SIFAT-SIFAT INTEGRAL LIPAT

Ukuran: px
Mulai penontonan dengan halaman:

Download "SIFAT-SIFAT INTEGRAL LIPAT"

Transkripsi

1 TUGAS KALKULUS LANJUT SIFAT-SIFAT INTEGAL LIPAT Oleh: KAMELIANI 46 JUUSAN MATEMATIKA FAKULTAS MATEMATIKA AN ILMU PENGETAHUAN ALAM UNIVESITAS NEGEI MAKASSA 4

2 SIFAT-SIFAT INTEGAL LIPAT A. SIFAT-SIFAT INTEGAL LIPAT Integral lipat dua dan integral lipat tiga mewarisi hampir semua sifat-sifat integral tunggal. Berikut adalah sifat-sifat integral lipat dua (yang juga dimiliki integral sifat tiga). () Integral lipat dua bersifat linear, yaitu [f(x, y) + g(x, y)]da = f(x, y)da + g(x, y)da kf(x, y)da = k f(x, y) da, dimana k adalah konstanta (). Jika f(x, y) g(x, y) untuk setiap (x, y)di, maka berlaku f(x, y)da g(x, y) da (). jika f(x, y) untuk semua (x, y)di, dan S maka berlaku kf(x, y)da k f(x, y) S da, (4). Integral lipat dua bersifat aditif (dapat dijumlahkan) pada daerah yang saling berimpit pada hanya sebuah sisi atau ruas garis. f(x, y)da = f(x, y) S da + f(x, y) da S Universitas Negeri Makassar Page

3 Sifat-sifat integral tersebut membawa beberapa akibat yang perlu dikemukakan di sini. Misalkan m f(x, y) M untuk semua (x, y) di maka m (luas ) = m dxdy f(x, y)dx dy M dxdy = M (luas ) Satu sifat lainnya yang perlu dikemukakan adalah akibat dari sifat f(x, y) f(x, y) f(x, y) Berdasarkan sifat integral nomor, maka berlaku Atau f(x, y) dxdy f(x, y) dxdy f(x, y) dxdy f(x, y) dxdy f(x, y) dxdy Untuk fungsi f yang kontinu, ternyata urutan pengintegralan tidak menjadi masalah. Hal ini dituliskan dalam teorema berikut. Teorema urutan integral (Teorema Fubini) Misalkan f fungsi kontinu pada empat persegi panjang = [a, b]x[c, d], maka b d f(x, y) dxdy = [ f(x, y)dy] dx = [ f(x, y)dx] dy a c c a d b Universitas Negeri Makassar Page

4 B. PENEAPAN SIFAF-SIFAT INTEGAL ALAM MENYELESAIKAN MASALAH. Soal dan Pembahasan. Hitunglah integral berikut berdasarkan daerah yang diberikan! x eyda, = {(x, y) y, y x y } engan menerapkan sifat () dan (), maka x eyda y x = eydx dy = ye = (ye y )dy y = [ e y ey ] (ye)dy x y y y dy = (ye y ye)dy = ( e 4 4e) ( e e) = e 4 e. Hitunglah integral berikut berdasarkan daerah yang diberikan! 6x 4y da, adalah segitiga dengan titik puncak (,), (,), dan (5,) Pertama-tama harus dibuat persamaan garis yang melalui titik-titik puncak tersebut, agar bisa diketahui batas-batas daerahnya. Kita dapat membuat persamaan garis berdasarkan dua titik puncak yang diketahui. Persamaan garis yang melalui titik (,) dan (,) y y y y` = x x x x` Universitas Negeri Makassar Page 4

5 y = x y = x y = x + Persamaan garis yang melalui titik (,) dan (5,) y y y y` = x x x x` y = x 5 5y = 5 y = Persamaan garis yang melalui titik (,) dan (5,) y y y y` = x x x x` y = x 5 4y 4 = x y = x + Berikut ini adalah gambar segitiga yang dimaksud Universitas Negeri Makassar Page 5

6 Ada dua cara untuk mendeskripsikan daerah yang diarsir. Cara I Jika kita menggunakan fungsi x, maka daerah akan dibagi menjadi dua daerah karena fungsi yang berada di bawah berbeda bergantung pada nilai x. Pada kasus ini, daerah diberikan sebagai =, dimana = {(x, y) x, x + y } = {(x, y) x 5, x + y } engan menggunakan sifat (6), maka 6x 4y da = 6x 4y da + 6x 4y da = 6x 4y dydx + 6x 4y dydx x+ 5 x+ = (6x y y ) x+ dx + (6x y y ) dx x+ 5 = [x 8 + ( x + ) ]dx 5 + [ x + 5x 8 + ( x + ] ) dx = [x 4 8x ( x + ) ] + [ 4 x4 + 5x 8x + 4 ( x + ) ] 5 = 95 Perhatikan bahwa menyelesaikan integral pada fungsi berbentuk kuadrat tidak perlu dikalikan satu persatu. Lebih mudah diintegralkan dengan integral subsitusi yang telah dipelajari di Calculus I. Universitas Negeri Makassar Page 6

