BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuanku Tambusai Bangkinang. 7. PENAKSIRAN ( Taksiran Interval untuk rataan, varian dan proporsi)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuanku Tambusai Bangkinang. 7. PENAKSIRAN ( Taksiran Interval untuk rataan, varian dan proporsi)"

Transkripsi

1 Pertemua0 BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuaku Tambusai Bagkiag 7. PENAKSIRAN ( Taksira Iterval utuk rataa, varia da proporsi) 7.1 Pedahulua Pada pembahasa sebelumya adalah meletakka dasar utuk mearik kesimpula dari parameter-parameter populasi dari data percobaa. Sebagai cotoh, teorema limit pusat memberi iformasi tetag distribusi sampel X distribusiya megadug rataa dari populasi. Jadi setiap kesimpula yag ditarik megeai µ dari suatu rata-rata sampel yag diamati haruslah tergatug pada pegetahua distribusi sampelya. 7.2 Iferesi Statistika Iferesi statistik dapat dibagi dalam dua bagia besar yaitu peaksira da pegujia hipotesis. 7.3 Metode peaksira klasik Nilai x suatu statistik X, dihitug dari suatu sampel ukura, merupaka suatu taksira parameter populasi µ Cotoh 7.1 Tujukka bahwa S 2 merupaka peaksir tak bias parameter σ 2 Kedatipu S 2 merupaka peaksir tak bias σ 2, tetapi sebalikya S suatu peaksir σ yag bias da bias itu mejadi tak bearti bila sampelya besar. Defeisi 7.1 Dari semua peaksir tak bias yag mugki di buat, peaksir yag memberika variasi terkecil disebut peaksir yag palig efisie. Peaksir tak bias yag palig efisie sekalipu jarag aka meaksir parameter populasi µ dega tepat. Memag bear bahwa ketelitia meigkat bila sampelya membesar, tetapi masih tetap tidak beralasa megharapka suatu taksira titik dari suatu sampel tertetu aka tepat sama dega parameter populasi yag hedak ditaksir. Dalam bayak hal kita aka lebih meyukai meetuka suatu selag yag kedua ujugya kita harapka aka megapit ilai parameter yag sesugguhya. Selag seperti ii disebut taksira selag. 7.4 Meaksir rataa Peaksir titik rataa populasi µ diberika oleh statistik X. Sekarag padag taksira selag µ. P ( z α/2 < Z < z α/2 ) = 1 α bila Z = X µ σ/ 1

2 Jadi P ( z α/2 < X µ σ/ < z α/2) = 1 α atau P (X z α/2 σ < µ < X + z α/2 σ ) = 1 α bila α = 0, 05, diperoleh selag kepercayaa 95%. Da bila α = 0, 01, diperoleh selag kepercayaa 99%. Cotoh 7.2 Rataa ilai sampel acak 36 mahasiswa tigkat sarjaa adalah 2,6. Hituglah selag kepercayaa 95% da 99% utuk rataa ilai matematika semua mahasiswa tigkat sarjaa. Aggap bahwa simpaga baku populasi 0,3. Teorema 7.1 Bila x dipakai utuk meaksir µ maka dega kepercayaa (1 α)100% galatya aka lebih kecil dari z α/2 σ Teorema 7.2 Bila x dipakai utuk meaksir µ, maka dega kepercayaa (1 α)100% galatya aka lebih kecil dari suatu bilaga g yag ditetapka sebelumya asal saja ukura sampel = ( z α/2σ g ) 2 Cotoh 7.3 Berapa besar sampel diperluka pada cotoh 7.2 bila igi percaya 95& bahwa taksira utuk µ meleset kurag dari 0,05?. Serig kita igi meaksir rataa populasi padahal variasi tidak diketahui. Telah diketahui sebelumya bila ada suatu sampel acak dari suatu distribusi ormal maka peubah acak sehigga kita aka dapatka T = X µ S/ P (X t α/2 S < µ < X + t α/2 S ) Cotoh 7.4 Tujuh botol yag mirip masig-masig berisi asam sulfat 9,8, 10,2, 10,4, 9,8, 10,0, 10,2, da 9,6 liter. Carilah selag kepercayaa 95% utuk rataa isi botol semacam itu bila distribusiya diagap hampir ormal. 7.5 Galat Baku Taksira titik Telah diketahui σ 2 x = σ2 Jadi simpaga baku dari X atau galat baku dari X. Sehigga batas kepercayaa utuk µ berbetuk s x ± t α/2 = x ± t α/2 galatbakux 2

