun penelitian tentang eksponen lokal masuk pada digraph dwiwarna khusus untuk kelas digraph dwiwarna dengan dua cycle belum dibicarakan dalam literatur Tujuan Penelitian Tujuan dari penelitian ini adalah menentukan nilai dari expin(d (2), v i ) bila D (2) adalah digraph dwiwarna primitif atas n verteks yang terdiri atas tepat dua cycle dengan panjang selisih dua Manfaat Penelitian Penelitian ini memberikan teori baru tentang eksponen lokal masuk dari digraph dwiwarna atas n verteks yang terdiri tepat atas dua cycle dengan panjang selisih dua Metodologi Penelitian Metodologi penelitian yang dilakukan adalah bersifat literatur dengan langkahlangkah sebagai berikut: 1. Menggambar digraph dwiwarna primitif yang terdiri atas dua buah cycle dengan panjang masing-masing s dan s + 2 dimana s 3 merupakan bilangan ganjil. Warna dari setiap gambar berbeda disesuaikan dengan kombinasi warna yang dapat dibuat.

5 5 2. Membuat matriks ketetanggaan dari masing-masing warna yaitu merah R dan biru B. 3. Dengan menggunakan code program yang ditulis dengan MATLAB akan ditentukan kandidat bagi bilangan-bilangan tak negatif s dan t sehingga expin(d (2), v l ) = s + t. Hal ini dilakukan dengan menghitung hasil kali (h, k)-hurwitz dari matriks ketetanggaan R dan B secara rekursif. 4. Dengan s dan t yang sudah ditemukan pada proses komputasi di atas, langkah selanjutnya adalah menentukan batas bawah dan batas atas bagi vektor x dalam persamaan-persamaan diopanthin r(pj,l ) s Mx + = b(p j,l ) t. Batas bawah bagi x dilakukan dengan membandingkan panjang path dari v j, j = 1, 2,..., n, ke v l dan cycle dari v l ke v l. Yakni dengan menentukan nilai x dari persamaan Mx + r(pj,l ) s = b(p j,l ) t dan My = [ s t ]. Batas atas dilakukan dengan membuktikan bahwa sistem persamaan r(pj,l ) Mx + = s b(p j,l ) t, j = 1, 2,..., n mempunyai solusi tak negatif untuk semua verteks v j dan untuk beberapa path p j,l dari v j ke v l. 5. Mempelajari hubungan setiap gambar dengan nilai eksponen lokal masuk (s + t ) sehingga diperoleh kesimpulan. 6. Membuat teorema baru yang berkaitan dengan permasalahan yang diangkat. 7. Memberikan pembuktian terhadap teorema yang telah dibuat.

Universitas Sumatera Utara

Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Penelitian Penelitian mengenai eksponen digraf dwiwarna telah banyak dilakukan. Shader dan Suwilo (003) adalah yang pertama sekali melakukan penelitian tersebut. Pada

Lebih terperinci

BAB 2 DIGRAPH. Representasi dari sebuah digraph D dapat dilihat pada contoh berikut. Contoh 2.1. Representasi dari digraph dengan 5 buah verteks.

BAB 2 DIGRAPH. Representasi dari sebuah digraph D dapat dilihat pada contoh berikut. Contoh 2.1. Representasi dari digraph dengan 5 buah verteks. BAB 2 DIGRAPH Pada bab ini akan dijelaskan teori-teori dasar tentang digraph yang meliputi definisi dua cycle, primitifitas dari digraph, eksponen, dan lokal eksponen. Dengan demikian, akan mempermudah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Penelitian

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Penelitian BAB 1 PENDAHULUAN 1.1 Latar Belakang Penelitian Studi mengenai eksponen dari sebuah digraph menjadi pembahasan yang lebih sederhana setelah Wielandt (Schneider, H. 2002) mengemukakan sebuah gagasan mengenai

Lebih terperinci

VERTEX EXPONENT OF A TWO-COLOURED DIGRAPH WITH 2 LOOPS ABSTRACT

VERTEX EXPONENT OF A TWO-COLOURED DIGRAPH WITH 2 LOOPS ABSTRACT vi VERTEX EXPONENT OF A TWO-COLOURED DIGRAPH WITH 2 LOOPS ABSTRACT A digraph D in which each of its arcs is coloured by either red or blue is called two-coloured digraph. A strongly connected of two-coloured

Lebih terperinci

BAB 1 PENDAHULUAN. demikian diamati oleh suatu objek di matematika yang disebut dengan digraph.

