REGRESI DAN KORELASI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "REGRESI DAN KORELASI"

Transkripsi

1 REGRESI DAN KORELASI

2 Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas dua kejadia yg salig berhubuga, khususya kejadia yg dapat diukur secara matematis Dua hal yag perlu diaalisis yaitu hubuga fugsioal ( persamaa matematis) da hubuga kekuata

3 Pedahulua Aalisis regresi merupaka suatu aalissis yag diguaka utuk mempelajari da megukur hubuga fugsioal (statistik atau persamaa matematis) yag terjadi atara dua varibel atau lebih variabel. Variabel tersebut adalah variabel (variabel idepedet / variabel yag mempegaruhi / variabel yag diketahui), da variabel Y (variabel depedet / variabel yag dipegaruhi/ variabel yag tidak diketahui) Aalisis korelasi merupaka suatu aalissis yag bertujua utuk megukur seberapa kuat atau derajat kedekata, suatu relasi yag terjadi atar variabel.

4 Hubuga atara variabel Pada dasarya hubuga atar variabel dapat dibedaka atas: 1. Hubuga searah/positif. Hubuga bersifat kebalika/egatif 3. Tidak ada hubuga

5 Hubuga searah/positif o o Hubuga yag searah diartika apabila perubaha variabel x (idepedet) aka mempegaruhi variabel y (depedet) yag searah. Atau jika variabel x bertambah, maka variabel y bertambah pula, da sebalikya. o Cotoh : o hubuga atara pegeluara ikla (x) da jumlah pejuala (y). o Hubuga atara peghasila () da pegeluara kosumsi (Y)

6 o o Hubuga bersifat kebalika/egatif Dua variabel dikataka mempuyai hubuga yag bersifat kebalika atau egatif, apabila perubaha variabel idepedet (x) aka mempegaruhi variabel depedet (Y) pada arah yag berlawaa. Artiya apabila variabel x bertambah, maka variabel y berkurag atau sebalikya, jika variabel x berkurag maka variabel y bertambah. o Cotoh : o o Hubuga atara usia kedaraa () dega tigkat harga (Y). Hubuga atara harga barag (x) dega jumlah yag dimita (Y)

7 Tidak ada hubuga Dua variabel dikataka tidak puya hubuga apabila perubaha pada variabel idepedet (x) tidak mempegaruhi perubaha pada variabel depedet (y). Cotoh : Hubuga atara kosumsi paga (x) dega tiggiya gedug (y).

8 Peggambara Garis Regresi Salah satuya adalah Metode diagram berserak (The scatter diagram) Setelah ditetapka bahwa terdapat hubuga logis di atara variabel, maka utuk medukug aalisis lebih jauh, tahap selajutya adalah membuat diagram pecar, yag meujukka titik-titik tertetu. Setiap titik memperlihatka suatu hasil yag kita ilai sebagai varibel bebas maupu variabel tak bebas Diagram pecar ii memiliki mafaat, yaitu : Membatu meujukka apakah terdapat hubuga yag bermafaat atara dua variabel, Membatu meetapka tipe persamaa yag meujukka hubuga atara kedua variabel tersebut.

9

10 REGRESI LINIER SEDERHANA Persamaa yag diguaka utuk medapatka garis regresi pada data diagram pecar disebut persamaa regresi. Utuk meempatka garis regresi pada data yag diperoleh maka diguaka metode kuadrat terkecil, sehigga betuk persamaa regresi adalah sebagai berikut: Y = a + b Dimaa: Y : ilai estimasi/taksira utuk variabel terikat (tak bebas Y) a: titik potog garis regresi pd sumbu y (ilai estimate Y bila x=0) b: gradie garis regresi (perub ilai estimasi Y per satua perubaha ilai x) atau koefidie arah dari garis regresi : ilai variabel bebas

11 o o o REGRESI LINIER SEDERHANA Kesamaa diatara garis regresi da garis tred tidak dapat berakhir dega persamaa garis lurus. Dalam hal ii dicari persamaa regresi yg palig baik utuk mewakili sebara titik data tersebut Suatu kriteria bahwa persamaa regresi yg palig baik adalah regresi yg mempuyai total kuadrat selisih yg palig miimum o Garis regresi) memiliki dua sifat matematis berikut : o (Y Y ) = 0 da (Y Y ) = ilai terkecil atau teredah Dega perkataa lai, garis regresi aka ditempatka pada data dalam diagram sedemikia rupa sehigga peyimpaga (perbedaa) positif titik-titik terhadap titik-titik pecar di atas garis aka megimbagi peyimpaga egatif titik-titik pecar yag terletak di bawah garis, sehigga hasil peyimpaga keseluruha titik-titik terhadap garis lurus adalah ol.