7 Cara II Jika kita menggunakan fungsi y, maka daerah tidak perlu dibagi menjadi dua bagian. Batas-batas untuk x adalah y = x + x = y + y = x + x = y = {(x, y) y + x y, y } Sehingga y 6x 4y da = (6x 4y)dxdy y+ y = x 4xy y + dy = y y + (y ) ( y + ) = [5y y + 4 (y )4 + ( y + ) 4] = 95 dy. Hitunglah nilai integral berikut dengan membalikkan urutan dari integralnya.! 9 x e y dydx x Perhatikan bahwa kita tidak bisa melakukan integral terhdap y karena kita membutuhkan y di depan eksponensial untuk melakukan integral terhadap y. Akan tetapi, jika urutan integral dibalik, maka kita bisa menghitung nilai integral di atas. Universitas Negeri Makassar Page 7

8 Membalik urutan integral artinya kita akan melakukan integral terhadap x terlebih dahulu kemudian terhadap y. Ketika membalik urutan integral, maka batas-batsanya juga akan berubah. Agar memudahkan mencari batas-batasnya, maka pertama-tama kita gambarkan daerah yang diberikan berdasarkan batas-batas yang telah diketahui. Berdasarkan integral di atas, batas-batas daerahnya adalah x x y 9 Berdasarkan pertidaksamaan di atas, batas bawah pada sumbu y adalah y = x^ dan batas atas pada sumbu y adalah y = 9 dengan batas pada sumbu x yaitu antara x = dan x =. Berikut ini adalah gambar daerah yang dimaksud Karena kita ingin mengintegralkan terhadap x terlebih dahulu,maka kita perlu menentukan batas-batas untuk x terlebih dahulu, kemudian batas-batas untuk y. Batas pada sumbu x adalah x y Batas pada sumbu y adalah y 9 Sehingga bentuk integralnya sekarang adalah sebagai berikut 9 x e y dydx = x e y dxdy x 9 y Universitas Negeri Makassar Page 8

9 Berikut adalah penyelesaian untuk bentuk integral yang baru 9 y 9 y x e y dxdy = e y x dxdy y = e y x dxdy 9 9 = e y [ 4 x4 ] y dy 9 = e y [ 4 x4 ] y dy 9 = 4 y e y dy (karena di integralkan terhadap x, maka y dianggap konstanta, sehingga berlaku sifat linear integral = 4 ey 9 = 4 (e79 ) C. Menerapkan Sifat-Sifat Integral untuk Menyelesaikan Soal Integral pada aerah Persegi Panjang dan Bukan Persegi Panjang Contoh Soal! aerah Persegi Panjang. Tentukan Volume benda pejal di bawah bidang z = x + y + pada = {(x, y): x, y (x + y + ) dxdy = [ x + yx + x] dy = ( + y + ) dy = [ y + y + y] = ( ) ( + + ) = 7 Universitas Negeri Makassar Page 9

10 daerah z = x + y + pada = {(x, y): x, y. Carilah Volume benda pejal yang berada di atas fungsi g(x,y) dan berada di bawah fungsi f(x,y) dengan batas-batas x dan y sebagai berikut. g(x, y) = 4 f(x, y) = 9 x y,5 x,5,5 y,5,5,5 Volume = [9 x y ( 4)]dydx,5,5,5 = [y x y y ],5,5,5,5 dx = {[ 655 4,5x ] [ ,5x ]} dx,5,5 = [ 5 4 x ] dx,5 = [ 5 4 x x ],5,5 = = 7,5 satuan volume Universitas Negeri Makassar Page

11 aerah bukan Persegi Panjang. Carilah volume benda yang dibatasi oleh persamaan bola x + y + z = 6 dan Paraboloida z = x + y Bentuk daerahnya adalah sebagai berikut Gambar di atas adalah daerah yang dimaksud yakni irisan antara bola dan paraboloida. Subsitusi z = x + y ke persamaan x + y + z = 6 sehingga diperoleh Universitas Negeri Makassar Page