3 7.6 Batas Tolerasi Jika rataa µ da variasi σ tidak diketahui, batas tolerasi diberika x ± ks, k ditetuka sedemikia rupa sehigga dapat ditegaska00(1 γ)% kepercayaa bahwa batas tersebut megadug palig sedikit 1 α proporsi pegukura 7.1 Meaksir selisih dua rataa Bila ada dua populasi masig-masig dega rataa µ 1 da µ 2 da variasi σ1 2 da σ2, 2 maka peaksir titik utuk selisih µ 1 da µ 2 diberika oleh statistik X 1 X 2 Meurut teorema pada bab 6, dapat diharapka distribusi sampel X 1 X 2 aka berdistribusi hampir ormal dega rataa µ x1 x 2 = µ 1 µ 2 da simpaga baku σ x1 x 2 = (σ1 2/) + (σ2 2/), Jadi dega peluag 1 α peubah ormal baku Z = (X1 X2) (µ1 µ2) (σ 2 1 /)+(σ 2 2 /2) peluagya adalah P ( z α/2 < Z < z α/2 ) = 1 α gati Z pada rumus diatas, maka diperoleh : (x 1 x 2 ) z α/2 σ σ2 2 < µ 1 µ 2 < (x 1 + z α/2 σ σ2 2 dega = bayak sampal populasi pertama da = bayak sampel pada populasi kedua. Cotoh 7.5 Suatu ujia kimia yag telah dibakuka diberika pada 50 siswa waita da 75 siswa pria. Nilai rata-rata waita 76, sedagka murid pria medapat ilai rata-rata 82. Carilah selag kepercayaa 96% utuk selisih µ 1 µ 2, bila µ 1 meyataka rataa ilai semua siswa pria da µ 2 rataa ilai semua siswa waita yag mugki aka megikuti ujia ii. Aggap simpaga baku populasi utuk waita da pria, masig-masig 6 da 8. Bila variasiya tidak diketahui da kedua distribusi hampir ormal, maka distribusi t kembali harus diguaka seperti sampel tuggal. 1 (x 1 x 2 ) t α/2 s p < µ 1 µ 2 < (x 1 + x 2 ) t α/2 s p + 1 Cotoh 7.6 Dalam makalah Macro ivertebrate Commuity Structure as a Idicator of Acid Mie Pollutio yag diterbitka di Joural of Evirometal Pollutio (Vol.6,1974), disajika lapora megeai peelitia yag dilakuka di Cae Creek, Alabama, utuk meetuka hubuga atara paremeter fisiokimia yag terpilih dega ukura yag berlaia dari struktur kelompok makroivertebrata. Satu segi dari peeltia itu ialah peilaia dari keefektifa. Suatu ideks keragama spesies makroivertebrata seharusya meujukka sistem peraira yag tidak tergagu, sedagka ideks keragama yag redah meujukka sistem peraira yag tergaggu. Dua stasio samplig yag bebas dipilih utuk tujua peelitia ii, satu dititik 3