12 REGRESI LINIER SEDERHANA Utuk memperoleh total kuadrat error palig miimum, dipakailah meode kuadrat miimum. Dari persamaa regresi liear sebelumya aka memiliki total kuadrat error miimum bila koefisie regresi a da b dihitug dega rumus berikut :

13 REGRESI LINIER SEDERHANA atau Y Y b Y Y a b Y a Y Y b b Y a

14 Koefisie Regresi Adalah lereg garis regresi (ilai b) Nilai b positif, meujukka hubuga atara variabel x da y searah atau hubugaya positif. Nilai b egatif, meujukka hubuga atara variabel x da y berlawaa arah atau hubugaya egatif Besar kecilya perubaha variabel x terhadap variabel y ditetuka besar kecilya koefisie regresi.

15 KESALAHAN BAKU dari PENAKSIRAN Kesalaha baku dari peaksira ( stadard error of estimatio) oleh Y =a+b adalh sbb : S dijabarka S y'. x y'. x ( Y Y ') mejadi : Y ay b Y

16 Perbedaa Regresi da Korelasi Regresi meujukka hubuga atara variabel satu dega variabel laiya. Sifat hubuga dapat dijelaska: variabel yag satu sebagai peyebab, variabel yag lai sebagai akibat. Korelasi tidak meujukka hubuga sebab akibat, aka tetapi meujukka hubuga atara variabel satu dega yag lai.

17 KORELASI LINIER SEDERHANA Koefisie Korelasi (r): ukura hubuga liier peubah da Y Nilai r berkisar atara (+1) sampai (-1) Nilai r yag (+) ditadai oleh ilai b yag (+) Nilai r yag (-) ditadai oleh ilai b yag (-) Jika ilai r medekati +1 atau r medekati -1 maka da Y memiliki korelasi liier yag tiggi. Jika ilai r = +1 atau r = -1 maka da Y memiliki korelasi liier sempura. Jika ilai r = 0 maka da Y tidak memiliki relasi (hubuga) liier (dalam kasus r medekati 0, ada dapat melajutka aalisis ke regresi ekspoesial).

18 KORELASI LINIER SEDERHANA Koefisie Determiasi Sampel = R = r² Ukura proporsi keragama total ilai peubah Y yag dapat dijelaska oleh ilai peubah melalui hubuga liier. Peetapa & Iterpretasi Koefisie Korelasi da Koefisie Determiasi : Y Y Y Y r R r Keteraga : Koefisie Korelasi (r): Koefisie Determiasi Sampel = R = r²

19 Cotoh Regresi Berikut adalah data Biaya Promosi da Volume Pejuala PT BIMOIL perusahaa Miyak Gosok Buatlah persmaa regresi liear sederhaa dega miimum kuadrat terkecil

20 Tahu Biaya Promosi (Juta Rupiah) Y Volume Pejuala (Ratusa Juta Liter) Y ² Y² x = 6 y = 40 xy = 3 x² =158 y² = 346 = 5

21 jawab betuk umum persama regresi liier sederhaa: Y = a + b b xi yi xi y i1 i1 i1 x x i i1 i1 i i b (5 3) (6 40) (5158) (6 ) b =1,053

22 jawab a a a y i i1 i1 b x i Sehigga Y = a + b Y =, ,053

23 Cotoh : Estimasi dega Persamaa Regresi Diketahui hubuga Biaya Promosi ( dalam Juta Rupiah) da Y (Volume pejuala dalam Ratusa Juta liter) dapat diyataka dalam persamaa regresi liier berikut: Y =, ,053 Perkiraka Volume pejuala jika, dikeluarka biaya promosi Rp. 10 juta?

