Bab 1 : Skalar dan Vektor
|
|
|
- Susanti Tan
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar dasar skalar, dan jumlah mereka wakili adalah skalar. Bidang (skalar atau vektor) dapat didefinisikan secara matematis karena beberapa fungsi yang menghubungkan asal berlainan ke titik umum dalam ruang. Kedua bidang skalar dan medan vektor ada. Misalnya suhu di seluruh semangkuk sup dan kepadatan pada setiap titik di bumi adalah contoh dari bidang skalar. Contoh untuk bidang vektor medan magnet bumi, gradien tegangan di kabel, dll 1.2 Aljabar Vektor Sesuai hukum paralelogram, dapat terlihat bahwa A + B = B + A atau penjumlahan vektor mematuhi hukum komutatif, penjumlahan vektor juga mematuhi hukum asosiatif: A + (B + C) = (A + B) + C Catatan: ketika vektor digambar sebagai panah panjang yang terbatas, lokasi didefinisikan berada di ujung ekor panah. Aturan untuk pengurangan vektor berikut dengan mudah dibentuk dengan bentuk penambahan, karena kita selalu dapat mengekspresikan A-B sebagai A + (- B). tanda, atau arah dari vektor kedua adalah terbalik dan vektor ini ditambahkan ke pertama oleh aturan untuk penjumlahan vektor. Vektor dapat dikalikan dengan skalar. Perkalian vektor dengan skalar juga mematuhi hukum asosiatif dan distributif aljabar, yang mengarah ke (r + s) (A + B) = r (A + B) + s (A + B) = ra + rb + sa + sb. Dua vektor dikatakan sama jika selisih mereka adalah nol atau A = B jika A - B = Sistem Kordinat Persegi Ada tiga metode sederhana untuk menggambarkan vektor secara akurat, dan sekitar delapan atau sepuluh metode yang berguna dalam kasus yang sangat khusus. Yang paling sederhana di antaranya adalah sistem koordinat persegi atau persegi Cartesian, sistem Kevin Putra P.K.R. / / Kelas G Page 1
2 koordinat. Dalam segi sistem koordinat persegi kita membentuk tiga sumbu koordinat yang saling tegak lurus satu sama lain dan memanggil mereka sumbu x, y, dan z. Titik A terletak dengan memberikan yang koordinat x, y, dan z. Jarak dari asal ke persimpangan garis tegak lurus turun dari titik ke sumbu x, y, dan z. Jika kita memvisualisasikan tiga pesawat berpotongan di titik umum P, yang berkoordinat x, y, dan z, kita dapat meningkatkan setiap koordinat nilai dengan jumlah diferensial dan mendapatkan tiga pesawat yang saling berpotongan di titik P ', yang berada di koordinat x + dx, y + dy, dan z + dz. Keenam pesawat yang saling tegak lurus berbentuk persegi yang volumenya dv = dxdydz; permukaan memiliki area diferensial ds dari dxdy, dydz, dan dzdx. Akhirnya, dl jarak dari P ke P' adalah diagonal dari paralelipiped dan memiliki panjang. 1.4 Komponen Vektor dan Unit Vektor Untuk menggambarkan vektor dalam sistem koordinat persegi, mari kita menganggap vektor r memperluas ke luar dari titik asal. Sebuah cara untuk mengidentifikasi vektor ini adalah dengan memberikan tiga komponen vektor yang terletak sepanjang tiga sumbu koordinat, dimana jumlah vektor harus sesuai dengan vektor yang diberikan. Jika komponen vektor dari vektor r adalah x, y, dan z, maka r = x + y + z. Kevin Putra P.K.R. / / Kelas G Page 2
3 Komponen Vektor memiliki besaran yang bergantung pada vektor tertentu (seperti r), tetapi mereka masing-masing memiliki arah yang diketahui dan konstan. Hal ini menunjukkan penggunaan unit vektor memiliki unit besarnya sesuai definisi; Hal ini sejajar dengan sumbu-sumbu koordinat dan mereka menunjuk ke arah peningkatan nilai koordinasi. Jadi, kita harus membuat simbol untuk vektor satuan dan mengidentifikasi arahnya dengan subsckrip yang tepat. Jadi a x, a y, dan a z adalah vektor satuan dalam sistem koordinat persegi. Jika kita membahas vektor gaya F, atau setiap vektor selain perpindahan-jenis vektor seperti r, muncul masalah penyimbolan huruf yang sesuai untuk tiga komponen vektor. Masalahnya yang paling sering dihindari dengan menggunakan komponen skalar, hanya disebut komponen, F x, F y, dan F z. Kita kemudian dapat menuliskan F = F x a x + + F y a y F z a z. Vektor komponen adalah F x a x, F y a y, dan F z a z. Setiap vektor B kemudian dapat dijelaskan dengan B = B x a x + + B y a y B z a z. Besarnya B dapat ditulis B atau hanya B, dengan rumus: Sedangkan vektor satuan dalam arah r adalah r / arah vektor B dapat dituliskan dengan rumus, dan vektor satuan dalam Kevin Putra P.K.R. / / Kelas G Page 3