12 x + y + (x + y ) = 6 x + y + (x + y ) 6 = (x + y )(x + y + ) = Untuk (x + y ) = maka y = ± x untuk (x + y + ) = tidak ada solusi Batas-batas untuk y adalah x y x sedangkan untuk x adalah x Sehingga dengan menggunakan maple, volume benda yang diperoleh adalah diperoleh x 6 x y (x + y ) x dydx = 4 6 π π = 7,74 Perhitungan dengan Maple Menggambar plot Universitas Negeri Makassar Page

13 . Menerapkan Sifat-Sifat Integral untuk Menyelesaikan Soal Integral dalam Koordinat Polar Soal an Pembahasan. Hitunglah nilai integral berikut dengan mengubahnya ke dalam koordinat polar terlebih dahulu. xy da adalah daerah di antara lingkaran dnegan jari-jari dan jari-jari 5. lingkaranlingkaran tersebut berpusat pada titik asal. aerahnya berada pada kuadran I. Pertama-tama kita harus mengubah daerah dalam koordinat polar. Lingkaran dengan jari-jari berarti r =, dan lingkaran dengan jari-jari 5 berarti r = 5. Karena daerah yang dimaksud berada di antara jari-jari tersebut, maka dapat dituliskan r 5 Sedangkan daerah yang dimaksud berada pada kuadran I, sehingga dapat dituliskan θ π iketahui bahwa dalam koordinat polar, x = r cos θ dan y = r sin θ, da = rdrd θ Sehingga, xy da π 5 = ( r cos θ)( r sin θ)rdrd θ π 5 = r (sin θ) drd θ π = [ 4 r4 (sin θ)] 5 d θ π = 4 [r 4 (sin θ)] 5 d θ = 69 4 π (sin θ) d θ (menggunakan sifat kelinearan integral) (menggunakan sifat kelinearan integral) Universitas Negeri Makassar Page

14 = 69 π 4 ( ) cos θ = Tentukan luas daerah yang dibatasi oleh r = + sin θ dan r = aerah yang dimaksud adalah sebagai berikut. Untuk mengetahui luas daerah di atas, maka terlebih dahulu perlu diketahui batas-batas untuk nilai θ dimana kurva saling berpotongan. Untuk mengetahui nilai θ bisa dilakukan dengan cara sebagai berikut. iketahui r = + sin θ dan r = apat dituliskan + sin θ = sin θ = maka θ = 7π 6, π 6 Universitas Negeri Makassar Page 4

15 Berikut ini adalah gambar daerah θ Kita tahu bahwa π 6 Jika kita gunakan 7π 6 adalah bentuk lain dari π 6 π θ maka kita akan menghitung daerah yang tidak di 6 arsir. Oleh karena itu batas yang digunakan adalah π 6 θ 7π 6 Untuk menentukan nilai r, fungsi yang terdekat dengan titik asal merupakan batas bawah, dan fungsi yang terjauh merupakan batas atas. Sehingga luas daerah adalah A = da 7π 6 + sin θ = rdrdθ π 6 7π 6 = r π 6 + sin θ dθ 7π 6 = ( sinθ + sin θ ) dθ π 6 7π 6 = ( sinθ cos (θ)) dθ π 6 Universitas Negeri Makassar Page 5

16 7π 6 = 7 θ 6 cos θ sin θ π 6 = + 4π = 4,87. Tentukan volume benda yang berada di bawah bola x + y + z = 9, di atas bidang z =, dan berada pada silinder x + y = 5 Kita tahu bahwa rumus untuk menentukan volume adalah V = f(x, y)da Ubah fungsi x + y + z = 9 ke bentuk z = 9 x + y. Kita mengambil nilai yang positif karena kita akan menghitung di atas bidang xy (z = ) Kini kita mempunyai dua fungsi yaitu z = dan z = 9 x + y Kita ingin menghitung daerah yang berada di bawah bola tetapi berada pada silinder x + y = 5. Untuk lebih jelasnya perhatikan gambar berikut. Jadi, daerah yang akan dicari volumenya adalah sebuah cilinder yang penutupnya merupakan sebuah bola. Universitas Negeri Makassar Page 6

17 Sebelumnya kita ubah terlebih dahulu batas-batasnya dalam koordinat polar. θ π r 5 (jari-jari silinder) Sehingga volume daerah yang dimaksud adalah V = 9 x y da π 5 = 9 r r dr dθ = (9 r ) π = (9 r ) π = 9 dθ π = 8π 5 5 dθ dθ (r = x + y ) 4. Hitunglah volume benda yang berada di antara fungsi z = x + y dan bidang z = 6. Jika disketsakan maka gambar grafiknya sebagai berikut. Universitas Negeri Makassar Page 7