BAB 1 PENDAHULUAN. demikian diamati oleh suatu objek di matematika yang disebut dengan digraph. BAB 1 PENDAHULUAN 1.1 Latar Belakang Penelitian Dalam kehidupan sehari-hari kita sering mendengar atau melihat sistem jalan satu arah, arus listrik, jaringan kerja dll. Biasanya hal-hal tersebut diatas

Lebih terperinci

BAB 2 DIGRAPH DWIWARNA PRIMITIF

BAB 2 DIGRAPH DWIWARNA PRIMITIF BAB 2 DIGRAPH DWIWARNA PRIMITIF Pada bagian ini akan diberikan beberapa konsep dasar seperti teorema dan definisi sebagai landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi

Lebih terperinci

DAFTAR ISI PERSETUJUAN PERNYATAAN PENGHARGAAN ABSTRAK ABSTRACT DAFTAR GAMBAR BAB 1. PENDAHULUAN 1

DAFTAR ISI PERSETUJUAN PERNYATAAN PENGHARGAAN ABSTRAK ABSTRACT DAFTAR GAMBAR BAB 1. PENDAHULUAN 1 DAFTAR ISI Halaman PERSETUJUAN PERNYATAAN PENGHARGAAN ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR i ii iii iv v vi viii BAB 1. PENDAHULUAN 1 1.1. Latar Belakang Penelitian 1 1.2. Perumusan Masalah 3 1.3.

Lebih terperinci

2. Himpunan E yang merupakan himpunan pasangan berurut V V yang tak harus berbeda dari semua titik, elemen dari E disebut arc dari digraf D.

2. Himpunan E yang merupakan himpunan pasangan berurut V V yang tak harus berbeda dari semua titik, elemen dari E disebut arc dari digraf D. BAB 2 DIGRAF DWI-WARNA PRIMITIF Pada Bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. konsep dasar yang dimaksud adalah yang berkaitan

Lebih terperinci

BAB 2 DIGRAF DWIWARNA PRIMITIF

BAB 2 DIGRAF DWIWARNA PRIMITIF BAB 2 DIGRAF DWIWARNA PRIMITIF Pada bab ini akan dibahas teorema, definisi dan landasan teori pada penelitian ini. Berikut akan dibahas mengenai digraf, digraf dwiwarna dan hubungan keduanya dengan primitifitas,

Lebih terperinci

SCRAMBLING INDEX DARI KELAS DIGRAF HAMILTON DWIWARNA DENGAN N TITIK GANJIL SKRIPSI MERRYANTY LESTARI P

SCRAMBLING INDEX DARI KELAS DIGRAF HAMILTON DWIWARNA DENGAN N TITIK GANJIL SKRIPSI MERRYANTY LESTARI P SCRAMBLING INDEX DARI KELAS DIGRAF HAMILTON DWIWARNA DENGAN N TITIK GANJIL SKRIPSI MERRYANTY LESTARI P 110803067 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA

Lebih terperinci

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf BAB 2 GRAF PRIMITIF Pada bagian ini akan dijelaskan mengenai definisi graf, istilah-istilah dalam graf, matriks ketetanggaan, graf terhubung, primitivitas graf, dan scrambling index. 2.1 Definisi Graf

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Teori graf adalah cabang kajian matematika yang mempelajari sifat-sifat graf. Secara sederhana, suatu graf adalah himpunan benda-benda yang disebut titik yang terhubung

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan beberapa konsep dasar yang berkaitan dengan permasalahan, seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. 2.1 Graf Graf

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada Bagian ini akan dijelaskan beberapa definisi dan teorema terkait graf, matriks adjency, terhubung, primitifitas, dan scrambling index sebagai landasan teori yang menjadi acuan

Lebih terperinci

BAB 2 DIGRAF PRIMITIF

BAB 2 DIGRAF PRIMITIF 6 BAB 2 DIGRAF PRIMITIF Pada bagian ini, peneliti akan menjelaskan bahwa digraf k D n merupakan sebuah digraf primitif. Penjelasan tersebut diperkuat dengan memaparkan beberapa definisi digraf dan beberapa

Lebih terperinci

2-EKSPONEN DIGRAPH DWIWARNA ASIMETRIK DENGAN DUA CYCLE YANG BERSINGGUNGAN

2-EKSPONEN DIGRAPH DWIWARNA ASIMETRIK DENGAN DUA CYCLE YANG BERSINGGUNGAN Bulletin of Matheatics Vol. 03 No. 0 (20) pp. 39 48. 2-EKSPONEN DIGRAPH DWIWARNA ASIMETRIK DENGAN DUA CYCLE YANG BERSINGGUNGAN Mardiningsih Saib Suwilo dan Indra Syahputra Abstract. Let D asyetric two-coloured-digraph

Lebih terperinci

EKSPONEN LOKAL MASUK DUA CYCLE DWIWARNA DENGAN PANJANG SELISIH 2

EKSPONEN LOKAL MASUK DUA CYCLE DWIWARNA DENGAN PANJANG SELISIH 2 EKSPONEN LOKAL MASUK DUA CYCLE DWIWARNA DENGAN PANJANG SELISIH 2 TESIS Oleh HARI SUMARDI 127021003/MT FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2014 EKSPONEN LOKAL

Lebih terperinci

2-EKSPONEN DARI DIGRAPH DWIWARNA ASIMETRIK YANG MEMUAT CYCLE PRIMITIF TESIS

2-EKSPONEN DARI DIGRAPH DWIWARNA ASIMETRIK YANG MEMUAT CYCLE PRIMITIF TESIS 2-EKSPONEN DARI DIGRAPH DWIWARNA ASIMETRIK YANG MEMUAT CYCLE PRIMITIF TESIS Oleh TITIK NGATMINTARSIH 067021030/MT SEKOLAH PASCASARJANA UNIVERSITAS SUMATERA UTARA MEDAN 2008 2-EKSPONEN DARI DIGRAPH DWIWARNA

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Penelitian

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Penelitian BAB 1 PENDAHULUAN 1.1 Latar Belakang Penelitian Graf merupakan pokok bahasan matematika yang banyak mendapat perhatian karena aplikasinya sangat berguna untuk menyelesaikan persoalan kehidupan manusia.

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi graf,

Lebih terperinci

2-EKSPONEN DARI 2-DIGRAPH DENGAN LOOP SKRIPSI RICHARD ALBERT NASUTION

2-EKSPONEN DARI 2-DIGRAPH DENGAN LOOP SKRIPSI RICHARD ALBERT NASUTION 2-EKSPONEN DARI 2-DIGRAPH DENGAN LOOP SKRIPSI RICHARD ALBERT NASUTION 010803013 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2007 2-EKSPONEN DARI

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Dasar Teori Graph 2.1.1 Graph Tak Berarah dan Digraph Suatu Graph Tak Berarah (Undirected Graph) merupakan kumpulan dari titik yang disebut verteks dan segmen garis yang

Lebih terperinci

BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE. Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema

BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE. Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema sebagai landasan berfikir dalam melakukan penelitian ini dan akan mempermudah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf didefinisikan sebagai pasangan terurut himpunan dimana: 1. adalah sebuah himpunan tidak kosong yang berhingga yang anggotaanggotanya

Lebih terperinci

BAB 1 PENDAHULUAN. Siklus kehidupan adalah suatu rangkaian aktivitas secara alami yang dialami oleh

BAB 1 PENDAHULUAN. Siklus kehidupan adalah suatu rangkaian aktivitas secara alami yang dialami oleh BAB 1 PENDAHULUAN 1.1 Latar Belakang Siklus kehidupan adalah suatu rangkaian aktivitas secara alami yang dialami oleh individu-individu dalam populasi berkaitan dengan perubahan tahap-tahap dalam kehidupan.

Lebih terperinci

BAB III PELABELAN KOMBINASI

BAB III PELABELAN KOMBINASI 1 BAB III PELABELAN KOMBINASI 3.1 Konsep Pelabelan Kombinasi Pelabelan kombinasi dari suatu graf dengan titik dan sisi,, graf G, disebut graf kombinasi jika terdapat fungsi bijektif dari ( himpunan titik

Lebih terperinci

ABSTRAK. Universitas Sumatera Utara

ABSTRAK. Universitas Sumatera Utara iv ABSTRAK Untuk menemukan matching maksimum pada graph tak berarah dapat diformulasikan sebagai masalah rank matriks. Matriks Tutte dipopulerkan oleh Tutte sebagai gambaran sebuah graph tak berarah, yang

Lebih terperinci

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin hasma_ba@yahoo.com Abstract Graf yang memuat semua siklus dari yang terkecil sampai

Lebih terperinci

SIFAT NILAI EIGEN MATRIKS ANTI ADJACENCY DARI GRAF SIMETRIK

SIFAT NILAI EIGEN MATRIKS ANTI ADJACENCY DARI GRAF SIMETRIK Faktor Exacta 10 (2): 154-161, 2017 SIFAT NILAI EIGEN MATRIKS ANTI ADJACENCY DARI GRAF SIMETRIK NONI SELVIA noni.selvia@gmail.com Program Studi Teknik Informatika Fakultas Teknik,Matematika dan Ilmu Pengetahuan

Lebih terperinci

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1: MATRIKS & RELASI Matriks Matriks adalah adalah susunan skalar elemenelemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: A = a a M a 2 m a a a 2 22 M m 2

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Konsep Dasar Graph Sebelum sampai pada pendefenisian masalah lintasan terpendek, terlebih dahulu pada bagian ini akan diuraikan mengenai konsep-konsep dasar dari model graph dan

Lebih terperinci

Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah

Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah BAB II KAJIAN TEORI II.1 Teori-teori Dasar Graf II.1.1 Definisi Graf Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah himpunan tak kosong dari titik graf G, dan E, himpunan sisi

Lebih terperinci

9. Algoritma Path. Oleh : Ade Nurhopipah

9. Algoritma Path. Oleh : Ade Nurhopipah 9. Algoritma Path Oleh : Ade Nurhopipah Pokok Bahasan : 1. Algoritma Fleury 2. Algoritma Shortest Path 3. Studi Kasus Sumber : Aldous, Joan M.,Wilson, Robin J. 2004. Graph and Applications. Springer: UK.

Lebih terperinci

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah Bab 1 PENDAHULUAN 1.1 Latar Belakang Masalah Teori graf merupakan pokok bahasan yang memiliki banyak terapan sampai saat ini. Graf di gunakan untuk merepresentasikan objek objek diskrit dan hubungan antara

Lebih terperinci

IV. MATRIKS PEMADANAN MAKSIMAL

IV. MATRIKS PEMADANAN MAKSIMAL {(1,),(2,4),(,1),(4,2)} yang berarti pada periode ke dua yaitu baris ke tiga pada kolom pertama, agen 1 dipasangkan dengan agen. Lalu pada kolom dua agen 2 dipasangkan dengan agen 4, pada kolom berikutnya

Lebih terperinci

BAB 2 OPTIMISASI KOMBINATORIAL. Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang

BAB 2 OPTIMISASI KOMBINATORIAL. Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang BAB 2 OPTIMISASI KOMBINATORIAL 2.1 Masalah Model Optimisasi Kombinatorial Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang memenuhi kondisi atau batasan yang disebut kendala dari

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini akan diperlihatkan teori-teori yang berhubungan dengan penelitian

BAB 2 LANDASAN TEORI. Pada bab ini akan diperlihatkan teori-teori yang berhubungan dengan penelitian BAB 2 LANDASAN TEORI Pada bab ini akan diperlihatkan teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berpikir dalam melakukan penelitian ini dan akan mempermudah

Lebih terperinci

Bagaimana merepresentasikan struktur berikut? A E

Bagaimana merepresentasikan struktur berikut? A E Bagaimana merepresentasikan struktur berikut? B D A E F C G Bagaimana merepresentasikan struktur berikut? Contoh-contoh aplikasi graf Peta (jaringan jalan dan hubungan antar kota) Jaringan komputer Jaringan

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini. 6 II. LANDASAN TEORI Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada sub bab ini akan diberikan

Lebih terperinci

II. LANDASAN TEORI. Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan

II. LANDASAN TEORI. Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan 4 II. LANDASAN TEORI Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan Konisberg yang kemudian menghasilkan konsep graf Eulerian merupakan awal dari lahirnya teori graf. Euler mengilustrasikan

Lebih terperinci

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf Bab 2 LANDASAN TEORI 2.1. Konsep Dasar Graf Definisi Graf Suatu graf G terdiri atas himpunan yang tidak kosong dari elemen elemen yang disebut titik atau simpul (vertex), dan suatu daftar pasangan vertex

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan

BAB 1 PENDAHULUAN. 1.1 Pendahuluan BAB 1 PENDAHULUAN 1.1 Pendahuluan Seiring dengan berkembangnya ilmu pengetahuan, penyelesaian suatu masalah dapat ditangani oleh suatu algoritma. Jenis masalah dapat berkisar dari masalah yang mudah sampai

Lebih terperinci

MATEMATIKA DISKRIT RELASI

MATEMATIKA DISKRIT RELASI MATEMATIKA DISKRIT RELASI Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini, akan dibahas landasan teori mengenai teori-teori yang digunakan dan konsep yang mendukung pembahasan, serta penjelasan mengenai metode yang digunakan. 2.1. Jalur Terpendek

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Logika Fuzzy Logika fuzzy pertama kali dikembangkan oleh Prof. Lotfi A. Zadeh, seorang peneliti dari Universitas California, pada tahun 1960-an. Logika fuzzy dikembangkan dari

Lebih terperinci

Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik

Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik BAB II DASAR TEORI 2.1 Teori Dasar Graf 2.1.1 Graf dan Graf Sederhana Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik yang tak kosong dan E adalah himpunan sisi. Untuk selanjutnya,

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi II. TINJAUAN PUSTAKA Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi pada suatu graf sebagai landasan teori pada penelitian ini.. Konsep Dasar Graf Pada bagian ini akan

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. III BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk 00) Konsep ini merupakan pengembangan dari konsep dimensi partisi pewarnaan graf Pewarnaan titik pada

Lebih terperinci

Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda

Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda Vol. 9, No.2, 114-122, Januari 2013 Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda Hasmawati 1 Abstrak Graf yang memuat semua siklus dari yang terkecil sampai ke

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 4 BAB 2 LANDASAN TEORI 2.1 Pengertian Kemacetan Kemacetan adalah situasi atau keadaan tersendatnya atau bahkan terhentinya lalu lintas yang disebabkan oleh banyaknya jumlah kendaraan melebihi kapasitas

Lebih terperinci

GRAF. Graph seperti dimaksud diatas, ditulis sebagai G(E,V).

GRAF. Graph seperti dimaksud diatas, ditulis sebagai G(E,V). GRAF GRAF Suatu Graph mengandung 2 himpunan, yaitu : 1. Himpunan V yang elemennya disebut simpul (Vertex atau Point atau Node atau Titik) 2. Himpunan E yang merupakan pasangan tak urut dari simpul. Anggotanya

Lebih terperinci

BAB 1 PENDAHULUAN. Persoalan lintasan terpanjang (longest path) merupakan persoalan dalam mencari

BAB 1 PENDAHULUAN. Persoalan lintasan terpanjang (longest path) merupakan persoalan dalam mencari BAB 1 PENDAHULUAN 1.1 Latar Belakang Persoalan lintasan terpanjang (longest path) merupakan persoalan dalam mencari lintasan sederhana terpanjang maksimum dalam suatu graph yang diberikan. Lintasan terpanjang

Lebih terperinci

DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). BAB 3 RELASI DEFINISI Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah

Lebih terperinci

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013 Dasar-Dasar Teori Graf Sistem Informasi Universitas Gunadarma 2012/2013 Teori Graf Teori Graf mulai dikenal saat matematikawan kebangsaan Swiss bernama Leonhard Euler, yang berhasil mengungkapkan Misteri

Lebih terperinci

GRAF BERARAH Definisi, Matriks, dan Relasi

GRAF BERARAH Definisi, Matriks, dan Relasi GRAF BERARAH Definisi, Matriks, dan Relasi OLEH: I GUSTI AYU WAHYUNDARI (E1R011018) IRWANSYAH (E1R011020) ANISA ULFA (E1R011005) EKA KURNIAWAN (E1R010039) MADE DEWI ARINI (E1R010051) Prodi Matematika Jurusan

Lebih terperinci

KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang

Lebih terperinci

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4}

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4} BAB 2 : DETERMINAN PERMUTASI Kita sudah cukup mengenal fungsi-fungsi sinus, fungsi kuadrat, juga fungsi konstant yang memetakan suatu bilangan riil ke bilangan riil. Pada bagian ini akan dipelajari mengenai

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5 Aljabar Linear & Matriks Pert. 5 Evangs Mailoa Pengantar Determinan Menurut teorema 1.4.3, matriks 2 x 2 dapat dibalik jika ad bc 0. Pernyataan ad bc disebut sebagai determinan (determinant) dari matriks

Lebih terperinci

Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah notasi untuk

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teori graph merupakan cabang ilmu yang memiliki peranan penting dalam pengembangan ilmu matematika dan aplikasi. Teori graph saat ini mendapat banyak perhatian karena

Lebih terperinci

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017 Graf dan Analisa Algoritma Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017 Who Am I? Stya Putra Pratama, CHFI, EDRP Pendidikan - Universitas Gunadarma S1-2007 Teknik Informatika S2-2012

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

MIDDLE PADA BEBERAPA GRAF KHUSUS

MIDDLE PADA BEBERAPA GRAF KHUSUS PELABELAN DAN PEMBENTUKAN GRAF MIDDLE PADA BEBERAPA GRAF KHUSUS skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Meliana Deta Anggraeni 4111409019

Lebih terperinci

3 HASIL DAN PEMBAHASAN

3 HASIL DAN PEMBAHASAN 3 HASIL DAN PEMBAHASAN 3.1 Formulasi Masalah Sejauh ini telah diperkenalkan bahwa terdapat tiga parameter yang terkait dengan konstruksi suatu kode, yaitu panjang, dimensi, dan jarak minimum. Jika C adalah

Lebih terperinci

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) } Pertemuan 9 Relasi Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b

Lebih terperinci

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1: MATRIKS & RELASI Matriks Matriks adalah adalah susunan skalar elemenelemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: A a a a 2 m a a a 2 22 m2 a a a

Lebih terperinci

Matematik tika Di Disk i r t it 2

Matematik tika Di Disk i r t it 2 Matematika tik Diskrit it 2 Teori Graph Teori Graph 1 Kelahiran Teori Graph Masalah Jembatan Konigsberg g : Mulai dan berakhir pada tempat yang sama, bagaimana caranya untuk melalui setiap jembatan tepat

Lebih terperinci

5. Representasi Matrix

5. Representasi Matrix 5. Representasi Matrix Oleh : Ade Nurhopipah Pokok Bahasan : 1. Matrix Ketetanggaan 2. Walk Pada Graph dan Digraph 3. Matrix Insidensi Sumber : Aldous, Joan M.,Wilson, Robin J. 2004. Graph and Applications.

Lebih terperinci

Pertemuan 12. Teori Graf

Pertemuan 12. Teori Graf Pertemuan 2 Teori Graf Derajat Definisi Misalkan adalah titik dalam suatu Graf G. Derajat titik (simbol d()) adalah jumlah garis yang berhubungan dengan titik dan garis suatu loop dihitung dua kali. Derajat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Teori Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan

Lebih terperinci

merupakan himpunan sisi-sisi tidak berarah pada. (Yaoyuenyong et al. 2002)

merupakan himpunan sisi-sisi tidak berarah pada. (Yaoyuenyong et al. 2002) dari elemen graf yang disebut verteks (node, point), sedangkan, atau biasa disebut (), adalah himpunan pasangan tak terurut yang menghubungkan dua elemen subset dari yang disebut sisi (edge, line). Setiap

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat III. BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.00). Konsep ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. Pewarnaan

Lebih terperinci

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS Annisa Rahmawati, Siswanto, Muslich Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret

Lebih terperinci

SISTEM INFORMASI UNIVERSITAS GUNADARMA 2012/2013. Graf Berarah

SISTEM INFORMASI UNIVERSITAS GUNADARMA 2012/2013. Graf Berarah SISTEM INFORMASI UNIVERSITAS GUNADARMA 2012/2013 Graf Berarah Graf Berarah Suatu graf berarah (Direct Graf/Digraf) D terdiri atas 2 himpunan : 1. Himpunan V, anggotanya disebut Simpul. 2. Himpunan A, merupakan

Lebih terperinci

EKSPONEN TITIK KELUAR DARI SEBUAH KELAS DIGRAF DWIWARNA PRIMITIF DENGAN n-titik GANJIL SKRIPSI MARDHA TILLAH

EKSPONEN TITIK KELUAR DARI SEBUAH KELAS DIGRAF DWIWARNA PRIMITIF DENGAN n-titik GANJIL SKRIPSI MARDHA TILLAH EKSPONEN TITIK KELUAR DARI SEBUAH KELAS DIGRAF DWIWARNA PRIMITIF DENGAN n-titik GANJIL SKRIPSI MARDHA TILLAH 090803044 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA

Lebih terperinci

BAB II TEORI GRAF DAN PELABELAN GRAF. Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari

BAB II TEORI GRAF DAN PELABELAN GRAF. Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari BAB II TEORI GRAF DAN PELABELAN GRAF Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari teori graf, serta akan dijelaskan beberapa jenis pelabelan graf yang akan digunakan pada bab-bab

Lebih terperinci

Relasi. Oleh Cipta Wahyudi

Relasi. Oleh Cipta Wahyudi Relasi Oleh Cipta Wahyudi Definisi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini. BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori dari penelitian ini. 2.1 Konsep Dasar Graf Beberapa konsep dasar

Lebih terperinci

LATIHAN ALGORITMA-INTEGER

LATIHAN ALGORITMA-INTEGER LATIHAN ALGORITMA-INTEGER Nyatakan PBB(295,70) = 5 sebagai kombinasi lanjar 295 dan 70 Tentukan inversi dari 27(mod 7) Tentukan solusi kekongruenan lanjar dari 27.x kongruen 1(mod 7) dengan cara 1 ( cara

Lebih terperinci

Diktat Algoritma dan Struktur Data 2

Diktat Algoritma dan Struktur Data 2 BB X GRF Pengertian Graf Graf didefinisikan sebagai pasangan himpunana verteks atau titik (V) dan edges atau titik (E). Verteks merupakan himpunan berhingga dan tidak kosongdari simpul-simpul (vertices

Lebih terperinci

RELASI DAN FUNGSI. /Nurain Suryadinata, M.Pd

RELASI DAN FUNGSI. /Nurain Suryadinata, M.Pd RELASI DAN FUNGSI Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-365/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata,

Lebih terperinci

MASALAH VEKTOR EIGEN MATRIKS INVERS MONGE DI ALJABAR MAX-PLUS

MASALAH VEKTOR EIGEN MATRIKS INVERS MONGE DI ALJABAR MAX-PLUS MASALAH VEKTOR EIGEN MATRIKS INVERS MONGE DI ALJABAR MAX-PLUS Farida Suwaibah, Subiono, Mahmud Yunus Jurusan Matematika FMIPA Institut Teknologi Sepuluh Nopember Surabaya,, e-mail: fsuwaibah@yahoo.com

Lebih terperinci

Graf Berarah (Digraf)

Graf Berarah (Digraf) Graf Berarah (Digraf) Di dalam situasi yang dinamis, seperti pada komputer digital ataupun pada sistem aliran (flow system), konsep graf berarah lebih sering digunakan dibandingkan dengan konsep graf tak

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

Pelabelan Total (a, d)-simpul Antimagic pada Digraf Matahari

Pelabelan Total (a, d)-simpul Antimagic pada Digraf Matahari Pelabelan Total (a, d)-simpul Antimagic pada Digraf Matahari Yuni Listiana, Darmaji Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Jl. Arief Rahman

Lebih terperinci

= himpunan tidak-kosong dan berhingga dari simpul-simpul (vertices) = himpunan sisi (edges) yang menghubungkan sepasang simpul

= himpunan tidak-kosong dan berhingga dari simpul-simpul (vertices) = himpunan sisi (edges) yang menghubungkan sepasang simpul Struktur Data Graf 1. PENDAHULUAN Dalam bidang matematika dan ilmu komputer, teori graf mempelajari tentang graf yaitu struktur yang menggambarkan relasi antar objek dari sebuah koleksi objek. Definisi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Persoalan lintasan terpanjang (longest path) merupakan persoalan dalam mencari lintasan sederhana terpanjang maksimum dalam suatu graph yang diberikan. Lintasan terpanjang

Lebih terperinci

Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Himpunan. Mempunyai elemen atau anggota. Terdapat hubungan.

Lebih terperinci

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Muhamad Irfan Maulana - 13515037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Algoritma adalah teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun secara logis dan sitematis

Lebih terperinci

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

Relasi dan Fungsi. Program Studi Teknik Informatika FTI-ITP

Relasi dan Fungsi. Program Studi Teknik Informatika FTI-ITP Relasi dan Fungsi Program Studi Teknik Informatika FTI-ITP 2 Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m

Lebih terperinci

BAB 2 LANDASAN TEORI. Secara garis besar ilmu statistik dibagi menjadi dua bagian yaitu:

BAB 2 LANDASAN TEORI. Secara garis besar ilmu statistik dibagi menjadi dua bagian yaitu: BAB 2 LANDASAN TEORI 2.1 Pembagian Ilmu Statistik Secara garis besar ilmu statistik dibagi menjadi dua bagian yaitu: 1. Statistik Parametrik Statistik parametrik adalah ilmu statistik yang digunakan untuk

Lebih terperinci

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika Discrete Mathematics & Its Applications Chapter 10 : Graphs Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika 16/12/2015 2 Sub Topik A. Graf dan Model Graf B. Terminologi Dasar Graf dan Jenis

Lebih terperinci

Matriks. Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom.

Matriks. Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: Matriks bujursangkar adalah matriks yang berukuran

Lebih terperinci

ANALISIS EIGENPROBLEM MATRIKS SIRKULAN DALAM ALJABAR MAX-PLUS

ANALISIS EIGENPROBLEM MATRIKS SIRKULAN DALAM ALJABAR MAX-PLUS ANALISIS EIGENPROBLEM MATRIKS SIRKULAN DALAM ALJABAR MAX-PLUS Maria Ulfa Subiono 2 dan Mahmud Yunus 3 Institut Teknologi Sepuluh Nopember Surabaya 23 e-mail: ulfawsrejo@yahoo.com subiono28@matematika.its.ac.id

Lebih terperinci

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n. Oleh : Yogi Sindy Prakoso ( ) JURUSAN MATEMATIKA. Company

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n. Oleh : Yogi Sindy Prakoso ( ) JURUSAN MATEMATIKA. Company DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n Oleh : Yogi Sindy Prakoso (1206100015) JURUSAN MATEMATIKA Company FAKULTAS MATEMATIKA Click to DAN add ILMU subtitle PENGETAHUAN ALAM INSTITUT TEKNOLOGI

Lebih terperinci

8. Evaluasi Solusi dan Kriteria Berhenti Perumusan Masalah METODE PENELITIAN Studi Pustaka Pembentukan Data

8. Evaluasi Solusi dan Kriteria Berhenti Perumusan Masalah METODE PENELITIAN  Studi Pustaka Pembentukan Data Gambar 4 Proses Swap Mutation. 8. Evaluasi Solusi dan Kriteria Berhenti Proses evaluasi solusi ini akan mengevaluasi setiap populasi dengan menghitung nilai fitness setiap kromosom sampai terpenuhi kriteria

Lebih terperinci