4 1.5 Medan Vektor Kita telah sepakat bahwa sebuah medan vektor menjadi fungsi vektor dari vektor posisi. Secara umum, besar dan arah dari fungsi akan berubah karena kita bergerak di seluruh daerah, dan nilai fungsi vektor harus ditentukan dengan koordinat dari nilai-nilai titik yang dimaksud. Karena kita hanya menggunakan sistem koordinat persegi, kita anggap vektor untuk menjadi fungsi dari variabel x, y, dan z. Jika kita mewakili lagi vektor posisi sebagai r, maka medan vektor G dapat dinyatakan dalam notasi fungsional sebagai G (r); Medan skalar T ditulis sebagai T (r). 1.6 Dot Product Diberikan dua vektor A dan B yang berlaku dot product atau produk skalar, didefinisikan sebagai produk dari besarnya A, besarnya B, dan cosinus sudut yang lebih kecil antara mereka. Dot yang muncul antara dua vektor dan harus dibuat berat untuk penekanan. Dot, atau skalar atau produk skalar, sebagai salah satu nama menyiratkan dan mematuhi hukum komutatif. Untuk tanda sudut tidak mempengaruhi istilah kosinus. Ekspresi A B dibaca "A dot B." Sebuah hasil yang lebih membantu diperoleh dengan mempertimbangkan dua vektor yang komponen perseginya diberikan, seperti A = A x a x + A y a y + A z a z dan B = B x a x + B y a y +B z a z. Dot product juga mematuhi hukum distributif dan Oleh karena itu, A B menghasilkan jumlah sembilan istilah skalar, masing-masing melibatkan dot product dari dua vektor Kevin Putra P.K.R. / / Kelas G Page 4
5 satuan. Karena sudut antara dua vektor satuan yang berbeda dari sistem koordinat persegi adalah 90, kita kemudian memakai rumus: Sebuah vektor yang di dot dengan dirinya sendiri menghasilkan besarnya kuadrat, atau bisa dituliskan dan setiap vektor satuan yang di dot dengan dirinya sendiri adalah satu kesatuan a A. a A = 1 Salah satu aplikasi yang paling penting dari dot product bahwa untuk menemukan komponen vektor dalam arah tertentu. Contohnya, kita dapat memperoleh komponen (skalar) dari B ke arah yang ditentukan oleh vektor satuan a sebagai B a = B a cos θba = B cos θba 1.7 Cross Product Diberikan dua vektor A dan B, sekarang kita mendefinisikan perkalian silang, atau produk vektor, A dan B, ditulis dengan tanda silang antara dua vektor sebagai A B dan membaca "A cross B." Sebagai suatu persamaan kita dapat menulis Membalik urutan hasil vektor A dan B dalam vektor satuan dalam arah yang berlawanan, dan kita melihat bahwa cross product tidak komutatif, untuk B A = - (A B). Contoh sederhana dari penggunaan cross product dapat diambil dari geometri atau trigonometri. Untuk menemukan daerah genjang, produk dari panjang dua sisi yang berdekatan dikalikan dengan sinus sudut antara mereka. Dengan memakai Notasi vektor untuk kedua belah pihak, maka kita dapat mengekspresikan (skalar) Area sebagai besarnya A B, atau A B. Kita telah menemukan ax ay = az, ay az = ax dan az ax = ay. Ketiga istilah yang tersisa adalah nol, untuk cross product vektor apapun dengan dirinya sendiri adalah nol, Kevin Putra P.K.R. / / Kelas G Page 5
6 karena sudut yang tercakup adalah nol. Hasil ini dapat dikombinasikan untuk memberikan Atau bisa dituliskan dalam bentuk determinan, yaitu 1.8 Koordinat Sistem Lain: Koordinat Silinder Sirkular Pada sistem koordinat silinder melingkar adalah versi tiga dimensi koordinat polar dari analisis geometri. Dalam koordinat polar, titik terletak pada bidang yang memberikan jarak ρ dari titik asal dan sudut φ antara garis dari titik asal dan garis radial, diambil sebagai φ = 0. Permukaan ini adalah silinder sirkular (ρ = konstan), bidang (φ = konstan), dan bidang lain (z = konstan). Ini sesuai dengan lokasi titik dalam