18 Volume yang dicari adalah daerah selisih antara kedua kurva tersebut, yakni V = 6 da x + y da = 6 (x + y )da Agar memudahkan dalam mencari nilai volume, fungsi di atas di ubah dalam koordinat polar. emikian pula batas-batas daerahnya. Berikut ini adalah batas-batas daerahnya θ π r 4 z = 6 r Sehingga, V = 6 (x + y )da π 4 = (6 r ) r dr dθ π = (8r 4 r4 ) π = 64 dθ = 8π 4 dθ Universitas Negeri Makassar Page 8

19 AFTA PUSTAKA Purcell,dkk..Kalkulus Edisi Kesembilan Jilid. Jakarta: Erlangga Budi Wono Setya..Kalkulus Peubah Banyak dan Penggunannya.Bandung:ITB. (di akses 4 esember 4) (di akses 4 esember 4) (di akses 9 esember 4) m (di akses 5 Januari 5) (di akses 5 Januari 5) Universitas Negeri Makassar Page 9

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x,y) pada = {(x,y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Integral Lipat-Dua dalam Koordinat Kutub Statistika FMIPA Universitas Islam Indonesia Terdapat beberapa kurva tertentu pada suatu bidang yang lebih mudah dijelaskan dengan menggunakan koordinat Kutub.

Lebih terperinci

BAB VI INTEGRAL LIPAT

BAB VI INTEGRAL LIPAT BAB VI INTEGRAL LIPAT 6.1 Pendahuluan Pada kalkulus dan fisika dasar, kita melihat sejumlah pemakaian integral misal untuk mencari luasan, volume, massa, momen inersia, dsb.nya. Dalam bab ini kita ingin

Lebih terperinci

PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016)

PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016) PEMBAHAAN KII-KII OAL UA KALKULU PEUBAH BANYAK (TA 5/6) Arini oesatyo Putri DEEMBER 3, 5 UNIVERITA ILAM NEGERI UNAN GUNUNG DJATI BANDUNG Pembahasan oal Kisi-Kisi UA Kalkulus Peubah Banyak Tahun Ajaran

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Integral Lipat-Dua dalam Koordinat Kutub Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 214 / 2 Integral Lipat-Dua dalam Koordinat Kutub Terdapat beberapa kurva tertentu pada suatu

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

TUGAS MATEMATIKA INDUSTRI APLIKASI INTEGRAL DI BIDANG EKONOMI DAN KETEKNIKAN

TUGAS MATEMATIKA INDUSTRI APLIKASI INTEGRAL DI BIDANG EKONOMI DAN KETEKNIKAN NAMA : SISKA NUKE ENI PRADITA NIM : 125100301111044 KELAS : P TUGAS MATEMATIKA INDUSTRI APLIKASI INTEGRAL DI BIDANG EKONOMI DAN KETEKNIKAN A. APLIKASI INTEGRAL DI BIDANG EKONOMI Diartikan geometris dari

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

Hendra Gunawan. 5 Maret 2014

Hendra Gunawan. 5 Maret 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 Maret 014 Kuliah yang Lalu 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kurva di Bidang 10.5 SistemKoordinatPolar 11.1 Sistem

Lebih terperinci

CONTOH SOAL UAN INTEGRAL

CONTOH SOAL UAN INTEGRAL 1. Diketahui. Nilai a = a. 4 b. 2 c. 1 d. 1 e. 2 2. Nilai a. d. b. e. c. 3. Hasil dari a. b. d. e. c. 4. Hasil dari a. cos 6 x. sin x + C b. cos 6 x. sin x + C c. sin x + sin 3 x + sin 5 x + C d. sin x

Lebih terperinci

Luas daerah yang dibatasi oleh beberapa kurva dapat ditentukan dengan menghitung integral tertentu.