4 muara pembuaga asam tambag da satu lagi dihulu. Sebayak 12 sampel bulaa diambil dari statio muara, data ideks keragama spesiesya meghasilka ilai rataa x 1 = 3, 11 da simpaga baku s 1 = 0, 771, sedagka dari satsio hulu diambil 10 sampel bulaa dega ilai rataa ideks x 2 = 2, 04 da simpaga baku s 2 = 0, 448. Buat selag kepercayaa 90% utuk selisih rataa populasi dari kedua stasio, aggap kedua populasi berdistribusi hampir ormal dega variasi yag sama. Bila variasi populasi yag tidak diketahui mugki sekali tidak sama. s (x 1 x 2 ) t 2 1 α/2 + s2 2 s < µ 1 µ 2 < (x 1 + t 2 1 α/2 + s2 2 Cotoh 7.7 Suatu peelitia megeai Nutriet retetio ad Macroivertebrata Commuity Respose to Swage Stress i a Stream Ecosystem yag dilakuka oleh departemet of zoology di Virgiia Polytechic Istitute da State Uiversity tahu980 meaksir selisih bayakya baha kimia ortofosfor yag diukur pada dua statio yag berlaia di sugai james. Ortofosfor diukur dalam mg per liter. Lima belas sampel dikumpulka dari stasio da2 sampel dari stasio 2. Ke 15 sampel dari stasio mempuyai rata-rata kadar ostofosfor 3,84 mg per liter da simpaga baku 3,07 mg per liter, sedagka ke 12 sampel dari stasio 2 mempuyai rata-rata kadar ostofosfor 1,49 mg per liter da simpaga baku 0,8 mg per liter. Cari selag kepercayaa 95% utuk selisih rata-rata kadar ortofosfor sesugguhya pada kedua stasio tersebut, aggap bahwa pegamata berasal dari populasi ormal dega variasi berbeda. Pegamata berpasaga d t α/2 s d < µd < d + t α/2 s d Cotoh 7.8 Dalam makalah Essetial Elemets i Fresh ad Caed Tomatoers, yag diterbitka di Joural of Food Sciece (Jilid 46,1981), kaduga usur petig ditetuka dalam tomat segar da kalega megguaka spektrofotometer peyerapa atom. Kaduga tembaga dalam tomat segar dibadig dega kaduga tembaga tomat yag sama setelah di kalegka dicatat da hasilya seperti beriku Pasaga Tomat segar Tomat kaleg d i 1 0,066 0,085 0, ,079 0,088 0, ,069 0,091 0, ,076 0,096 0, ,071 0,093 0, ,087 0,095 0, ,071 0,079 0, ,073 0,078 0, ,067 0,065-0, ,062 0,068 0,006 4

5 7.8 Meaksir proporsi Peaksir titik utuk proporsi P dalam suatu percobaa biomial diberika oleh statistik ˆP = X dega X meyataka bayakya yag berhasil dalam usaha. Jadi proporsi sampel ˆp = x aka diguaka sebagai taksira titik utuk parameter p.meurut teorema limit pusat, utuk cukup besar, distribusi ˆp hampir ormal dega rataa µˆp = E(ˆp) = E( X p da variasi = p = p σp 2 = σ 2 x = σ2 x = pq 2 = pq 2 Sehigga dalam selag kepercayaa besar utuk p, hampira selag kepercayaa (1 α)100% utuk parameter biomial p adalah ˆP z α/2 ˆpˆq < p < ˆP + z α/2 ˆpˆq Cotoh 7.9 Pada suatu sampel acak = 500 keluarga yag memiliki pesawat televisi dikota hamilto, Kaada, ditemuka bahwa x = 340 memiliki tv bewara. Carilah selag kepercayaa 95% utuk proporsi sesugguhya dari keluarga yag memiliki tv bewara di kota tersebut. 7.9 Meaksir selisih dua proporsi. Diketahui ˆP1 ˆP 2 masig-masig berdistribusi hampir ormal dega µˆp1 ˆp 2 = p 1 p 2 dega variasi σˆp1 ˆp 2 = p1q1 + p2q2 gati p 1, p 2, q 1, da q 2 dega taksira ˆp 1 = x1, ˆp 2 = x2, ˆq 1 = 1 ˆp 1, da ˆq 2 = 1 ˆp 2, sehigga Selag kepercayaa sampel besar utuk p 1 p 2 (ˆp 1 ˆp 2 ) z α/2 ˆp 1 ˆq 1 + ˆp2 ˆq2 ˆp < p 1 p 2 < (ˆp 1 ˆp 2 ) + z 1 ˆq 1 ˆp2 ˆq2 α/2 + Cotoh 7.10 Suatu perubaha dalam cara pembuata suku cadag sedag direcaaka. Sampel diambil dari cara lama maupu yag baru utuk melihat apakah cara baru tersebut memberika perbaika. Bila 75 dari 1500 suku cadag yag berasal dari cara lama teryata cacat dari 80 dari 2000 yag berasal dari cara baru yag cacat, carilah selag kepercayaa 90% utuk selisih sesugguhya proporsi yag cacat dalam kedua cara Meaksir variasi Taksira selag utuk σ 2 dapat dituruka dega megguaka statistik X 2 = ( 1)S2 σ 2 sehigga Utuk selag kepercayaa utuk σ 2 5

6 ( 1)S 2 ) < σ 2 < ( 1)S2 ) X 2 X 2 α/2 1 α/2 Cotoh 7.11 Data berikut meyataka berat, dalam gram, 10 bugkus bibit sejeis taama yag dipasarka oleh suatu perusahaa : 46,4, 46,1, 45,8, 47,0, 46,1, 45,9, 45,8, 46,9, 45,2, da 46,0. Carilah selag kepercayaa 95% utuk variasi semua bugkusa bibit yag dipasarka perusahaa tersebut, aggap populasiya ormal Meaksir Nisbah dua variasi Selag kepercayaa utuk σ2 1 σ 2 2 s s 2 2 f α/2 (v 1,v 2 < σ2 1 σ2 2 < s2 1 s 2 2 f α/2 (v 1, v 2 Cotoh 7.12 Suatu selag kepercayaa utuk perbedaa rataa kadar ortofosfor, diukur dalam mg per liter, pada dua stasio di sugai James telah dihitug pada cotoh yag lalu, dega megaggap kedua variasi populasi ormal da tidak sama. Tugas pertemua0 Statistik Matematika ,7.2,7.3,7.4,7.5,da 7.6 halama79 omor halama91 omor da 7.9 Halama Nomor da 7.11 Halama 307 Nomor 7 6

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R PENAKSIRAN P E N A K S I R A N T I T I K P E N A K S I R A N S E L A N G S E L A N G K E P E R C A Y A A N U N T U K R A T A A N S E L A N G K E P E R C A Y A A N U N T U K V A R I A N S I M A 0 8 S T

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN 8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Penaksiran Titik Penaksiran Selang. Selang Kepercayaan untuk VARIANSI MA2081 STATISTIKA DASAR

Penaksiran Titik Penaksiran Selang. Selang Kepercayaan untuk VARIANSI MA2081 STATISTIKA DASAR PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA08 STATISTIKA DASAR MA08 STATISTIKA DASAR Utriwei Mukhaiyar 5 Oktober 0 Metode Peaksira Peaksira Titik

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

Bab 6 PENAKSIRAN PARAMETER

Bab 6 PENAKSIRAN PARAMETER Bab 6 PENAKSIRAN PARAMETER Stadar Kompetesi : Setelah megikuti kuliah ii, mahasiswa dapat memahami hubuga ilai sampel da populasi da meetuka distribusi samplig yag tepat utuk diguaka Kompetesi Dasar :

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4]

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4] PENAKIRAN Peaksira Titik Peaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk σ MA 8 Aalisis Data Utriwei Mukhaiyar Oktober 00 008 by UP & UM METODE PENAKIRAN. Peaksira Titik Nilai tuggal dari suatu

Lebih terperinci

DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA5182 Topik dalam Statistika I: Statistika Spasial 6 September 2012 Utriweni Mukhaiyar

DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA5182 Topik dalam Statistika I: Statistika Spasial 6 September 2012 Utriweni Mukhaiyar INFERENSI STATISTIKA DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA518 Topik dalam Statistika I: Statistika Spasial 6 September 01 Utriwei Mukhaiyar DISTRIBUSI SAMPEL Beberapa defiisi Suatu populasi terdiri

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel. II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel.

Lebih terperinci

Statistika Inferensia: Pengujian Hipotesis. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pengujian Hipotesis. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pegujia Hipotesis Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : = 0 Butuh pembuktia berdasarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : x 5 Hal itu merupaka

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur 0 III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai Mei 03. B. Populasi da Sampel Populasi dalam peelitia

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

METODE PENAKSIRAN PENAKSIRAN ILUSTRASI CONTOH. pendekatan metode tertentu. Nilai sesungguhnya dari suatu parameter yang berada di selang tertentu.

METODE PENAKSIRAN PENAKSIRAN ILUSTRASI CONTOH. pendekatan metode tertentu. Nilai sesungguhnya dari suatu parameter yang berada di selang tertentu. ENAKIRAN eaksira Titik eaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk MA 08 tatistika Dasar Dose : Udjiaa. asaribu Utriwei Mukhaiyar 6 April 009 METODE ENAKIRAN. eaksira Titik Nilai tuggal dari

Lebih terperinci

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand Hazmira Yozza Izzati Rahmi HG TEKNIK SAMPLING PCA SISTEMATIK Jurusa Matematika FMIPA - Uad Defiisi Samplig sistematik adalah metode pearika cotoh yag dilakuka dega cara memilih secara acak satu eleme dari

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2 Samplig Process ad Samplig Distributio Iferece : Poit ad Iterval Estimates Pertemua 1 CAKUPAN MATERI: Pemahama tetag Samplig Sampel Acak Sederhaa (Simple Radom Samplig SRS) Estimasi Titik (Poit Estimatio)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB LANDASAN TEORI. Kosep Dasar Peaksira Parameter Statistik iferesi adalah Statistik yag dega segala iformasi dari sampel diguaka utuk mearik kesimpula megeai karakteristik populasi dari maa sampel

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tujua Peelitia Peelitia ii bertujua utuk megetahui apakah terdapat perbedaa hasil belajar atara pegguaa model pembelajara Jigsaw dega pegguaa model pembelajara Picture ad Picture

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 1 Seputih Agung. Populasi dalam

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 1 Seputih Agung. Populasi dalam 19 III. METODE PENELITIAN A. Populasi da Sampel Peelitia ii dilaksaaka di SMP Negeri 1 Seputih Agug. Populasi dalam peelitia ii adalah seluruh siswa kelas VII SMP Negeri 1 Seputih Agug sebayak 248 siswa

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 9 III. METODE PENELITIAN A. Lokasi da Objek Peelitia Peelitia ii dilakuka di RPH Tejo Petak 10i, BKPH Parug Pajag KPH Bogor, Perum Perhutai Uit III Jawa Barat da Bate. Objek peelitia adalah waktu kerja

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan. 9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C.

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C. Page of. Diatara data berikut, yag merupaka data kualitatif adalah Tiggi hotel-hotel di Yogyakarta B. Bayakya mobil yag melewati jala Mawar C. Kecepata sepeda motor per jam D. Luas huta di Sumatra E. Meigkatya

Lebih terperinci

ANALISIS REGRESI DAN KORELASI SEDERHANA

ANALISIS REGRESI DAN KORELASI SEDERHANA LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.

Lebih terperinci

A.Interval Konfidensi pada Selisih Rata-rata

A.Interval Konfidensi pada Selisih Rata-rata A.Iterval Kofidei pada Seliih Rata-rata. Bila kita mempuyai da maig-maig adalah mea ample acak beba berukura da yag diambil dari populai dega ragam da diketahui, maka elag kepercayaa 00-% bagi - adalah

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling Jural Gradie Vol No Juli 5 : -5 Perbadiga Power of Test dari Uji Normalitas Metode Bayesia, Uji Shapiro-Wilk, Uji Cramer-vo Mises, da Uji Aderso-Darlig Dyah Setyo Rii, Fachri Faisal Jurusa Matematika,

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu III. METODOLOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika. Meurut Arikuto (99 :

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval

Lebih terperinci

PENGUJIAN HIPOTESA BAB 7

PENGUJIAN HIPOTESA BAB 7 PENGUJIAN IPOTESA BAB 7 Pedahulua ipotesis ( upo : lemah, Thesis : peryataa ) Diartika :. Peryataa yag masih lemah kebearaya da perlu dibuktika. Dugaa yag sifatya masih semetara ipotesis ii perlu utuk

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 22 BAB III METODE PENELITIAN 3.1. Metode Peelitia Pada bab ii aka dijelaska megeai sub bab dari metodologi peelitia yag aka diguaka, data yag diperluka, metode pegumpula data, alat da aalisis data, keragka

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter Pedahulua Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

Metode Statistika Pertemuan IX-X

Metode Statistika Pertemuan IX-X /7/0 Metode Statitika Pertemua IX-X Statitika Ifereia: Pedugaa Parameter Populai : Parameter Cotoh : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ditribui amplig PENDUGA TAK

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai 1. Pegertia Statistika PENDAHULUAN Statistika berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah. Statistika peyajia DATA utuk memperoleh

Lebih terperinci

Pendugaan Parameter 1

Pendugaan Parameter 1 Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai

Lebih terperinci

Analisa Data Statistik. Ratih Setyaningrum, MT

Analisa Data Statistik. Ratih Setyaningrum, MT Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

Teori Penaksiran. Oleh : Dadang Juandi

Teori Penaksiran. Oleh : Dadang Juandi Teori Peakira Oleh : Dadag Juadi Pedahulua Ada metode iferei : metode klaik da metode Baye dalam meakir arameter oulai Dalam metode klaik iferei didaarka ada iformai yag dieroleh melalui amel acak Dalam

Lebih terperinci