sistem koordinat persegi panjang dengan persimpangan tiga bidang (x = konstan, y = konstan, dan z = konstan). Variabel dari persegi panjang dan silindris sistem koordinat secara mudah berhubungan satu sama lain. kita melihat bahwa : x = ρ cos φ y = ρ sin φ z = z Dari sudut pandang lain, kita dapat menyatakan variabel silinder dalam hal x, y,dan z: ρ = (ρ 0) φ = z = z vektor koordinat silinder : A = + + di mana masing-masing komponen diberikan sebagai fungsi ρ, φ, dan z. Untuk menemukan komponen yang diinginkan dari sebuah vektor, kita ingat dari pembahasan dot product bahwa komponen dalam arah yang diinginkan dapat diperoleh dengan mengambil dot product dari vektor dan vektor satuan dalam arah yang diinginkan. Oleh karena itu, A = A dan =A Sehingga di dapatkan : = ( + + ) = + = ( + + ) = + Kevin Putra P.K.R. / / Kelas G Page 6
7 = ( + + ) = = 1.9 Sistem Koordinat Bola Transformasi skalar dari persegi panjang ke sistem koordinat bola dibuat dengan menghubungkan dua set variabel: x = r sinθ cos φ y = r sinθ sinφ z = r cos θ Transformasi dalam arah sebaliknya dicapai dengan bantuan r = ( r 0 ) θ = ( θ ) φ = arah vektor rectangular, dengan titik z ditemukan menjadi = cos θ = -sin θ = 0 Dot product yang melibatkan dan membutuhkan lebih dulu proyeksi bola vektor satuan pada bidang xy dan kemudian proyeksi ke sumbu yang diinginkan. Sebagai contoh, diperoleh dengan memproyeksikan ke bidang xy, memberikan sin θ, dan kemudian memproyeksikan sinθ pada sumbu x, yang menghasilkan sin θ cos φ. Kevin Putra P.K.R. / / Kelas G Page 7
dengan vektor tersebut, namun nilai skalarnya satu. Artinya
1. Pendahuluan Penggunaan besaran vektor dalam kehidupan sehari-hari sangat penting mengingat aplikasi besaran vektor yang luas. Mulai dari prinsip gaya, hingga bidang teknik dalam memahami konsep medan
A + ( B + C ) = ( A + B ) + C
VEKTOR ANALISIS 1.1. Skalar dan Vektor Istilah skalar mengacu pada sebuah jumlah yang nilai dapat diwakili oleh satu ( positif atau negatif ) nomor asli. x, y, dan z yang kami gunakan dalam dasar aljabar
Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY
Analisis Vektor Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Analisis vektor meliputi bidang matematika dan fisika sekaligus dalam pembahasannya Skalar dan Vektor Skalar Skalar ialah
Pengantar KULIAH MEDAN ELEKTROMAGNETIK MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT
KULIAH MEDAN ELEKTROMAGNETIK Pengantar Definisi Arsitektur MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT Operasional Sinkronisasi Kesimpulan & Saran Muhamad Ali, MT Http://www.elektro-uny.net/ali Pengantar
Pengantar Teknologi dan Aplikasi Elektromagnetik. Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY
Pengantar Teknologi dan Aplikasi Elektromagnetik Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Kelistrikan dan Kemagnetan Tanpa listrik dan magnet, maka dalam kehidupan jaman sekarang: tanpa motor
Vektor. Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan. Skalar hanya memiliki besaran saja, contoh : temperatur,
SISTEM KOORDINAT VEKTOR. Tri Rahajoeningroem, MT T. Elektro - UNIKOM
SISTEM KOORDINAT VEKTOR Tri Rahajoeningroem, MT T. Elektro - UNIKOM Tujuan Pembelajaran Mahasiswa dapat memahami koordinat vektor Mahasiswa dapat menggunakan sistem koordinat vektor untuk menyelesaikan
ANALISA VEKTOR. Skalar dan Vektor
ANALISA VEKTOR Skalar dan Vektor Skalar merupakan besaran ang dapat dinatakan dengan sebuah bilangan nata. Contoh dari besaran skalar antara lain massa, kerapatan, tekanan, dan volume. Sedangkan besaran
Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat,
VEKTOR Dalam mempelajari fisika kita selalu berhubungan dengan besaran, yaitu sesuatu yang dapat diukur dan dioperasikan. da besaran yang cukup dinyatakan dengan nilai (harga magnitude) dan satuannya saja,
B. Pengertian skalar dan vektor Dalam mempelajari dasar-dasar fisika, terdapat beberapa macam kuantitas kelompok besaran yaitu Vektor dan Skalar.