Luas daerah yang dibatasi oleh beberapa kurva dapat ditentukan dengan menghitung integral tertentu. IKA ARFIANI,S.T. Luas daerah yang dibatasi oleh beberapa kurva dapat ditentukan dengan menghitung integral tertentu. Andaikan kurva y = f(x) dan kurva y = g(x) kontinu pada interval a x b, dan kurva y

Lebih terperinci

Hendra Gunawan. 8 November 2013

Hendra Gunawan. 8 November 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 8 November 013 Apa yang Telah Dipelajari pada Bab 4 1. Notasi Sigma dan Luas Daerah di Bawah Kurva. Jumlah Riemann dan Integral Tentu 3. Teorema

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I atas Persegi Panjang Integral dalam uang Berdimensi n: atas Persegi Panjang Statistika FMIPA Universitas Islam Indonesia 2014 atas Persegi Panjang Sifat-Sifat Perhitungan pada Masalah-masalah yang dipecahkan

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 5 INTEGRAL LIPAT Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI -

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2. Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Penerapan Integral Lipat-Dua Atina Ahdika,.i, M.i tatistika FMIPA Universitas Islam Indonesia 214 Penerapan Integral Lipat-Dua Penerapan Integral Lipat-Dua Penerapan lain dari integral lipat-dua antara

Lebih terperinci

1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih

1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih ] 1 Pada Bab 1 ini akan dibahas antara lain sebagai berikut. 1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih Tema sentral dari bab ini adalah kalkulus dari fungsi peubah

Lebih terperinci

INTEGRAL RANGKAP DUA. diberikan daerah di bidang XOY yang berbentuk persegi panjang, {( )

INTEGRAL RANGKAP DUA. diberikan daerah di bidang XOY yang berbentuk persegi panjang, {( ) Matematika asar Misal INTEGAL ANGKAP UA diberikan daerah di bidang XO yang berbentuk persegi panjang, {( ) } =, y a b, y d dan fungsi dua peubah z = f (,y ) >. Maka untuk menghitung volume benda ruang

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Fungsi Implisit dan Fungsi Implisit Statistika FMIPA Universitas Islam Indonesia dan Fungsi Implisit Ingat kembali aturan rantai pada fungsi satu peubah! Jika y = f (x(t)), di mana baik f maupun t

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I atas Persegi Panjang Integral dalam uang Berdimensi n: atas Persegi Panjang Statistika FMIPA Universitas Islam Indonesia atas Persegi Panjang Masalah-masalah yang dipecahkan dengan menggunakan integral

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

Materi UTS. Matematika Optimisasi. Semester Gasal Pengajar: Hazrul Iswadi

Materi UTS. Matematika Optimisasi. Semester Gasal Pengajar: Hazrul Iswadi Materi UTS Matematika Optimisasi Semester Gasal 6-7 Pengajar: Hazrul Iswadi Daftar Isi Pendahuluan...hal Pertemuan...hal - Pertemuan...hal - 9 Pertemuan...hal - 5 Pertemuan 4...hal 6 - Pertemuan 5...hal

Lebih terperinci

PERANGKAT PEMBELAJARAN

PERANGKAT PEMBELAJARAN PEANGKAT PEMBELAJAAN MATA KULIAH KODE : KALKULUS LANJUT : MKK415515 DOSEN PENGAMPU : ISNA FAAHSANTI, M.Pd. POGAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGUUAN DAN ILMU PENDIDIKAN UNIVESITAS VETEAN BANGUN

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 7 INTEGRAL PERMUKAAN Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI

Lebih terperinci

Kalkulus II. Institut Teknologi Kalimantan

Kalkulus II. Institut Teknologi Kalimantan Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Kalkulus Teknologi II Kalimantan January 31, () 2018 1 / 71 Kalkulus II Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Teknologi Kalimantan

Lebih terperinci

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5. 6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)

Lebih terperinci

1 Nama Anggota 1:Darul Afandi ( ) Jawaban soal No 40. -

1 Nama Anggota 1:Darul Afandi ( ) Jawaban soal No 40. - Universitas Jember Jurusan Matematika - FMIPA MAM 56 Deadline: Wednesday, 9 ; :55 Analisis Kompleks Tugas Template Jawaban Nama Kelompok: Group J Nama Anggota:. Darul Afandi (8). Wahyu Nikmatus Sholihah

Lebih terperinci

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013 Soal dan Pembahasan UN Matematika SMA IPA Tahun 013 LOGIKA MATEMATIKA p siswa rajin belajar ; q mendapat nilai yang baik r siswa tidak mengikuti kegiatan remedial ~ r siswa mengikut kegiatan remedial Premis

Lebih terperinci

Matematika Dasar INTEGRAL PERMUKAAN

Matematika Dasar INTEGRAL PERMUKAAN Matematika asar INTEGRAL PERMUKAAN Misal suatu permukaan yang dinyatakan dengan persamaan z = f( x,y ) dan merupakan proyeksi pada bidang XOY. Bila diberikan lapangan vektor F( x,y,z ) = f( x,y,z ) i +

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =

Lebih terperinci

Kalkulus Peubah Banyak Modul Pembelajaran. January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd

Kalkulus Peubah Banyak Modul Pembelajaran. January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd Kalkulus Peubah Banyak Modul Pembelajaran January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd IDENTITAS MAHASISWA NAMA : KLS/NIM :. KELOMPOK:. A l f i a n i A t h m a P u t r i R

Lebih terperinci

Bagian 7 Koordinat Kutub

Bagian 7 Koordinat Kutub Bagian 7 Koordinat Kutub Bagian 7 Koordinat Kutub mempelajari bagaimana teknik integrasi yang telah Anda pelajari dalam bagian sebelumnya dapat digunakan untuk menyelesaikan soal yang berhubungan dengan

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I

UJIAN TENGAH SEMESTER KALKULUS I UJIAN TENGAH SEMESTER KALKULUS I Senin, 9 April 001 Waktu :,5 jam 1. Tentukan dy dx jika (a) y 5x (x + 1) (b) y cos x.. Dengan menggunakan de nisi turunan, tentukan f 0 (x) untuk fungsi f berikut f (x)

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 1 Maret 017 Bab Sebelumnya 9.1 Barisan Tak Terhingga 9. Deret Tak Terhingga 9.3 Deret Positif: Uji Integral 9.4 Deret Positif: Uji Lainnya 9.5 Deret

Lebih terperinci

Pertemuan Minggu ke Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai

Pertemuan Minggu ke Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai Pertemuan Minggu ke-10 1. Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai 1. Keterdiferensialan Pada fungsi satu peubah, keterdiferensialan f di x berarti keujudan derivatif f (x).

Lebih terperinci

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat pada Bidang Datar Disusun dengan pasangan angka urut (ordered pair) (a,b) : a dan b berturut- turut adalah

Lebih terperinci

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22 TERAPAN INTEGRAL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 22 Topik Bahasan 1 Luas Daerah Bidang Rata 2 Nilai Rataan Fungsi (Departemen Matematika

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika Integral - Latihan Ulangan Doc. Name: ARMAT098 Version : 0 0 halaman 0. f (x)=x +x+ maka f(x) =... x +x +x +c x +x +x+c x - x +x+c x +x +x+c x - x +x+c 0. 0. 0. 0 x +c x c x

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Jurusan Matematika FMIPA Unsyiah September 9, 2011 Sebuah kurva bidang (plane curve) ditentukan oleh pasangan persamaan parametrik x = f(t), y = g(t), t dalam I dengan f dan g kontinu pada selang I. I

Lebih terperinci

Integral Garis. Sesi XIII INTEGRAL 12/7/2015

Integral Garis. Sesi XIII INTEGRAL 12/7/2015 2//25 Mata Kuliah : Matematika Rekayasa Lanjut Kode MK : TK 85 Pengampu : Achfas Zacoeb esi XIII INTEGRAL e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 823398339 Integral Garis Dari Gambar.,

Lebih terperinci

Integral Vektor. (Pertemuan VII) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Integral Vektor. (Pertemuan VII) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TK 47 Matematika III Integral Vektor (Pertemuan VII) Dr. AZ Jurusan Teknik ipil Fakultas Teknik Universitas Brawijaya Teorema Gauss Definisi : Jika V adalah volume yang dibatasi oleh suatu permukaan tertutup

Lebih terperinci

Pada integral diatas, dalam mencari penyelesaiannya, pertama diintegralkan terlebih dahulu terhadap x kemudian diintegralkan lagi terhadap y.

Pada integral diatas, dalam mencari penyelesaiannya, pertama diintegralkan terlebih dahulu terhadap x kemudian diintegralkan lagi terhadap y. PENDAHULUAN Pada bagian ini akan dibahas perluasan integral tertentu ke bentuk integral lipat dua dari fungsi dua peubah Akan dibahas bentukbentuk integral lipat dalam koordinat kartesius koordinat kutub

Lebih terperinci

Suryadi Siregar Metode Matematika Astronomi 2

Suryadi Siregar Metode Matematika Astronomi 2 Suryadi Siregar Metode Matematika Astronomi Bab 4 Integral Garis dan Teorema Green 4. Integral Garis Definisi : Misal suatu lintasan dalam ruang dimensi m pada interval [a,b]. Andaikan adalah medan vektor

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4 a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 4 a home base to excellence TIU : Mahasiswa dapat memahami turunan fungsi dan aplikasinya TIK : Mahasiswa

Lebih terperinci

DIFERENSIAL TOTAL. 1 Kalkulus Lanjut Blog: aswhat.wordpress.com. dz dx dy x y dx x y dy. dz , ,04 0,65

