Hendra Gunawan. 16 Oktober 2013
|
|
|
- Suhendra Lesmana
- 8 tahun lalu
- Tontonan:
Transkripsi
1 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/ Oktober 2013
2 Latihan (Kuliah yang Lalu) 1. Diketahui g(x) = x 3 /3, x є [ 2,2]. Hitung nilai rata rata g pada [ 2,2] dan tentukan c є ( 2,2) sedemikian sehingga g (c) samadengan nilai rata rata g pada [ 2,2]. 2. Buktikan jika f (x) () = 0 untuk setiap x є (a,b), maka f(x) bernilai konstan pada selang (a,b). 10/16/2013 (c) Hendra Gunawan 2
3 Sasaran Kuliah Hari Ini 3.8 Anti Turunan dan Integral Tak Tentu Menentukan anti turunanatauintegral tak tentu dari suatu fungsi yang diberikan. 3.9 Pengantar Persamaan Diferensial Menyelesaikan persamaan diferensial sederhana, dengan atau tanpasyarat tambahan. 10/16/2013 (c) Hendra Gunawan 3
4 MA1101 MATEMATIKA 1A 3.8 ANTI TURUNAN DAN INTEGRAL TAK TENTU Menentukan anti turunanatauintegral tak tentu dari suatu fungsi yang diberikan. 10/16/2013 (c) Hendra Gunawan 4
5 Anti Turunan Fungsi F disebut anti turunan turunan f pada I apabila F (x) = f(x) untuk setiap x є I. Sebagai contoh, F 1 (x) = x merupakan anti turunan f(x) = 4x 3 pada R. Demikian juga F = 4 2 (x) x + 5 merupakan anti turunan f(x) = 4x 3 pada R. Secara umum, keluarga fungsi F(x) = x 4 + C (dengan C konstanta) merupakan anti turunan f(x) = 4x 3 pada R, karena F (x) () = 4x 3 = f(x) ) untuk setiap x є R. 10/16/2013 (c) Hendra Gunawan 5
6 Integral Tak Tentu Keluarga fungsi anti turunan turunan dari f(x) disebut integral tak tentu dari f(x), dan dilambangkan dengan f(x) dx. Jadi, sebagai contoh, 4x 3 dx= x 4 + C, dengan C menyatakan konstanta sembarang. 10/16/2013 (c) Hendra Gunawan 6
7 Ilustrasi: Integral Tak Tentu Secara grafik, bila kita mengetahui sebuah antiturunan dari f(x), maka integral tak tentu darif( f(x) ) adalah keluarga fungsi yang anggotanya merupakan pergeseran ke atas atau ke bawah dari anti turunan tsb. Semua anggota keluarga fungsi tsb mempunyai turunan yang sama, yaitu f(x). Keluarga fungsi yang turunannya sama 10/16/2013 (c) Hendra Gunawan 7
8 Aturan Integral Tak Tentu (1) Terkait dengan aturan turunan yang telah kita pelajari sebelumnya, kita mempunyai teoremateorema berikut tentang integral tak tentu. Teorema 1 (Aturan Pangkat). Jika r є Q, r 1, maka x r dx = x r+1 /(r+1) + C. Contoh 1 (a) x 2 dx = x 3 /3 + C. (b) x 2 dx = x 1 + C. 10/16/2013 (c) Hendra Gunawan 8
9 Aturan Integral Tak Tentu (2) Teorema 2 (Integral Tak Tentu sin x dan cos x) sin x dx = cos x + C; cos x dx = sin x + C. Catatan. Jangan tertukar: turunan dari sin x adalah cos x, sedangkan anti turunant nan dari sin x adalah cos x + C. 10/16/2013 (c) Hendra Gunawan 9
10 Aturan Integral Tak Tentu (3) Teorema 3 (Kelinearan Integral Tak Tentu) Jika f dan g fungsi dan k adalah konstanta, maka dan k.f(x) )dx= k. f(x) )dx [f(x) + g(x)] ()]dx= f(x) )dx+ g(x) ()dx. Contoh3. (6x 2 + sin x) dx= 2 3x 2 dx+ sin x dx = 2x 3 cosx + C. 10/16/2013 (c) Hendra Gunawan 10
11 Aturan Integral Tak Tentu (4) Teorema 4 (Aturan Pangkat yang Diperumum) Jika r є Q, r 1 dan g adalah fungsi yang mempunyai turunan, maka [g(x)] r.g (x) dx = [g(x)] r+1 /(r+1) + C. Bukti. Dengan Aturan Rantai, turunan fungsi di ruas kanan adalah [g(x)] r.g (x). Terbukti. Contoh 4. Tentukan (x 2 + 1) 5.2x dx. Misal u = g(x) = x 2 + 1, du = 2x dx. Maka (x 2 + 1) 5.2x dx = u 5 du = u 6 /6 + C = (x 2 + 1) 6 /6 + C. 10/16/2013 (c) Hendra Gunawan 11
12 Contoh 5. Jika g(x) ) = sin x, maka g (x) () = cos x. Jadi, menurut Aturan Pangkat yang Diperumum, kita peroleh sin x.cos x dx = g(x) g (x) dx = [g(x)] 2 /2 + C = (sin x) 2 /2 + C. 10/16/2013 (c) Hendra Gunawan 12