ANALISIS VEKTOR A. Deskripsi Materi ini akan membahas tentang pengertian, sifat, operasi dan manipulasi besaran fisik scalar dan vector. Pada pembahasan materi medan elektromagnetik berikutna akan melibatkan
a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1
1. Koordinat Cartesius Sistem koordinat Cartesius terdiri dari dua garis yang saling tegak lurus yang disebut sumbu Sumbu horizontal disebut sumbu X dan sumbu vertikal disebut sumbu Y Tiap sumbu mempunyai
BAB II BESARAN VEKTOR
BAB II BESARAN VEKTOR.1. Besaran Skalar Dan Vektor Dalam fisika, besaran dapat dibedakan menjadi dua kelompok yaitu besaran skalar dan besaran vektor. Besaran skalar adalah besaran yang dinyatakan dengan
VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu.
VEKTOR Kata vektor berasal dari bahasa Latin yang berarti "pembawa" (carrier), yang ada hubungannya dengan "pergeseran" (diplacement). Vektor biasanya digunakan untuk menggambarkan perpindahan suatu partikel
Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika
Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya
Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY
SISTEM-SISTEM KOORDINAT Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Sistem Koordinat Kartesian Dalam sistem koordinat Kartesian, terdapat tiga sumbu koordinat yaitu sumbu x, y, dan z. Suatu titik
BESARAN SKALAR DAN VEKTOR. Besaran Skalar. Besaran Vektor. Sifat besaran fisis : Skalar Vektor
PERTEMUAN II VEKTOR BESARAN SKALAR DAN VEKTOR Sifat besaran fisis : Skalar Vektor Besaran Skalar Besaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh : waktu,
BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor
BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan
Rudi Susanto, M.Si VEKTOR
Rudi Susanto, M.Si VEKTOR ESRN SKLR DN VEKTOR esaran Skalar esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh Catatan : waktu, suhu, volume, laju, energi
ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor
ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran
Matematika II : Vektor. Dadang Amir Hamzah
Matematika II : Vektor Dadang Amir Hamzah sumber : http://www.whsd.org/uploaded/faculty/tmm/calc front image.jpg 2016 Dadang Amir Hamzah Matematika II Semester II 2016 1 / 24 Outline 1 Pendahuluan Dadang
BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor
BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor
Bab 1 Vektor. A. Pendahuluan
Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang
BAB I ANALISIS VEKTOR
BAB I ANALISIS VEKTOR A. Deskripsi Materi ini akan membahas tentang pengertian, sifat, operasi dan manipulasi besaran fisik scalar dan vector. Pada pembahasan materi medan elektromagnetik berikutna akan
VEKTOR. Oleh : Musayyanah, S.ST, MT
VEKTOR Oleh : Musayyanah, S.ST, MT 1 2.1 ESRN SKLR DN VEKTOR Sifat besaran fisis : esaran Skalar Skalar Vektor esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan).
Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan
VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.
VEKTOR 1 A. Definisi vektor Beberapa besaran Fisika dapat dinyatakan dengan sebuah bilangan dan sebuah satuan untuk menyatakan nilai besaran tersebut. Misal, massa, waktu, suhu, dan lain lain. Namun, ada
BAB 2 ANALISIS VEKTOR
BAB ANALISIS VEKTOR A. Tujuan Umum Mahasiswa memahami pengertian vektor, operasi vektor, penjumlahan, pengurangan, perkalian dan kaedah aljabar vektor. B. Tujuan Khusus Mahasiswa dapat memahami konsep
A x pada sumbu x dan. Pembina Olimpiade Fisika davitsipayung.com. 2. Vektor. 2.1 Representasi grafis sebuah vektor
. Vektor.1 Representasi grafis sebuah vektor erdasarkan nilai dan arah, besaran dibagi menjadi dua bagian aitu besaran skalar dan besaran vektor. esaran skalar adalah besaran ang memiliki nilai dan tidak
L mba b ng n g d a d n n n o n t o asi Ve V ktor
ANALISIS VEKTOR Vektor dan Skalar Macam-macam macam kuantitas dalam fisika seperti: temperatur, volume, dan kelajuan dapat ditentukan dengan angka riil (nyata). Kuantitas seperti disebut dengan skalar.