DIFERENSIAL TOTAL. 1 Kalkulus Lanjut   Blog: aswhat.wordpress.com. dz dx dy x y dx x y dy. dz , ,04 0,65 DIFERENSIAL TOTAL 1. Pendahuluan Ingat kembali konsep diferensial pada fungsi satu variabel y = f(x). suatu diferensial dx terhadap variabel bebas didefinisikan sebagai: dy = f (x) dx selanjutnya, misalkan

Lebih terperinci

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil

Lebih terperinci

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz dan Turunan Tingkat Tinggi Penurunan Implisit Laju yang Berkaitan

Lebih terperinci

Hendra Gunawan. 11 April 2014

Hendra Gunawan. 11 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan emester II, 2013/2014 11 April 2014 Kuliah ang Lalu 12.1 Fungsi dua (atau lebih) peubah 12.2 Turunan Parsial 12.3 Limitdan Kekontinuan 12.4 Turunan fungsi dua peubah

Lebih terperinci

FUNGSI KHUSUS DALAM BENTUK INTEGRAL

FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI FAKTORIAL Definisi n e d n! Buktikan bahwa :!! e d e d e ( ) Terbukti FUNGSI Gamma Definisi ( ) p p e d ; p > Hubungan fungsi Gamma dengan fungsi Faktorial (

Lebih terperinci

A. Distribusi Gabungan

A. Distribusi Gabungan HANDOUT PERKULIAHAN Mata Kuliah : Statistika Matematika Pertemuan Ke : 5 Pokok Bahasan : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib. : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib. : Aip Saripudin, M.T. DESKIPSI MATA KULIAH EL-121 Matematika Teknik I: S1, 3 SKS, Semester II Mata kuliah ini merupakan kuliah lanjut. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

A. Distribusi Gabungan

A. Distribusi Gabungan HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 132

Pembahasan Matematika IPA SNMPTN 2012 Kode 132 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode Oleh Tutur Widodo. Lingkaran (x 6) + (y + ) = menyinggung garis x = di titik... (, 6) d. (, ) (, 6) e. (, ) c. (,

Lebih terperinci

Jurusan Matematika FMIPA-IPB

Jurusan Matematika FMIPA-IPB Jurusan Matematika FMIPA-IPB Ujian Kedua Semester Pendek T.A 4/5 KALKULUS/KALKULUS Jum at, Agustus 4 (Waktu : jam) SETIAP SOAL BERNILAI. Tentukan (a) + (b) p 4 + 5. Periksa apakah Teorema Nilai Rata-rata

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 483

Pembahasan Matematika IPA SNMPTN 2012 Kode 483 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode 8 Oleh Tutur Widodo. Di dalam kotak terdapat bola biru, 6 bola merah dan bola putih. Jika diambil 8 bola tanpa pengembalian,

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Statistika FMIPA Universitas Islam Indonesia Salah satu jenis generalisasi integral tentu b f (x)dx diperoleh dengan menggantikan himpunan [a, b] yang kita integralkan menjadi himpunan berdimensi dua dan

Lebih terperinci

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50 TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika Kode Paket 578 Oleh : Fendi Alfi Fauzi 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1 PERSIAPAN TES SKL X, MATEMATIKA 1. Pangkat, Akar dan Logaritma Menentukan hasil operasi bentuk pangkat (1 6) Menentukan hasil operasi bentuk akar (7 11) Menentukan hasil operasi bentuk logarithma (12 15)

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia

BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia BAB III Diferensial Departemen Teknik Kimia Universitas Indonesia BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz

Lebih terperinci

AB = c, AC = b dan BC = a, maka PQ =. 1

AB = c, AC = b dan BC = a, maka PQ =. 1 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 9. Jika a, b, maka pernyataan di bawah ini yang benar adalah A. B. a b ab C. ab b a D. ab ab E. ab ab ab b a karena pada jawaban terdapat ab maka selesaikan

Lebih terperinci

Bentuk Volumetric Irisan Kerucut (Persiapan Modul Cara Menghitung Volume Irisan Kerucut)

Bentuk Volumetric Irisan Kerucut (Persiapan Modul Cara Menghitung Volume Irisan Kerucut) Bentuk Volumetric Irisan Kerucut (Persiapan Modul Cara Menghitung Volume Irisan Kerucut) izky Maiza,a), Triati Dewi Kencana Wungu,b), Lilik endrajaya 3,c) Magister Pengajaran Fisika, Fakultas Matematika

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MT PELJRN Mata Pelajaran Jenjang Kelompok : Matematika : SMK : Teknologi, Kesehatan dan Pertanian WKTU PELKSNN Hari : Sabtu Tanggal : 9 Januari 0 Jam : 07.00 09.00 PETUNJUK UMUM Isikan identitas nda ke

Lebih terperinci

Bab 1 : Skalar dan Vektor

Bab 1 : Skalar dan Vektor Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

MATEMATIKA TEKNIK II BILANGAN KOMPLEKS

MATEMATIKA TEKNIK II BILANGAN KOMPLEKS MATEMATIKA TEKNIK II BILANGAN KOMPLEKS 2 PENDAHULUAN SISTEM BILANGAN KOMPLEKS REAL IMAJINER RASIONAL IRASIONAL BULAT PECAHAN BULAT NEGATIF CACAH ASLI 0 3 ILUSTRASI Carilah akar-akar persamaan x 2 + 4x

Lebih terperinci

Catatan Kuliah FI2101 Fisika Matematik IA

Catatan Kuliah FI2101 Fisika Matematik IA Khairul Basar atatan Kuliah FI2101 Fisika Matematik IA Semester I 2015-2016 Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung Bab 6 Analisa Vektor 6.1 Perkalian Vektor Pada bagian

Lebih terperinci

Hendra Gunawan. 16 Oktober 2013

Hendra Gunawan. 16 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 16 Oktober 2013 Latihan (Kuliah yang Lalu) 1. Diketahui g(x) = x 3 /3, x є [ 2,2]. Hitung nilai rata rata g pada [ 2,2] dan tentukan c є ( 2,2)

Lebih terperinci

UM UGM 2017 Matematika Dasar

UM UGM 2017 Matematika Dasar UM UGM 07 Matematika Dasar Soal UTUL UGM - Matematika Dasar 07 (Kode Soal 84) Halaman 0. Tujuh bilangan membentuk barisan aritmetika. Jika jumlah tiga bilangan pertama sama dengan 33 dan jumlah tiga bilangan

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011 Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u = (a, -, -) dan v = (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A.

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci

Pembahasan SNMPTN 2011 Matematika IPA Kode 576

Pembahasan SNMPTN 2011 Matematika IPA Kode 576 Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.

Lebih terperinci

0 D (Pratama Rahardja, Mandala Manurnung,2004)

0 D (Pratama Rahardja, Mandala Manurnung,2004) NAMA : TITIK ASIATUN NIM : 125100301111054 TUGAS : MATEMATIKA INDUSTRI APLIKASI INTEGRAL DI BIDANG EKONOMI DAN KETEKNIKAN 1. Aplikasi di Bidang Ekonomi Contoh penggunan integral dalam dunia ekonomi salah

Lebih terperinci

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran

Lebih terperinci

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Modul 1 Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Drs. Sardjono, S.U. M PENDAHULUAN odul 1 ini berisi uraian tentang persamaan diferensial, yang mencakup pengertian-pengertian dalam

Lebih terperinci

Modul Praktikum Kalkulus II dengan Menggunakan Matlab

Modul Praktikum Kalkulus II dengan Menggunakan Matlab Modul Praktikum Kalkulus II dengan Menggunakan Matlab disusun oleh : Arif Muchyidin, S.Si., M.Si. NIP. 19830806 201101 1 009 TADRIS MATEMATIKA INSTITUT AGAMA ISLAM NEGERI SYEKH NURJATI CIREBON 2016 KATA

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

Matematika Ujian Akhir Nasional Tahun 2004

Matematika Ujian Akhir Nasional Tahun 2004 Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke

Lebih terperinci

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO REFERENSI E-BOOK REFERENSI ONLINE SOS Mathematics http://www.sosmath.com/diffeq/diffeq.html Wolfram Research Math World http://mathworld.wolfram.com/ordinarydifferentialequation.h

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

MATEMATIKA TEKNIK (E3-1)

MATEMATIKA TEKNIK (E3-1) UJIAN NASIONAL SMK Tahun Pelajaran 004/005 MATEMATIKA TEKNIK (E-) KELOMPOK TEKNIK INDUSTRI ( U T A M A ) P MATA PELAJARAN MATEMATIKA TEKNIK KELOMPOK : TEKNIK INDUSTRI Hari/Tanggal : Rabu, Juni 005 Jam

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKIPSI MATA KULIAH EL-... Matematika Lanjut: S1, 3 SKS, Semester II Mata kuliah ini merupakan kuliah lanjut. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 10 Maret 01 Kuliah ang Lalu 10.1- Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1 Sistem

Lebih terperinci