24 Jawab Y =, ,053 = 10 Y =,53 + 1,053 (10) Y=, ,53 = 13,06 (ratusa juta liter) Volume pejuala = x liter

25 Cotoh Korelasi (Lihat soal regresi) setelah medapatka persamaa Regresi Y = , hitug koefisie korelasi (r) da koefisie determiasi (R). Guaka data berikut : x = 6 y = 40 xy = 3 x² =158 y² = 346

26 jawab r xi yi xi y i1 i1 i1 xi xi yi y i i i i1 i i r r r (6 ) (5 346) (40 ) (5 3) (6 40)

27 Jawab Nilai r = 0,9857 meujukka bahwa peubah (biaya promosi) da Y (volume pejuala) berkorelasi liier yag positif da tiggi R r , = 97 % Nilai R = 97% meujukka bahwa 97% proporsi keragama ilai peubah Y (volume pejuala) dapat dijelaska oleh ilai peubah (biaya promosi) melalui hubuga liier. Sisaya, yaitu 3 % dijelaska oleh hal-hal lai

28 Ada Pertayaa?

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA REGRESI LINIER SEDERHANA REGRESI, KAUSALITAS DAN KORELASI DALAM EKONOMETRIKA Regresi adalah salah satu metode aalisis statistik yag diguaka utuk melihat pegaruh atara dua atau lebih variabel Kausalitas

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

ANALISIS REGRESI DAN KORELASI SEDERHANA

ANALISIS REGRESI DAN KORELASI SEDERHANA LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata Probabilitas da Statistika da Adam Hedra Brata Dua Peubah Acak dua perubah acah X da Y dega rata-rata da diberika oleh rumus : E(XY) - - - Sifat Sifat Sifat kovariasi utuk X da Y diskrit : f(, ) f(, )

Lebih terperinci

Pengenalan Pola. Regresi Linier

Pengenalan Pola. Regresi Linier Pegeala Pola Regresi Liier PTIIK - 014 Course Cotets 1 Defiisi Regresi Liier Model Regresi Liear 3 Estimasi Regresi Liear 4 Studi Kasus da Latiha Defiisi Regresi Liier Regresi adalah membagu model utuk

Lebih terperinci

STATISTIKA ANALISIS REGRESI ANALISIS REGRESI LINIER LEKTION ACHT(#8) ANALISIS REGRESI

STATISTIKA ANALISIS REGRESI ANALISIS REGRESI LINIER LEKTION ACHT(#8) ANALISIS REGRESI ANALISIS REGRESI STATISTIKA LEKTION ACHT(#8) ANALISIS REGRESI Regresi: kembali ke tahap perkembaga sebelumya (psi.). Aalisis regresi: aalisis yag diguaka utuk megetahui relasi depedesi (pegaruh) dari satu

Lebih terperinci

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA OUTLINE LANJUTAN Peetua garis duga regresi dega Metode OLS kostata a da koefisie b Aalisis Varias komposisi variasi sekitar garis r da r Stadard

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan BAB LANDASAN TEORI. Pegertia Regresi Statistika merupaka salah satu cabag peegtahua yag palig bayak medapatka perhatia da dipelajari oleh ilmua dari hamper semua bidag ilmu peegtahua, terutama para peeliti

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Subjek Peelitia Peelitia ii dilaksaaka di kawasa huta magrove, yag berada pada muara sugai Opak di Dusu Baros, Kecamata Kretek, Kabupate Batul. Populasi dalam peelitia ii adalah

Lebih terperinci

ANALISIS RUNTUT WAKTU DAN PERAMALAN (Time Series and Forecasting) Analisis Tren

ANALISIS RUNTUT WAKTU DAN PERAMALAN (Time Series and Forecasting) Analisis Tren ANALISIS RUNTUT WAKTU DAN PERAMALAN (Time Series ad Forecastig) Aalisis Tre P.E.N.D.A.H.U.L.U.A.N Rutut waktu merupaka kumpula data yag tercatat sepajag periode waktu tertetu (cotohya: miggua, bulaa, atau

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Disai Peelitia Tujua Jeis Peelitia Uit Aalisis Time Horiso T-1 Assosiatif survey Orgaisasi Logitudial T-2 Assosiatif survey Orgaisasi Logitudial T-3 Assosiatif survey Orgaisasi

Lebih terperinci

Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan REGRESI DAN KORELASI. Statistika dan Probabilitas

Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan REGRESI DAN KORELASI. Statistika dan Probabilitas Uiversitas Gadjah Mada Fakultas Tekik Departeme Tekik Sipil da Ligkuga REGRESI DAN KORELASI Statistika da Probabilitas Kurva Regresi Mecari garis/kurva yag mewakili seragkaia titik data Ada dua cara utuk

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Saham Saham adalah surat berharga yag dapat dibeli atau dijual oleh peroraga atau lembaga di pasar tempat surat tersebut diperjualbelika. Sebagai istrumet ivestasi, saham memiliki

Lebih terperinci

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung 42 III. METODE PENELITIAN 3.. Lokasi da Waktu Peelitia Lokasi peelitia dilakuka di Provisi Sumatera Barat yag terhitug mulai miggu ketiga bula April 202 higga miggu pertama bula Mei 202. Provisi Sumatera

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN Erie Sadewo

ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN Erie Sadewo ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN 2010 Erie Sadewo Kodisi Makro Ekoomi Kepulaua Riau Pola perekoomia suatu wilayah secara umum dapat diyataka meurut sisi peyediaa (supply), permitaa

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia ii dilaksaaka di Kota Bogor Pemiliha lokasi peelitia berdasarka tujua peelitia (purposive) dega pertimbaga bahwa Kota Bogor memiliki jumlah peduduk yag

Lebih terperinci

PENGUJIAN HIPOTESIS. Pertemuan minggu ke 1 dan 2.

PENGUJIAN HIPOTESIS. Pertemuan minggu ke 1 dan 2. PENGUJIAN HIPOTESIS Tujua Istruksioal Umum :. Mahasiswa mampu memahami apa yag dimaksud dega Hipotesis atau dugaa semetara. Mahasiswa mampu memahami berbagai pegujia hipotesis 3. Mahasiswa mampu memahami

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat.

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat. L A T I H A N S O A L A N R E G Muhamad Ferdiasyah, S. Stat. *Saya saraka utuk mecoba sediri baru lihat jawabaya **Jawaba saya BELUM TENTU BENAR karea saya mausia biasa. Silaka dikosultasika jika ada jawaba

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik Aalisis Sektor Kuci Dimaa : KLBj aij = Keterkaita lagsug ke belakag sektor j = Usur matriks koefisie tekik (b). Keterkaita Ke Depa (Forward Ligkage) Forward ligkage meujukka peraa suatu sektor tertetu

Lebih terperinci

III. MATERI DAN METODE PENELITIAN. Penelitian telah dilakukan pada bulan November - Desember 2013 di

III. MATERI DAN METODE PENELITIAN. Penelitian telah dilakukan pada bulan November - Desember 2013 di III. MATERI DAN METODE PENELITIAN 3.. Waktu da Tempat Peelitia telah dilakuka pada bula November - Desember 203 di peteraka Kambig yag ada di Kota Pekabaru Provisi Riau. 3.2. Alat da Baha Materi yag diguaka

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian BAB II METODOLOGI PEELITIA 2.1. Betuk Peelitia Betuk peelitia dapat megacu pada peelitia kuatitatif atau kualitatif. Keragka acua dalam peelitia ii adalah metode peelitia kuatitatif yag aka megguaka baik

Lebih terperinci

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain III. METODE PENELITIAN 3.1 Jeis da Sumber Data Data yag diguaka pada peelitia ii merupaka data sekuder yag diperoleh dari Bada Pusat Statistik (BPS) Provisi NTB, Bada Perecaaa Pembagua Daerah (BAPPEDA)

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Lokasi da Waktu Pegambila Data Pegambila data poho Pius (Pius merkusii) dilakuka di Huta Pedidika Guug Walat, Kabupate Sukabumi, Jawa Barat pada bula September 2011.

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 30 III. METODE PENELITIAN A. Metode Dasar Peelitia Metode yag diguaka dalam peelitia adalah metode deskriptif, yaitu peelitia yag didasarka pada pemecaha masalah-masalah aktual yag ada pada masa sekarag.