BAB II LANDASAN TEORI. A. Tinjauan Pustaka. 1. Vektor
BAB II LANDASAN TEORI A. Tinjauan Pustaka 1. Vektor Ada beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. Ada juga besaran fisis yang tidak
DIKTAT MATEMATIKA II
DIKTT MTEMTIK II (VEKTOR) Drs.. NN PURNWN, M.T JURUSN PENDIDIKN TEKNIK MESIN FKULTS PENDIDIKN TEKNOLOGI DN KEJURUN UNIVERSITS PENDIDIKN INDONESI 004 VEKTOR I. PENDHULUN 1.1. PENGERTIN Sepotong garis berarah
VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = =
VEKTOR Notasi Vektor (,, ) (,, ) Vektor atau Matriks Maka di atas dapat dinyatakan dengan: Kombinasi linear vektor basis maka; ( ) + ( ) + ( ) + + (,, ) Panjang Vektor Misalkan + + (,, ), maka panjang
Vektor Ruang 2D dan 3D
Vektor Ruang 2D dan D Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak
Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor
Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Besaran skalar adalah besaran yang hanya memiliki nilai saja. Contoh :
Ruang Vektor Euclid R 2 dan R 3
Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015
BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat.
.. esaran Vektor Dan Skalar II V E K T O R da beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. da juga besaran fisis yang tidak cukup hanya
Vektor di ruang dimensi 2 dan ruang dimensi 3
Vektor di ruang dimensi 2 dan ruang dimensi 3 Maulana Malik 1 ([email protected]) 1 Departemen Matematika FMIPA UI Kampus Depok UI, Depok 16424 2014/2015 1/21 [email protected] Vektor
Hasil Kali Titik, Hasil Kali Silang, dan Hasil Kali Tripel
BAB II HASIL KALI TITIK DAN SILANG A. HASIL KALI TITIK ATAU SKALAR Hasil kali titik atau skalar dari dua buah vektor A dan B yang dinyatakan oleh A B (dibaca A titik B ) didefinisikan sebagai hasil kali
VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B
Amran Shidik MATERI FISIKA KELAS X 11/13/2016 VEKTOR A. Vektor Vektor adalah jenis besaran yang mempunyai nilai dan arah. Besaran yang termasuk besaran vektor antara lain perpindahan, gaya, kecepatan,
9.1. Skalar dan Vektor
ANALISIS VEKTOR 9.1. Skalar dan Vektor Skalar Satuan yang ditentukan oleh besaran Contoh: panjang, voltase, temperatur Vektor Satuan yang ditentukan oleh besaran dan arah Contoh: gaya, velocity Vektor
BAB II VEKTOR DAN GERAK DALAM RUANG
BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan
Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga;
BAB I VEKTOR A. DEFINISI VEKTOR 1). Pada mulanya vektor adalah objek telaah dalam ilmu fisika. Dalam ilmu fisika vektor didefinisikan sebagai sebuah besaran yang mempunyai besar dan arah seperti gaya,
VEKTOR YUSRON SUGIARTO
VEKTOR YUSRON SUGIARTO Jurusan Keteknikan Pertanian FTP UB 2013 2 3 B E S A R A N Skalar besaran yang hanya memiliki besar (panjang/nilai) Vektor memiliki besar dan arah Massa Waktu Kecepatan Percepatan
VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain
VEKTOR y PENDAHULUAN PETA KONSEP a Vektor di R 2 Vektor di R 3 Perkalian Skalar Dua Vektor o 45 O x Proyeksi Ortogonal suatu Vektor pada Vektor Lain Soal-Soal PENDAHULUAN Dalam ilmu pengetahuan kita sering
PanGKas HaBis FISIKA. Vektor
Vektor PanGKas HaBis FISIKA Mari kita pandang sebuah perahu yang mengarungi sebuah sungai. Perahu itu, misalnya, berangkat dari dermaga menuju pangkalan bahan bakar. Jika dermaga dipakai sebagai titik
Vektor di Bidang dan di Ruang
Vektor di Bidang dan di Ruang 4.1. Pengertian, notasi,dan operasi pada ektor Vektor merupakan istilah untuk menyatakan besaran yang mempunyai arah. Secara geometris, ektor dinyakan dengan segmen-segmen
BAB I BESARAN DAN SATUAN
BAB I BESARAN DAN SATUAN A. STANDAR KOMPETENSI :. Menerapkan konsep besaran fisika, menuliskan dan menyatakannya dalam satuan dengan baik dan benar (meliputi lambang, nilai dan satuan). B. Kompetensi Dasar
Keep running VEKTOR. 3/8/2007 Fisika I 1
VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor
FISIKA UNTUK UNIVERSITAS OLEH
FISIKA UNTUK UNIVERSITAS OLEH BAB I VEKTOR Pendahuluan B esaran adalah segala sesuatu yang dapat diukur dan dinyatakan dalam bentuk angkaangka. Besaran fisika dapat dibagi menjadi besaran pokok dan besaran
L mba b ng n g d a d n n n o n t o asi Ve V ktor
ANALISIS VEKTOR Vektor dan Skalar Macam-macammacam kuantitas dalam fisika seperti: temperatur, volume, dan kelajuan dapat ditentukan dengan angka riil (nyata). Kuantitas seperti itu disebut dengan skalar.
Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4007 Matematika III Diferensial Vektor (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Definisi Secara Grafis : Dari gambar di samping, ada sebuah anak panah yang berawal
VEKTOR GAYA. Gambar 1. Perkalian dan pembagian vektor
VEKTOR GAYA Perkalian dan Pembagian vektor dengan scalar Jika vektor dikalikan dengan nilai positif maka besarnya meningkat sesuai jumlah pengalinya. Perkalian dengan bilangan negatif akan mengubah besar
VEKTOR YUSRON SUGIARTO
VEKTOR YUSRON SUGIARTO Jurusan Keteknikan Pertanian FTP UB 2012 2 3 B E S A R A N Skalar besaran yang hanya memiliki besar (panjang/nilai) massa, waktu, suhu, panjang, luas, volum Vektor memiliki besar
Perkalian Titik dan Silang
PERKALIAN TITIK DAN SILANG Materi pokok pertemuan ke 3: 1. Perkalian titik URAIAN MATERI Perkalian Titik Perkalian titik dari dua buah vektor dan dinyatakan oleh (baca: titik ). Untuk lebih jelas, berikut
Medan Elektromagnetik 3 SKS. M. Hariansyah Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor
Medan Elektromagnetik 3 SKS M. Hariansyah Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor 2 0 1 4 Medan Elektromagnetik I -Referensi: WILLIAM H HAYT Materi Kuliah -Analisa Vektor
BESARAN, SATUAN & DIMENSI
BESARAN, SATUAN & DIMENSI Defenisi Apakah yang dimaksud dengan besaran? Besaran : segala sesuatu yang dapat diukur dan dinyatakan dengan angka (kuantitatif). Apakah yang dimaksud dengan satuan? Satuan
Program Studi Pendidikan Matematika STKIP PGRI SUMBAR
VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,
VEKTOR II. Tujuan Pembelajaran
Kurikulum 03 Kelas X matematika PEMINATAN VEKTOR II Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami tentang pembagian vektor.. Memahami tentang
BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.
BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan
MATRIKS & TRANSFORMASI LINIER
MATRIKS & TRANSFORMASI LINIER Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 082334051324 Daftar Referensi : 1. Kreyzig Erwin, Advance Engineering Mathematic, Edisi ke-7, John wiley,1993 2. Spiegel, Murray R, Advanced
Catatan Kuliah FI2101 Fisika Matematik IA
Khairul Basar atatan Kuliah FI2101 Fisika Matematik IA Semester I 2015-2016 Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung Bab 6 Analisa Vektor 6.1 Perkalian Vektor Pada bagian
Aljabar Vektor. Sesi XI Vektor 12/4/2015
Mata Kuliah : Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XI Vektor e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Aljabar Vektor Vektor juga memiliki
a11 a12 x1 b1 Definisi Vektor di R 2 dan R 3
a11 a12 x1 b1 a a x b 21 22 2 2 Definisi Vektor di R 2 dan R 3 a11 a12 x1 b1 a a x b 21 22 2 2 Pendahuluan Notasi dan Pengertian Dasar Skalar, suatu konstanta yang dituliskan dalam huruf kecil Vektor,
19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a =
19. VEKTOR A. Vektor Secara Geometri 1. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah θ 3. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a1 1. Komponen dan panjang vektor: a = a =
BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain
BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional
BESARAN VEKTOR B A B B A B
Besaran Vektor 8 B A B B A B BESARAN VEKTOR Sumber : penerbit cv adi perkasa Perhatikan dua anak yang mendorong meja pada gambar di atas. Apakah dua anak tersebut dapat mempermudah dalam mendorong meja?