13 Latihan Tentukan integral tak tentu di bawah ini. 1. (x 2 + x 2 ) dx. 2. (x 3 + 1).x 2 dx. 3. sin 2 x.sin 2x dx. 10/16/2013 (c) Hendra Gunawan 13
14 MA1101 MATEMATIKA 1A 3.9 PENGANTAR PERSAMAAN DIFERENSIAL Menyelesaikan persamaan diferensial sederhana, dengan atau tanpa syarat tambahan. 10/16/2013 (c) Hendra Gunawan 14
15 Persamaan Diferensial Jika F (x) () = f(x), maka f(x) ) dx = F(x) () + C. Dalam bahasa diferensial: Jika F (x) = f(x), maka (*) () df(x) () = F (x) () dx = f(x) ) dx sehingga df(x) () = f(x) ) dx = F(x) () + C. Persamaan (*) merupakan contoh persamaan diferensial yang (paling) sederhana. Persamaan diferensial banyak dijumpai dalam matematika, fisika, danbidangilmulainnya ilmu lainnya. 10/16/2013 (c) Hendra Gunawan 15
16 Contoh 1 Tentukan persamaan kurva yang melalui titik (1,2) dan mempunyai turunan 2x di setiap titik (x,y) yang dilaluinya. Jawab. Misalkan persamaan kurva tersebut adalah y = f(x). Maka, dalam bahasa diferensial, informasi di atas mengatakan bahwa dy= 2x dx. Integralkan kedua ruas, dy = 2x dx. sehingga kita peroleh y + C 1 = x 2 + C 2 atau y = x 2 + C, dengan C = C 2 C 1. 10/16/2013 (c) Hendra Gunawan 16
17 Persamaan y = x 2 + C menyatakan keluarga kurva yang mempunyai turunan 2x di titik (x,y). Sekarang kita akan mencari anggota keluarga kurva tersebut (1,2) yang melaluititik (1,2). Dalam hal ini kita mempunyai persamaan 2 = C, sehingga mestilah C = 1. Jadi persamaan kurva yang kita cari adalah y = x /16/2013 (c) Hendra Gunawan 17
18 Contoh 2 Sebuah benda jatuh dari ketinggian 100 m dengan kecepatan awal 0 m/s. Karena gravitasi, benda tsb mengalami percepatan 9,8 m/s 2. Tentukan ketinggian benda tsb pada saat t. Jawab. Misal v = v(t) = kecepatan benda dan h = h(t) = ketinggian benda pada saat t. Maka dv = 9,8 dt, sehingga v = 9,8t + C. Karena v(0) = 0, maka C = 0. Selanjutnya dh = 9,8t dt, sehingga h = 4,9t 2 + D. Diketahui h(0) = 100, maka D = 100. Jadi h = 100 4,9t 2. 10/16/2013 (c) Hendra Gunawan 18
19 Catatan Persamaan ketinggian h = t 4,9t 2 tentu saja berlaku ketika benda ber ada di atas permukaan tanah. Karena itu daerah asal fungsi ini adalah himpunan bilangan t 0 yang membuat h 0, yaitu 0 t 4,517. Dalam hal ini, benda tsb mencapai permukaan tanah dalam 4,517 detik. 10/16/2013 (c) Hendra Gunawan 19
20 Contoh 3: Kecepatan Meninggalkan Bumi Gaya gravitasi Bumi pada benda bermassa m dan berjarak s dari pusat Bumi adalah dlhf = mgr 2 /s 2, dengan g = 9,8 m/s 2 dan R km. Dapat di buktikan bahwa benda yang diluncurkan ke atas dengan kecepatan awal v 0 2gR 11 km/s takkan jatuh kembali ke Bumi (bila gesekan dengan udara diabaikan). Menurut Hukum II Newton, F = ma m.a, shg F = m.dv/dt = m.dv/ds.ds/dt = mv.dv/ds. Akibatnya, vdv= v.dv mgr 2 s 2.ds, dan dari sini diperoleh v 2 = 2gR 2 s 1 + v 02 2gR. Untuk s besar, suku pertama di ruas kanan dapat diabaikan. Jadi, v akan tetap positif bila v 0 2gR. 10/16/2013 (c) Hendra Gunawan 20
21 Latihan 1. Tentukan fungsi y = f(x) ) sedemikian sehingga f (x) = 3x dan f(1) = Diketahui suatu persamaan kurva melalui titik (0,3) dan mempunyai turunan x/y di setiap titik (x,y) yang dilaluinya. Tentukan persamaan kurva tersebut. 3. Sebuah benda jatuh dari ketinggian 80 m dengan kecepatan awal 5 m/s. Tentukan ke cepatan dan ketinggiannya pada saat t = 1 s. 10/16/2013 (c) Hendra Gunawan 21
Catatan Kuliah KALKULUS II BAB V. INTEGRAL
BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut
Integral Tak Tentu. Modul 1 PENDAHULUAN
Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti
Hendra Gunawan. 25 September 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 25 September 2013 Kuis 1 (Kuliah yang Lalu) 1. Selesaikan pertaksamaan 2x 3 < x. 2. Diketahui i f(x) ) = x 2 sin (1/x) untuk x 0 dan f(0) = 0.
Hendra Gunawan. 11 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 11 Oktober 2013 Latihan (Kuliah yang Lalu) Dengan memperhatikan: daerah asal dan daerahhasilnya, titik titik potong dengan sumbu koordinat, asimtot
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 5 KUANTOR II: METODE MEMILIH (c) Hendra Gunawan (2015) 2 Masih Berurusan dengan Kuantor Sekarang kita akan membahas metode memilih,
Hendra Gunawan. 2 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 2 Oktober 2013 Apa yang Telah Dipelajari pada Bab 2 2.1 Dua Masalah Satu Tema 2.2 Turunan 2.3 Aturan Turunan 2.4 Turunan Fungsi Trigonometri 2.5Aturan
Hendra Gunawan. 25 April 2014
MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 April 014 Kuliah yang Lalu 15.11 Persamaan Diferensial Linear Orde, Homogen 15. Persamaan Diferensial Linear Orde, Tak Homogen 15.3 Penggunaan Persamaan
MA1201 MATEMATIKA 2A Hendra Gunawan
MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 1 Maret 017 Bab Sebelumnya 9.1 Barisan Tak Terhingga 9. Deret Tak Terhingga 9.3 Deret Positif: Uji Integral 9.4 Deret Positif: Uji Lainnya 9.5 Deret
Persamaan Diferensial
Orde Satu Jurusan Matematika FMIPA-Unud Senin, 18 Desember 2017 Orde Satu Daftar Isi 1 Pendahuluan 2 Orde Satu Apakah Itu? Solusi Pemisahan Variabel Masalah Gerak 3 4 Orde Satu Pendahuluan Dalam subbab
Catatan Kuliah MA1123 Kalkulus Elementer I
Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):
Integral yang berhubungan dengan kepentingan fisika
Integral yang berhubungan dengan kepentingan fisika 14.1 APLIKASI INTEGRAL A. Usaha Dan Energi Hampir semua ilmu mekanika ditemukan oleh Issac newton kecuali konsep energi. Energi dapat muncul dalam berbagai
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit
Hendra Gunawan. 18 September 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 18 September 2013 Review: Teorema Nilai Antara Jika f kontinu pada [a,b],, f(a) < 0 dan f(b) > 0 (atau sebaliknya, f(a) > 0 dan f(b) < 0), maka
Gambar 1. Gradien garis singgung grafik f
D. URAIAN MATERI 1. Definisi dan Rumus-rumus Turunan Fungsi a. Definisi Turunan Sala satu masala yang mendasari munculnya kajian tentang turunan adala gradien garis singgung. Peratikan Gambar 1. f(c +
BAB II LANDASAN TEORI
BAB I PENDAHULUAN 1.1 Latar Belakang Matematika sebagai salah satu ilmu dasar, semakin dirasakan interaksinya dengan bidangbidang ilmu lainnya, seperti ekonomi dan teknologi. Peran matematika dalam interaksi
BAB I INTEGRAL TAK TENTU
BAB I INTEGRAL TAK TENTU TUJUAN PEMBELAJARAN: 1. Setelah mempelajari materi ini mahasiswa dapat menentukan pengertian integral sebagai anti turunan. 2. Setelah mempelajari materi ini mahasiswa dapat menyelesaikan
Persamaan Diferensial Biasa
Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa
KALKULUS MULTIVARIABEL II
Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang
: Pramitha Surya Noerdyah NIM : A. Integral. ʃ f(x) dx =F(x) + c
Nama : Pramitha Surya Noerdyah NIM : 125100300111022 Kelas/Jur : L/TIP A. Integral Integral dilambangkan oleh ʃ yang merupakan lambang untuk menyatakan kembali F(X )dari F -1 (X). Hitung integral adalah
Hendra Gunawan. 5 Maret 2014
MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 Maret 014 Kuliah yang Lalu 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kurva di Bidang 10.5 SistemKoordinatPolar 11.1 Sistem
MA1201 KALKULUS 2A Do maths and you see the world
Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan
Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu.
Kuliah PD Pertemuan ke-1: Motivasi: 1. Mekanika A. Hukum Newton ke-: Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Misalkan F: gaya, m: massa benda, a: percepatan,
Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN
BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz dan Turunan Tingkat Tinggi Penurunan Implisit Laju yang Berkaitan
= F (x)= f(x)untuk semua x dalam I. Misalnya F(x) =
Nama : Deami Astenia Purtisari Nim : 125100300111014 Kelas : L / TIP A. Integral Integral merupakan konsep yang bermanfaat, kegunaan integral terdapat dalam berbagai bidang. Misalnya dibidang ekonomi,
INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta
INTEGRAL Jika f(x) = F (x) adalah turunan pertama dari fungsi F(x) maka F(x) adalah antiturunan dari f(x)dan ditulis dengan F(x) = (dibaca integral f(x) terhadap x) = lambang integral, f(x) = integran.
MA3231 Analisis Real
MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 5. Kalkulus Diferensial 5.1 Konsep Turunan Beberapa Definisi yang Setara Kekontinuan dan Keterdiferensialan secara Kontinu 5.2 Sifat-Sifat
BAB I PENDAHULUAN. Kompetensi
BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 27 Januari 2017 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial 7.3 Integral Trigonometrik
AB = c, AC = b dan BC = a, maka PQ =. 1
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 9. Jika a, b, maka pernyataan di bawah ini yang benar adalah A. B. a b ab C. ab b a D. ab ab E. ab ab ab b a karena pada jawaban terdapat ab maka selesaikan
MA3231 Analisis Real
MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017
BAB I PENDAHULUAN. Kompetensi
BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan
INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP
A. Soal dan Pembahasan. ( x ) dx... Jawaban : INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP ( x) dx x dx x C x C x x C. ( x 9) dx... x Jawaban : ( x 9) dx. (x x 9) dx x 9x C x x x. (x )(x + ) dx =.
Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70
Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline
Hendra Gunawan. 26 Februari 2014
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan
Hendra Gunawan. 13 September 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 13 September 2013 Latihan (Kuliah yang Lalu) sin t 1. Menggunakan fakta bahwa lim 1, t0 hitunglah: t 2 sin( 2 ) a. limsin t.cot 2t b. lim t 0 0
log2 PEMBAHASAN SOAL TRY OUT = = 2 1 = 27 8 = 19 Jawaban : C = = = 2( 15 10) Jawaban : B . 4. log3 1 2 (1) .
TRY OUT AKBAR UN SMA 08 PEMBAHASAN SOAL TRY OUT. 9 6 4 8 7 Jawaban : C 4 4 = = = 7 8 4 = 9. 5 + = 0 5 = 0 5 = 5 0 = ( 5 0). log5 5 log8 log6 4 log log4 = log5 5 4 log log log6 log4 =. log5 5. 4. log log
Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61
Matematika I: Turunan Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 61 Outline 1 Garis Singgung Dadang Amir Hamzah Matematika I Semester I 2015 2 / 61 Outline 1 Garis Singgung
= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh
JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )
BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1.
BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menentukan solusi persamaan gerak jatuh bebas berdasarkan pendekatan
Keep running VEKTOR. 3/8/2007 Fisika I 1
VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor
Hendra Gunawan. 23 April 2014
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 23 April 2014 Kuliah ang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13.2 Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan
BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya
1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku
Persamaan dan Pertidaksamaan Linear
MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai
MA3231 Analisis Real
MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017
16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.
6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1
DASAR-DASAR ANALISIS MATEMATIKA
(Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: [email protected]. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah
Antiremed Kelas 12 Matematika
Antiremed Kelas Matematika Integral - Latihan Ulangan Doc. Name: ARMAT098 Version : 0 0 halaman 0. f (x)=x +x+ maka f(x) =... x +x +x +c x +x +x+c x - x +x+c x +x +x+c x - x +x+c 0. 0. 0. 0 x +c x c x
Hendra Gunawan. 4 September 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi
DERIVATIVE Arum Handini primandari
DERIVATIVE Arum Handini primandari INTRODUCTION Calculus adalah perubahan matematis, alat utama dalam studi perubahan adalah prosedur yang disebut differentiation (deferensial/turunan) Calculus dikembangkan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Latar Belakang Historis Fondasi dari integral pertama kali dideklarasikan oleh Cavalieri, seorang ahli matematika berkebangsaan Italia pada tahun 1635. Cavalieri menemukan bahwa
INTEGRAL. Bab. Di unduh dari : Bukupaket.com. Integral tak tentu Fungsi aljabar Derivatif Antiderivatif A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR
Bab INTEGRAL A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran integral siswa mampu:. Mampu mentransformasi diri dalam berperilaku jujur, tangguh menghadapi masalah,
Hendra Gunawan. 8 November 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 8 November 013 Apa yang Telah Dipelajari pada Bab 4 1. Notasi Sigma dan Luas Daerah di Bawah Kurva. Jumlah Riemann dan Integral Tentu 3. Teorema
KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 4. Derivatif ALZ DANNY WOWOR
KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 4 Derivatif ALZ DANNY WOWOR Cakupan Materi A. Defenisi Derivatif B. Rumus-rumus Derivatif C. Aplikasi Derivatif
Matematika
Diferensial/ Diferensial/ dan Aplikasinya D3 Analis Kimia FMIPA Universitas Islam Indonesia Diferensial/ Diferensial/turunan adalah metode atau prosedur untuk menghitung laju perubahan. Definisi Diferensial/
Hendra Gunawan. 27 November 2013
MA0 MATEMATIKA A Hendra Gunawan Semester I, 03/04 7 November 03 Latihan (Kuliah yang Lalu) d. Tentukan (0 ). d. Hitunglah 3 5 d. 0 a 3. Buktikan bahwa y, a, monoton. a Tentukan inversnya. /7/03 (c) Hendra
FUNGSI-FUNGSI INVERS
FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2
BAB IV. PENGGUNAAN TURUNAN. Departemen Teknik Kimia Universitas Indonesia
BAB IV. PENGGUNAAN TURUNAN Departemen Teknik Kimia Universitas Indonesia BAB IV. PENGGUNAAN TURUNAN Maksimum dan Minimum Kemonotonan dan Kecekungan Maksimum dan Minimum Lokal Masalah Maksimum dan Minimum
Jurusan Matematika FMIPA-IPB
Jurusan Matematika FMIPA-IPB Ujian Kedua Semester Pendek T.A 4/5 KALKULUS/KALKULUS Jum at, Agustus 4 (Waktu : jam) SETIAP SOAL BERNILAI. Tentukan (a) + (b) p 4 + 5. Periksa apakah Teorema Nilai Rata-rata
BAB II PERSAMAAN DIFERENSIAL BIASA
BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan
integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.
integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan
Hendra Gunawan. 13 November 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 13 November 013 Latihan 1. Tentukan volume benda putar ang terbentuk bila daerah ang dibatasi oleh kurva = x dan = x diputar mengelilingi: a. sumbu
MEKANIKA NEWTONIAN. Persamaan gerak Newton. Hukum 1 Newton. System acuan inersia (diam)
MEKANIKA NEWTONIAN Persamaan gerak Newton Seperti diketahui bahwa dinamika adalah cabang dari mekanika yang membahas tentang hokum-hukum fisika tentang gerak benda. Dalam catatan kecil ini kita akan membahas
Hendra Gunawan. 4 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 Oktober 2013 Latihan (Kuliah yg Lalu) 1. Tentukan pada selang mana grafik fungsi f(x) = x 3 2x 2 + x + 1 naik atau turun. Tentukan pula pada
PEMBAHASAN SOAL UJIAN NASIONAL SMA MATA PELAJARAN FISIKA TAHUN 2016/2017
PEMBAHASAN SOAL UJIAN NASIONAL SMA MATA PELAJARAN FISIKA TAHUN 016/017 1. Dua buah pelat besi diukur dengan menggunakan jangka sorong, hasilnya digambarkan sebagai berikut: Selisih tebal kedua pelat besi
MATEMATIKA TURUNAN FUNGSI
MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XI MIA SEMESTER : (DUA) SMA Santa Angela Bandung Tahun Pelajaran 06-07 XI MIA Semester Tahun Pelajaran 06 07 PENGANTAR : TURUNAN FUNGSI Modul
11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)
11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku
TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22
TERAPAN INTEGRAL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 22 Topik Bahasan 1 Luas Daerah Bidang Rata 2 Nilai Rataan Fungsi (Departemen Matematika
Matematika
Diferensial/ Diferensial/ dan Aplikasinya D3 Analis Kimia FMIPA Universitas Islam Indonesia Diferensial/ Diferensial/turunan adalah metode atau prosedur untuk menghitung laju perubahan. Definisi Diferensial/
GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana
GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap
MA3231 Analisis Real
MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017
DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)
DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan
Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013
Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat
Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 75
Matematika I: Turunan Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 75 Outline 1 Garis Singgung Dadang Amir Hamzah Matematika I Semester I 2015 2 / 75 Outline 1 Garis Singgung
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4. Fungsi Kontinu 4.1 Konsep Kekontinuan Fungsi kontinu Limit fungsi dan limit barisan Prapeta himpunan buka 4.2 Sifat-Sifat Fungsi
bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c
Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat c. Turunan pertama dari fungsi f di titik c ditulis f '( c ) didefinisikan sebagai: ( ) ( ) f x f '( c) = lim f c x c x c bila limitnya ada.
Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.
Kode Modul MAT. TKF 20-03 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI Y Y = f (X) 0 a b X A b A = f (X) dx a Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan Program
DERIVATIVE (continued)
DERIVATIVE (continued) (TURUNAN) Kus Prihantoso Krisnawan November 25 rd, 2011 Yogyakarta Aturan Turunan Trigonometri Aturan Turunan Trigonometri d (sin x) = cos x d (cos x) = sin x Aturan Turunan Trigonometri
HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL
HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL Dra.Sri Rejeki Dwi Putranti, M.Kes. Fakultas Teknik - Universitaas Yos Soedarso Surabaya Email : [email protected] Abstrak Hubungan antara Differensial dan
BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia
BAB III Diferensial Departemen Teknik Kimia Universitas Indonesia BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz
TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi
TURUNAN Ide awal turunan: Garis singgung Tali busur c +, f c + Garis singgung c, f c c P h c+h f c + f c Kemiringan garis singgung di titik P: f c + f c lim Definisi Turunan fungsi f adalah fungsi lain
TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50
TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan
KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom
KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran
Kalkulus Multivariabel I
dan Fungsi Implisit dan Fungsi Implisit Statistika FMIPA Universitas Islam Indonesia dan Fungsi Implisit Ingat kembali aturan rantai pada fungsi satu peubah! Jika y = f (x(t)), di mana baik f maupun t
MA3231 Analisis Real
MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017
Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018
Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar
BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan
BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 6 KUANTOR III: INDUKSI (c) Hendra Gunawan (2015) 2 Pernyataan Berkuantor Universal (1) Pada bab sebelumnya kita telah membahas metode
Kinematika Sebuah Partikel
Kinematika Sebuah Partikel oleh Delvi Yanti, S.TP, MP Bahan Kuliah PS TEP oleh Delvi Yanti Kinematika Garis Lurus : Gerakan Kontiniu Statika : Berhubungan dengan kesetimbangan benda dalam keadaan diam
INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
INTEGRAL TAK TENTU subtitusi parsial Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ [email protected] DEFINISI Untuk ungsi yang terdeinisi pada selang terbuka I, dpt ditentukan ungsi
Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.
4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 8 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1
MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d
MA1201 KALKULUS 2A (Kelas 10) Bab 8: dan Do maths and you see the world ? Pengantar Bentuk tak tentu? Bentuk apa? Bentuk tak tentu yang dimaksud adalah bentuk limit dengan nilai seolah-olah : 0 0 ; ; 0
Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35
Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan
Karakteristik Gerak Harmonik Sederhana
Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo
INTEGRAL TAK TENTU 1
INTEGRAL TAK TENTU 1 Rumus umum integral b a f (x) dx F(x) =lambang integral f(x) = integran (fungsi yg diintegralkan) a dan b = batas pengintegralan a = batas bawah b = batas atas dx = faktor pengintegral