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Halama Tulisa Jural (Judul da Abstraksi) Jural Paradigma Ekoomika Vol.1, No.5 April 2012 PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Oleh : Imelia.,SE.MSi Dose Jurusa Ilmu Ekoomi da Studi Pembagua,

Lebih terperinci

Inflasi dan Indeks Harga I

Inflasi dan Indeks Harga I PERTEMUAN 1 Iflasi da Ideks Harga I 1 1 TEORI RINGKAS A Pegertia Agka Ideks Agka ideks merupaka suatu kosep yag dapat memberika gambara tetag perubaha-perubaha variabel dari suatu priode ke periode berikutya

Lebih terperinci

BAB III MATERI DAN METODE. Penelitian dilaksanakan pada tanggal 2 Maret sampai 1 Mei 2016 di Balai

BAB III MATERI DAN METODE. Penelitian dilaksanakan pada tanggal 2 Maret sampai 1 Mei 2016 di Balai 11 BAB III MATERI DAN METODE Peelitia dilaksaaka pada taggal 2 Maret sampai 1 Mei 2016 di Balai Pembibita da Budidaya Terak No Rumiasia (BPBTNR) Satker Balekambag, Surakarta, Jawa Tegah. 3.1 Materi Materi

Lebih terperinci

BAB III METODE PENELITIAN. objek penelitian yang penulis lakukan adalah Beban Operasional susu dan Profit

BAB III METODE PENELITIAN. objek penelitian yang penulis lakukan adalah Beban Operasional susu dan Profit BAB III METODE PENELITIAN 3.1 Objek Peelitia Objek peelitia merupaka sasara utuk medapatka suatu data. Jadi, objek peelitia yag peulis lakuka adalah Beba Operasioal susu da Profit Margi (margi laba usaha).

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05. MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Peelitia Peelitia ii megguaka metode peelitia Korelasioal. Peelitia korelasioaal yaitu suatu metode yag meggambarka secara sistematis da obyektif tetag hubuga atara

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

BAB IV REGRESI DAN KORELASI SEDERHANA

BAB IV REGRESI DAN KORELASI SEDERHANA 4. Pegertia Regresi da Korelasi. BAB IV REGRESI DAN KORELASI SEDERHANA a. Regresi da korelasi diguaka utuk mempelajari pola da megukur hubuga statistik atara dua atau lebih variabel. b. Jika diguaka haya

Lebih terperinci

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA PENAKSIRAN DAN PERAMALAN BIAYA Ari Darmawa, Dr. S.AB, M.AB Email: aridarmawa_fia@ub.ac.id A. PENDAHULUAN B. PENAKSIRAN DAN PRAKIRAAN FUNGSI BIAYA C. PENAKSIRAN JANGKA PENDEK - Ekstrapolasi sederhaa - Aalisis

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

BAB 5 UKURAN DISPERSI

BAB 5 UKURAN DISPERSI BAB 5 UKURAN DISPERSI A. Ukura Dispersi Meurut Hasa (011 : 101) ukura dispersi atau ukura variasi atau ukura peyimpaga adalah ukura yag meyataka seberapa jauh peyimpaga ilai-ilai data dari ilai-ilai pusatya

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

LEVELLING 1. Cara pengukuran PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Poliban Teknik Sipil 2010LEVELLING 1

LEVELLING 1. Cara pengukuran PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Poliban Teknik Sipil 2010LEVELLING 1 LEVELLING 1 PENGUKURAN SIPAT DATAR Salmai,, ST, MS, MT 21 PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Jika dua titik mempuyai ketiggia yag berbeda, dikataka mempuyai beda tiggi. Beda tiggi dapat

Lebih terperinci

FORECASTING (Peramalan)

FORECASTING (Peramalan) FORECASTING (Peramala) PENDAHULUAN Forecastig adalah ramala tetag apa yag aka terjadi dimasa yag aka datag. Forecast Demad atau peramala permitaa mejadi dasar yag sagat petig dalam perecaaa suatu keputusa

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1 Kuliah : Rekayasa Hidrologi II TA : Geap 2015/2016 Dose : 1. Novriati.,MT 1 Materi : 1.Limpasa: Limpasa Metoda Rasioal 2. Uit Hidrograf & Hidrograf Satua Metoda SCS Statistik Hidrologi Metode Gumbel Metode