BAB 1 ANALISA SKALAR DANVEKTOR
1.1 Skalar dan Vektor BAB 1 ANAISA SKAA DANVEKT Skalar merupakan besaran ang dapat dinatakan dengan sebuah bilangan nata. Simbul,, dan z ang digunakan merupakan scalar, dan besarna juga dinatakan dalam
Matematika Teknik Dasar-2 5 Perkalian Antar Vektor. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya
Matematika Teknik Dasar-2 5 Perkalian Antar Vektor Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Komponen-Komponen Vektor dalam Suku-Suku Vektor Satuan Artinya, OP = a (di sepanjang
BAB 1 Vektor. Fisika. Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom
A 1 Vektor Fisika Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sub Pokok ahasan Definisi Vektor Penjumlahan Vektor Vektor Satuan
VEKTOR. Makalah ini ditujukkan untuk Memenuhi Tugas. Disusun Oleh : PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
VEKTOR Makalah ini ditujukkan untuk Memenuhi Tugas Disusun Oleh : 1. Chrisnaldo noel (12110024) 2. Maria Luciana (12110014) 3. Rahmat Fatoni (121100) PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u = (a, -, -) dan v = (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A.
Suryadi Siregar Metode Matematika Astronomi 2
Suryadi Siregar Metode Matematika Astronomi Bab 4 Integral Garis dan Teorema Green 4. Integral Garis Definisi : Misal suatu lintasan dalam ruang dimensi m pada interval [a,b]. Andaikan adalah medan vektor
PENGAJARAN HASIL KALI TITIK DAN HASIL KALI SILANG PADA VEKTOR SERTA BEBERAPA PENGEMBANGANNYA. Suwandi 1.
PENGAJARAN HASIL KALI TITIK DAN HASIL KALI SILANG PADA VEKTOR Suwandi 1 1 Mahasiswa Pasca Sarjana Matematika FMIPA Universitas Riau e-mail: [email protected] ABSTRACT Dot product and cross product
BAB II V E K T O R. Drs. Pristiadi Utomo, M.Pd. FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. Drs. Pristiadi Utomo, M.Pd. 52
FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. BAB II V E K T O R Pernahkah Kamu naik pesawat terbang? Antara penumpang dan pilot dan copilot di ruang kemudi dipisah dengan sekat. Tujuannya agar pilot dapat
DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)
DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan
BAB VI INTEGRAL LIPAT
BAB VI INTEGRAL LIPAT 6.1 Pendahuluan Pada kalkulus dan fisika dasar, kita melihat sejumlah pemakaian integral misal untuk mencari luasan, volume, massa, momen inersia, dsb.nya. Dalam bab ini kita ingin
Aljabar Linear Elementer Part IV. Oleh : Yeni Susanti
Aljabar Linear Elementer Part IV Vektor di Ruang R 2, R 3 dan R n Oleh : Yeni Susanti Vektor di Ruang R 2, R 3 dan R n Vektor: besaran yang mempunyai besar dan arah. Vektor secara geometris bisa digambarkan
Pesawat Terbang. gaya angkat. gaya berat
Sumber: www.staralliance.com Pesawat Terbang Terbayangkah kalian dengan teknologi pesawat terbang? Alat transportasi ini diciptakan dengan teknologi yang canggih. Salah satunya adalah saat merancang konstruksi
BAB I TEGANGAN DAN REGANGAN
BAB I TEGANGAN DAN REGANGAN.. Tegangan Mekanika bahan merupakan salah satu ilmu yang mempelajari/membahas tentang tahanan dalam dari sebuah benda, yang berupa gaya-gaya yang ada di dalam suatu benda yang
TE Teknik Numerik Sistem Linear
TE 9467 Teknik Numerik Sistem Linear Operator Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E. Objektif.
fi5080-by-khbasar BAB 1 Analisa Vektor 1.1 Notasi dan Deskripsi
BB 1 nalisa Vektor Vektor, dibedakan dari skalar, adalah suatu besaran yang memiliki besar dan arah. rtinya untuk mendeskripsikan suatu besaran vektor secara lengkap perlu disampaikan informasi tentang
VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan :
1 SMA SANTA ANGELA VEKTOR A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : A B Keterangan : Titik A disebut titik Pangkal Titik B disebut titik Ujung Dinotasikan
ujung vektor A bertemu dengan pangkal vektor B
. Pengertian Besaran Vektor Besaran skalar adalah besaran yang hanya memiliki besar (nilai) saja. Beberapa besaran skalar di antaranya : semua besaran pokok, jarak, laju, usaha atau energi, daya, massa
Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor
Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus
RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd.
RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd. Universitas Negeri Surabaya Oleh Abdul Hayyih (147785010) Kelas D PROGRAM
BAB 2 PENJUMLAHAN VEKTOR
BAB 2 PENJUMLAHAN VEKTOR A. Kompetensi Dasar dan Indikator 1.1 Menyadari kebesaran Tuhan yang menciptakan dan mengatur alam jagad raya melalui pengamatan fenomena alam fisis dan pengukurannya. 2.1 Menunjukkan
Kuis I Elektromagnetika I TT3810
Nama: NIM : Kuis I Elektromagnetika I TT3810 Dikumpulkan pada Hari Sabtu, tanggal 27 Februari 2016 Jam 14.30 15.00 di N107, berupa copy file, bukan file asli. Pilihlah 25 soal untuk dikerjakan Kasus #1.
VII III II VIII HAND OUT PERKULIAHAN GEOMETRI ANALITIK
HAND OUT PERKULIAHAN GEOMETRI ANALITIK A. Sistem Koordinat Tegak Lurus Suatu sistem koordinat tegak lurus disebut juga dengan sistem koordinat cartesian. Di dalam ruang, terdapat tiga buah garis lurus
BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.
BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD [email protected] 2 BAB 2 MEDAN LISTRIK DAN HUKUM GAUSS Pendahuluan, Distribusi Muatan Kontinu, Mencari Medan Listrik Menggunakan Integral,
RUANG LINGKUP ILMU FISIKA
RUANG LINGKUP ILMU FISIKA Definisi Ilmu Fisika Ilmu fisika adalah ilmu yang mempelajari gejala alam yang tidak hidup serta interaksi dalam lingkup ruang dan waktu. Dalam bahasa Yunani ilmu fisika disebut
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )
18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real:
8. VEKTOR A. Vektor Secara Geometri. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a. Komponen dan panjang vektor: a = a a a = a = a
Vektor-Vektor. Ruang Berdimensi-2. Ruang Berdimensi-3
Vektor-Vektor dalam Ruang Berdimensi-2 dan Ruang Berdimensi-3 Disusun oleh: Achmad Fachrurozi Albert Martin Sulistio Iffatul Mardhiyah Rifki Kosasih Departemen Matematika Fakultas Matematika dan Ilmu Pengetahuan
Geometri pada Bidang, Vektor
Prodi Matematika FMIPA Unsyiah September 9, 2011 Melalui pendekatan aljabar, vektor u dinyatakan oleh pasangan berurutan u 1, u 2. Disini digunakan notasi u 1, u 2 bukan (u 1, u 2 ) karena notasi (u 1,
Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan
Silabus Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMK : MATEMATIKA : XI / TEKNOLOGI, KESEHATAN, DAN PERTANIAN : GANJIL Standar Kompetensi:7. Menerapkan perbandingan, fungsi,, dan identitas
Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)
Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak
GAMBARAN UMUM SMA/MA. Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS 1
GAMBARAN UMUM Pada ujian nasional tahun pelajaran 006/007, bentuk tes Matematika tingkat berupa tes tertulis dengan bentuk soal pilihan ganda, sebanyak 0 soal dengan alokasi waktu 0 menit. Acuan yang digunakan
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u (a, -, -) dan v (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A. -
MAKALAH VEKTOR. Di Susun Oleh : Kelas : X MIPA III Kelompok : V Adisti Amelia J.M.L
MAKALAH VEKTOR Di Susun Oleh : Kelas : X MIPA III Kelompok : V Adisti Amelia J.M.L PEMERINTAHAN KABUPATEN BOGOR SMAN 1 PAMIJAHAN 017 KATA PENGANTAR Dengan menyebut nama Allah Yang Maha Pengasih lagi Maha