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1. Metode Kuadrat Terkecil Aalisis regresi merupaka aalisis utuk medapatka hubuga da model matematis atara variabel depede (Y) da satu atau lebih variabel idepede (X). Hubuga atara

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

kesimpulan yang didapat.

kesimpulan yang didapat. Bab ii merupaka bab peutup yag merupaka hasil da kesimpula dari pembahasa serta sara peulis berdasarka kesimpula yag didapat. BAB LANDASAN TEORI. Kosep Dasar Peramala Peramala adalah kegiata utuk memperkiraka

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TINJAUAN TEORITIS.1 Pegertia-pegertia Lapaga pekerjaa adalah bidag kegiata dari pekerjaa/usaha/ perusahaa/kator dimaa seseorag bekerja. Pekerjaa utama adalah jika seseorag haya mempuyai satu pekerjaa

Lebih terperinci

MATERI 13 ANALISIS TEKNIKAL ANALISIS TEKNIKAL

MATERI 13 ANALISIS TEKNIKAL ANALISIS TEKNIKAL MATERI 13 ANALISIS TEKNIKAL ASUMSI-ASUMSI DASAR ANALISIS TEKNIKAL KEUNTUNGAN DAN KRITIK TERHADAP ANALISIS TEKNIKAL TEKNIK-TEKNIK DALAM ANALISIS TEKNIKAL - The Dow Theory - Chart Pola Pergeraka Harga Saham

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia Daerah peelitia adalah Kota Bogor yag terletak di Provisi Jawa Barat. Pemiliha lokasi ii berdasarka pertimbaga atara lai: (1) tersediaya Tabel Iput-Output

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan. 9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara

Lebih terperinci

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis CATATAN KULIAH Pertemua I: Pegeala Matematika Ekoomi da Bisis A. Sifat-sifat Matematika Ekoomi 1. Perbedaa Matematika vs. Nomamatematika Ekoomi Keutuga pedekata matematika dalam ilmu ekoomi Ketepata (Precise),

Lebih terperinci

PENGUJIAN HIPOTESIS DUA SAMPEL

PENGUJIAN HIPOTESIS DUA SAMPEL PENGUJIAN HIPOTESIS DUA SAMPEL Tujua Mahasiswa mampu memahami pegujia hipotesis utuk parameter populasi berdasarka dua buah sampel. Dasar Teori Uji Rata-rata Dua Sampel yag Salig Bebas utuk Sampel Kecil

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2013 sampai Januari 2014

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2013 sampai Januari 2014 BAB III METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia ii dilaksaaka pada bula Juli 2013 sampai Jauari 201 berlokasi di Kabupate Gorotalo. B. Jeis Peelitia Peilitia tetag evaluasi program pegembaga

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

BAB III MENENTUKAN MODEL KERUSAKAN DAN INTERVAL WAKTU PREVENTIVE MAINTENANCE OPTIMUM SISTEM AXIS PADA MESIN CINCINNATI MILACRON DOUBLE GANTRY TIPE-F

BAB III MENENTUKAN MODEL KERUSAKAN DAN INTERVAL WAKTU PREVENTIVE MAINTENANCE OPTIMUM SISTEM AXIS PADA MESIN CINCINNATI MILACRON DOUBLE GANTRY TIPE-F BAB III MENENUKAN MODEL KERUSAKAN DAN INERVAL WAKU PREVENIVE MAINENANCE OPIMUM SISEM AXIS PADA MESIN CINCINNAI MILACRON DOUBLE GANRY IPE-F 3.1 Pedahulua Pada Bab II telah dijelaska beberapa teori yag diguaka

Lebih terperinci

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi,

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi, 7 III. METODE PENELITIAN 3.1 Idetifikasi Masalah Variabel yag diguaka dalam peelitia ii adalah variabel X da variabel Y. Variabel X merupaka variabel bebas adalah kepemimpia da motivasi, variabel Y merupaka

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 22 BAB III METODE PENELITIAN 3.1. Metode Peelitia Pada bab ii aka dijelaska megeai sub bab dari metodologi peelitia yag aka diguaka, data yag diperluka, metode pegumpula data, alat da aalisis data, keragka

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 10 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di areal kerja IUPHHK-HA PT. Sarmieto Parakatja Timber, Kalimata Tegah selama satu bula pada bula April higga Mei 01.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci