Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN
|
|
|
- Liani Pranata
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz dan Turunan Tingkat Tinggi Penurunan Implisit Laju yang Berkaitan Diferensial dan Aproksimasi
2 Kecepatan Sesaat dan Gradien Garis Singgung Misalkan sebuah benda bergerak sepanjang garis lurus menurut persamaan x = x(t), dengan x menyatakan posisi benda tersebut dan t menyatakan waktu. Kecepatan rata-ratanya dari t = a s/d t = b adalah v[a,b] = [x(b) x(a)]/(b a). Kecepatan sesaat pada t = a adalah x( b) x( a) v(a) = lim. b a b a
3 Sekarang misalkan kita mempunyai fungsi y = f(x) yang grafiknya cukup mulus, khususnya di sekitar x = a, sehingga mempunyai garis singgung di a (lihat gambar). y Q P a b x Gradien garis lurus yang melalui titik P(a,f(a)) dan Q(b,f(b)) adalah [f(b) f(a)]/(b a). Gradien garis singgung pada grafik y = f(x) di P(a,f(a)) adalah m = lim b a f ( b) b f a ( a).
4 Di sini kita melihat bahwa kecepatan sesaat dan gradien garis singgung ternyata merupakan bentuk limit yang sama. Bentuk limit ini juga muncul dalam persoalan lainnya (lihat Soal 3.1 no. 19). Semua ini memotivasi kita untuk membahas bentuk limit ini secara khusus. Turunan Fungsi y = f(x) dikatakan mempunyai turunan di a jika f ( b) f ( a) lim b a b a ada. Turunan f di a didefinisikan sama dengan limit ini,
5 dan dilambangkan dengan f (a). Dengan substitusi b = a + h, kita peroleh f ( a + h) f ( a) f '( a) = lim h 0 h asalkan limit ini ada. Contoh 1. Misalkan f(x) = x 2 dan a = 1. Kita hitung lim h 0 f (1 + h) h f (1) (1 + h) = lim h 0 h 1 h 0 Jadi, f mempunyai turunan di 1 dan f (1) = 2. Secara umum, dapat diperiksa bahwa f mempunyai turunan di a sebarang dan f (a) = 2a. 2 = lim(2 + h) = 2.
6 Latihan 1. Tentukan turunan f(x) = x di a > 0 sebarang. 2. Tentukan turunan f(x) = 1/x di a 0 sebarang. 3. Tunjukkan bahwa f(x) = x tidak mempunyai turunan di 0. Hubungan antara Turunan dan Kekontinuan Jika f mempunyai turunan di a, maka f kontinu di a (lihat Purcell hal. 118). Namun sebaliknya tidak berlaku: kekontinuan di a tidak menjamin adanya turunan di a. Sebagai contoh, fungsi f(x) = x kontinu di 0 tetapi tidak mempunyai turunan di 0.
7 Aturan Dasar Turunan 1. Jika f(x) = k, maka f (x) = Jika f(x) = x, maka f (x) = Aturan Pangkat: Jika f(x) = x n (n є N), maka f (x) = n.x n Aturan Kelipatan Konstanta: (kf ) (x) = k.f (x). 5. Aturan Jumlah: (f + g) (x) = f (x) + g (x). 6. Aturan Hasilkali: (f.g) (x) = f (x).g(x) + f(x).g (x). 7. Aturan Hasilbagi: f f '( x) g( x) f ( x) g'( x) ( )'( x) =. 2 g [ g( x)] 8. Aturan Rantai: (f g) (x) = f (g(x)).g (x).
8 Untuk fungsi trigonometri, kita mempunyai: 9. Jika f(x) = sin x, maka f (x) = cos x. 10. Jika f(x) = cos x, maka f (x) = - sin x. Aturan 9 dan 10 dapat dibuktikan dengan menggunakan fakta bahwa sin( h) lim = 1 h 0 h dan 1 cos( h) lim = h 0 h (lihat Purcell hal ). Dengan Aturan 9 dan 10, dan aturan-aturan sebelumnya, turunan fungsi trigonometri lainnya dapat ditentukan. 0
9 Latihan. Dengan menggunakan Aturan Dasar Turunan, tentukan turunan fungsi berikut: 1. f(x) = x(x 2 + 1). 2. g(x) = (5x 4)/(3x 2 + 1). 3. h(x) = (x 2 + 1) k(x) = sin 2 t. Notasi Leibniz Pada gambar di samping, tampak bahwa pertambahan sebesar x pada x menyebabkan pertambahan sebesar y pada y, dengan x y=f(x) y x+ x
10 y = f(x + x) f(x). Bagi kedua ruas dengan x, kita peroleh y x f ( x = + x) f ( x). x Jika x 0, maka lim x 0 y x = lim x 0 f ( x + x) x f ( x) = f '( x). G. Leibniz menggunakan lambang dy/dx untuk menyatakan lim. Jadi, jika y = f(x), y maka x 0 x dy = f '( x). dx
11 Contoh 2. Jika y = x 3 + x, maka dy/dx = 3x Dengan notasi Leibniz, Aturan Rantai berbunyi: Jika y = f(u) dan u = g(x), maka dy = dx dy du du.. dx Contoh 3. Misalkan y = (x 3 + x) 10 = u 10 dengan u = x 3 + x. Maka dy dx dy du =. = 10u.(3x + 1) = 10( x + x) (3x du dx Latihan. Diketahui y = sin 2 (2x). Tentukan dy/dx ).
12 Turunan Tingkat Tinggi Diberikan sebuah fungsi f, kita turunkan f, yang juga merupakan fungsi. Dari f dapat kita turunkan f = (f ), yang disebut turunan kedua f, dan dari f kita dapat memperoleh turunan ketiga f, yakni f = (f ), dst. Turunan ke-n dari y = f(x) dilambangkan dengan f (n) atau d n y/dx n. Contoh 4. Jika y = sin 2x, maka dy/dx = 2 cos 2x, d 2 y/dx 2 = -4 sin 2x, d 3 y/dx 3 = -8 cos 2x, dst.
13 Latihan. Tentukan rumus umum turunan ke-n dari f(x) = 1/x. Bila turunan pertama mempunyai interpretasi fisis kecepatan sesaat, maka turunan kedua secara fisis dapat diinterpretasikan sebagai percepatan (sesaat) yang mengukur laju perubahan kecepatan terhadap waktu (lihat Purcell hal ). Untuk memahami lebih jauh tentang interpretasi dari turunan, khususnya turunan pertama, kedua, dan ketiga, baca Purcell hal. 155 tentang model matematika dan kerjakan Soal 3.7 no. 39.
14 Penurunan Implisit Misalkan kita mempunyai persamaan 7y 3 + y = x 3 dan ingin menentukan persamaan garis singgung pada grafik persamaan tersebut di (2,1). Masalahnya adalah bagaimana menghitung dy/dx, padahal kita tidak mempunyai rumus eksplisit untuk y dalam x. Secara implisit, kita dapat menurunkan kedua ruas terhadap x dengan menggunakan Aturan Rantai (dengan mengingat bahwa y adalah fungsi dari x): 21y 2.dy/dx + dy/dx = 3x 2.
15 Dengan demikian kita peroleh dy/dx = (3x 2 )/(21y 2 +1). Di (2,1), kita hitung dy/dx = 12/(21 + 1) = 6/11. Jadi persamaan garis singgungnya adalah atau y 1 = 6/11(x 2) 6x 11y 1 = 0.
16 Dengan penurunan implisit, kita dapat membuktikan Aturan Pangkat berikut: Jika y = x r (r є Q), maka dy/dx = r.x r-1 (lihat Purcell hal ). Latihan. Diberikan persamaan x 2 + y 3 = x + 1, tentukan dy/dx dan d 2 y/dx 2. Laju yang Berkaitan Jika x dan y merupakan dua peubah yang berkaitan dan masing-masing berubah terhadap waktu (t), maka dx/dt dan dy/dt merupakan laju yang berkaitan.
17 Contoh 5. Air dituangkan ke dalam tangki berbentuk kerucut terbalik dengan laju 8 dm 3 /menit. Jika tinggi tangki tersebut adalah 24 dm dan jari-jari permukaan atasnya 12 dm, seberapa cepatkah permukaan air naik pada saat tingginya 4 dm? air r h Jawab: Misalkan V menyatakan volume, r jari-jari permukaan, dan h tinggi air. Maka V = (π/3)r 2 h.
18 Di sini r = h/2, sehingga V = (π/12)h 3. Turunkan kedua ruas terhadap t, kita peroleh dv/dt = (π/4)h 2.dh/dt. Diketahui dv/dt = 8 dm 3 /menit. Jadi, pada saat h = 4 dm, kita mempunyai 8 = 4π.dh/dt sehingga dh/dt = 2/π dm/menit.
19 Latihan. (Soal 3.9 no. 7) Sebuah tangga yang panjangnya 20 dm bersandar di dinding. Jika ujung bawah tangga ditarik sepanjang lantai menjauhi dinding dengan laju 2 dm/detik, seberapa cepatkah ujung atas tangga bergeser menuruni dinding pada saat ujung bawah tangga berjarak 4 dm dari dinding?? 2 dm/det
20 Diferensial dan Aproksimasi Misalkan y = f(x) mempunyai turunan di x dan dx = x menyatakan diferensial peubah bebas x. Maka, diferensial peubah tak bebas y didefinisikan sebagai dy = f (x)dx. Di sini dy merupakan hampiran untuk y [ingat: y = f(x + x) f(x)], sehingga f(x + x) = f(x) + y f(x) + dy = f(x) + f (x)dx, asalkan x 0.
21 Pada gambar di samping: dx = x dy = f (x)dx y = f(x + x) f(x) dan dy y bila x 0. y x y dy x x+ x x Contoh 6. Misal kita ingin menghampiri nilai 4,1. Tinjau y = x. Maka x + x x + 1/(2 x). x. Khususnya, untuk x = 4 dan x = 0,1: 4, /(2 4).(0,1) = 2 + 0,025 = 2,025.
22 SOAL-SOAL BAB III 3.1 no. 17, 19, 21, 22, no. 5, 13, 23, 27, 41, no. 5, 11, 21, 33, 37, 47, 49, 52, 55, 57, no. 14, 23, no. 1, 9, 11, 17, 48, no. 9, 11, 17, 31, 32, no.5, 6, 17, 20, 23, no. 5, 11, 13, 19, 33, no. 1, 3, 7, 8, 11, no. 9, 21, 25.
23 BAB IV. PENGGUNAAN TURUNAN Maksimum dan Minimum Kemonotonan dan Kecekungan Maksimum dan Minimum Lokal Masalah Maksimum dan Minimum Menggambar Grafik Fungsi Teorema Nila Rata-rata
24 Maksimum dan Minimum Misalkan f : D R dan c є D. Nilai f(c) disebut nilai maksimum apabila f(c) f(x) untuk setiap x є D. Nilai f(c) disebut nilai minimum apabila f(c) f(x) untuk setiap x є D. Nilai maksimum atau minimum disebut nilai ekstrim. Contoh 1. Misalkan f(x) = x 2, 4 x є [-1,2]. Nilai maksimumnya adalah 4 [= f(2)], sedangkan nilai minimumnya adalah 0 [= f(0)]. Perhatikan grafiknya y x
25 Teorema Eksistensi Nilai Ekstrim. Jika f kontinu pada [a,b], maka f akan mencapai nilai maksimum dan minimum pada [a,b]. Teorema ini mengatakan bahwa kekontinuan merupakan syarat cukup bagi eksistensi nilai ekstrim. Fungsi pada Contoh 1, misalnya, merupakan fungsi yang kontinu pada [-1,2] dan fungsi ini mempunyai nilai maksimum dan minimum pada [-1,2]. Fungsi yang tidak kontinu mungkin saja mempunyai nilai ekstrim. Sebagai contoh, fungsi yang didefinisikan sebagai berikut:
26 f(x) = -1, jika x = 0, = x, jika 0 < x < 1, = 2, jika x = 1, mempunyai nilai maksimum 2 [= f(1)] dan nilai minimum -1 [= f(0)]. Namun demikian, ketakkontinuan tidak menjamin eksistensi nilai ekstrim. Sebagai contoh, fungsi g(x) = ½, jika x = 0 atau 1, = x, jika 0 < x < 1, tidak mempunyai nilai ekstrim, baik maksimum maupun minimum.
27 Teorema Lokasi Titik Ekstrim. Misalkan daerah asal f adalah selang I yang memuat titik c. Jika f(c) adalah nilai ekstrim, maka c haruslah merupakan titik kritis, yakni c merupakan (i) titik ujung selang I, atau (ii) titik stasioner f, yakni f (c) = 0, atau (iii) titik singular f, yakni f (c) tidak ada. Teorema ini mengatakan bahwa nilai ekstrim hanya mungkin tercapai di titik kritis, karena itu teorema ini dikenal pula sebagai Teorema Titik Kritis. Untuk menentukan nilai ekstrim suatu fungsi, teorema ini menganjurkan kita mencari titik-titik kritisnya dulu.
28 Contoh 2. Tentukan nilai maksimum dan minimum fungsi f(x) = -2x 3 + 3x pada [-1,2]. Jawab: Turunan f adalah f (x) = -6x 2 + 6x = 6x(1 x). Jadi titik stasionernya adalah 0 dan 1, sedangkan titik singularnya tidak ada. Dengan demikian terdapat 4 titik kritis, yakni -1, 0, 1, dan 2 (dua titik ujung selang dan dua titik stasioner). Sekarang bandingkan nilai f di titik-titik kritis tersebut: f(-1) = 6, f(0) = 1, f(1) = 2, f(2) = -3. Menurut Teorema Lokasi Titik Ekstrim, f mesti mencapai nilai maksimum 6 (di -1) dan minimum -3 (di 2).
29 Latihan. Tentukan titik-titik kritis fungsi f(x) = 50x x 2 /2, jika 0 x 20, = 60x x 2, jika20 < x 60. Tentukan nilai maksimum dan minimumnya. Kemonotonan dan Kecekungan Fungsi f dikatakan naik pada I apabila untuk setiap x, y є I dengan x < y berlaku f(x) < f(y). Fungsi f dikatakan turun pada I apabila untuk setiap x, y є I dengan x < y berlaku f(x) > f(y).
30 Fungsi f dikatakan monoton pada I apabila f naik atau turun pada I. Catatan. I dapat berupa selang buka atau tutup. Teorema 3. Misalkan f kontinu dan mempunyai turunan pada I. Jika f (x) > 0 untuk setiap x є I, maka f naik pada I. Jika f (x) < 0 untuk setiap x є I, maka f turun pada I. Contoh 3. Diketahui f(x) = x 3 12x. Kita hitung turunannya: f (x) = 3x 2 12 = 3(x 2)(x + 2).
31 Periksa tanda f (x) pada garis bilangan real: Menurut teorema di atas, f naik pada (-,-2) dan juga pada (2, ); dan turun pada (-2,2). Misalkan f mempunyai turunan pada I = (a,b). Jika f naik pada I, maka grafik fungsi f cekung ke atas pada I; jika f turun pada I, maka grafik fungsi f cekung ke bawah pada I. cekung ke atas cekung ke bawah
32 Teorema 4. Misalkan f mempunyai turunan kedua pada I. Jika f (x) > 0 untuk setiap x є I, maka grafik fungsi f cekung ke atas pada I. Jika f (x) < 0 untuk setiap x є I, maka grafik fungsi f cekung ke bawah pada I. Contoh 4. Diketahui f(x) = x 3 12x. Maka, f (x) = 3x 2 12 danf (x) = 6x. Periksa tanda f (x): Menurut Teorema di atas, grafik fungsi f cekung ke atas pada (0, ) dan cekung ke bawah pada (-,0).
33 Grafik fungsi f(x) = x 3 12x
34 Titik (c,f(c)) disebut titik belok (di buku: titik balik) f apabila f cekungkeatasdikiric dancekungke bawah di kanan c, atau sebaliknya. titik belok Pada contoh sebelumnya, (0,0) merupakan satu-satunya titik belok f(x) = x 3 12x. Latihan. Tentukan titik belok f(x) = x 3 2x 2 + x + 1, bila ada.
35 Maksimum dan Minimum Lokal Nilai f(c) disebut nilai maksimum [minimum] lokal f apabila f(c) f(x) [f(c) f(x)] di sekitar c. Nilai maksimum/minimum lokal disebut nilai ekstrim lokal. Uji Turunan Pertama. Jika f (x) > 0 di sekitar kiri c dan f (x) < 0 di sekitar kanan c, maka f(c) merupakan nilai maksimum lokal. Jika f (x) < 0 di sekitar kiri c dan f (x) > 0 di sekitar kanan c, maka f(c) merupakan nilai minimum lokal. maks. lokal min. lokal
36 Contoh 5. Tentukan nilai maksimum dan minimum lokal f(x) = x 3 12x. Jawab: f (x) = 3x 2 12 = 3(x 2)(x + 2) mempunyai tanda: Menurut Uji Turunan Pertama, f(-2) merupakan nilai maksimum lokal dan f(2) merupakan nilai minimum lokal, sesuai dengan yang kita lihat pada grafiknya. Latihan. Tentukan nilai maksimum dan minimum lokal g(x) = x/2 sin x, 0 < x < 2π, bila ada.
37 Uji Turunan Kedua. Misalkan f (c) = 0 dan f mempunyai turunan kedua pada suatu selang yang memuat c. Jika f (c) < 0, maka f (c) merupakan nilai maksimum lokal. Jika f (c) > 0, maka f(c) merupakan nilai minimum lokal. Contoh 6. Untuk f(x) = x 3 12x, f (x) = 3x 2 12 = 0 di x = -2 dan di x = 2. Dengan Uji Turuan Kedua, kita hitung f (x) = 6x < 0 di x = -2; jadi f(-2) merupakan nilai maksimum lokal. Sementara itu f (x) > 0 di x = 2, dan karenanya f(2) merupakan nilai minimum lokal. Catatan. Hasil di atas sesuai dengan hasil sebelumnya.
38 Latihan. Tentukan nilai ekstrim lokal fungsi berikut: 1. f(x) = x 4 2x g(x) = x + 1/x, x h(x) = 64/(sin x) + 27/(cos x), 0 < x < π/2. Masalah Maksimum dan Minimum Contoh 7. Tentukan titik pada lingkaran x 2 + y 2 = 1 yang terdekat ke titik P(1,2). Jawab: Misalkan s menyatakan jarak titik (x,y) pada lingkaran x 2 + y 2 = 1 ke titik P(1,2), yakni s = (x 1) 2 + (y 2) 2.
39 Karena meminimumkan s sama dengan meminimumkan s 2, kita tinjau D = s 2, D = (x 1) 2 + (y 2) 2 = x 2 2x y 2 4y + 4 = 6 2x 4 1 x 2. Turunkan terhadap x, kita peroleh dd/dx = x/ 1 x 2. Perhatikan bahwa dd/dx = 0 apabila 4x = 2 1 x 2, yaitu apabila x = 1/ 5.
40 Dengan memeriksa tanda dd/dx di sekitar 1/ 5, kita simpulkan bahwa D mencapai minimum di x = 1/ 5. Jadi titik terdekat ke P(1,2) adalah (1/ 5,2/ 5). Latihan 1. Tentukan titik pada hiperbola x 2 4y 2 = 4 yang terdekat ke titik Q(5,0). 2. Sebuah pulau kecil berjarak 2 km dari titik terdekat P pada garis pantai. Jika seseorang di pulau tersebut dapat mendayung perahunya dengan laju 3 km/jam dan berjalan kaki di pantai 4 km/jam, di mana ia harus berlabuh agar sampai di Q yang berjarak 5 km dari P dalam waktu yang paling singkat?
41 Menggambar Grafik Fungsi Kita telah melihat bagaimana informasi tentang kemonotonan dan kecekungan dapat dipakai untuk menggambar grafik fungsi f(x) = x 3 12x. Berikut adalah sebuah contoh lainnya. Gambarlah grafik fungsi f(x) = x.(x 5) 2, dengan memperhatikan: * daerah asal dan daerah hasilnya, * titik-titik potong dengan sumbu koordinat, * kemonotonan dan titik-titik ekstrim lokalnya, * kecekungan dan titik-titik beloknya (bila ada).
42 Daerah asal f adalah [0, ) dan daerah hasilnya juga [0, ), sehingga grafiknya akan terletak di kuadran pertama. Titik potong dengan sumbu x adalah 0 dan 5, sedangkan titik potong dengan sumbu y adalah 0. Untuk x > 0, turunan pertama f adalah f '( x) 5( x = 1)( x 2 x 5). Jadi, titik-titik stasionernya adalah 1 dan 5, dan tanda f (x) adalah
43 Jadi f naik pada [0,1), turun pada [1,5], dan naik pada (5, ). Menurut Uji Turunan Pertama, f(1) = 16 merupakan nilai maksimum lokal dan f(5) = 0 merupakan nilai minimum lokal (sekaligus global). Sekarang kita hitung turunan keduanya: 2 5(3x 6x 5) f ''( x) =. 3/ 2 4x Menggunakan rumus akar persamaan kuadrat, kita dapatkan f (x) = 0 ketika x = /3 2,6. Di kiri 2,6, f (x) < 0, shg grafiknya cekung ke bawah; sedangkan di kanan 2,6, f (x) > 0, shg grafiknya cekung ke atas. (2,6;f(2,6)) merupakan titik belok.
44 Dengan semua informasi ini, kita dapat menggambar grafik fungsi f(x) = x.(x 5) 2 sebagai berikut:
45 Teorema Nilai Rata-rata Pak Dono mengatakan bahwa ia telah menempuh 112 km dalam 2 jam tanpa pernah melampaui 55 km/jam. Tentu saja ia berbohong. Tetapi bagaimana kita dapat membuktikannya? Teorema Nilai Rata-rata. Jika f kontinu pada [a,b] dan mempunyai turunan pada (a,b), maka terdapat suatu c є (a,b) sedemikian sehingga f ( b) f ( a) f '( c) =. b a Catatan. [f(b) f(a)]/(b a) adalah nilai rata-rata f.
46 Ilustrasi: a c b Kembali ke cerita Pak Dono tadi, misalkan f(t) menyatakan jarak yang ditempuh dalam t jam. Maka f kontinu dan turunannya, f (t), menyatakan kecepatan pada saat t. Menurut Teorema Nilai Rata-rata, mestilah terdapat t 1 є (0,2) sedemikian sehingga f (t 1 ) = [f(2) f(0)]/(2 0) = 56. Ini berarti bahwa Pak Dono pernah melampaui 56 km/jam.
47 Contoh 8. Diketahui f(x) = x 2, x є [0,1]. Hitung nilai rata-rata f dan tentukan c є (0,1) sedemikian sehingga f (c) sama dengan nilai rata-rata f. Jawab: Nilai rata-rata f pada [0,1] adalah [f(1) f(0)]/(1 0) = 1. Sementara itu f (x) = 2x = 1 jika dan hanya jika x = ½. Jadi c = ½ adalah bilangan yang kita cari. Latihan. Diketahui g(x) = x 3 /3, x є [-2,2]. Hitung nilai rata-rata g dan tentukan c є (-2,2) sedemikian sehingga g (c) sama dengan nilai rata-rata g.
48 SOAL-SOAL BAB IV 4.1 no. 1, 2, 7, 8, 11, 19, 21, 22, 23, 33, no. 4, 5, 15, 19, no. 2, 6, 8, 12, 13, 14, no. 4, 5, 9, 12, 23, no. 9, no. 1, 2, 4, no. 4, 7, 14, 32. Catatan. Bagian 4.5 dipelajari sendiri. Bagian 4.6 tidak dibahas.
BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia
BAB III Diferensial Departemen Teknik Kimia Universitas Indonesia BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz
BAB IV. PENGGUNAAN TURUNAN. Departemen Teknik Kimia Universitas Indonesia
BAB IV. PENGGUNAAN TURUNAN Departemen Teknik Kimia Universitas Indonesia BAB IV. PENGGUNAAN TURUNAN Maksimum dan Minimum Kemonotonan dan Kecekungan Maksimum dan Minimum Lokal Masalah Maksimum dan Minimum
Hendra Gunawan. 2 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 2 Oktober 2013 Apa yang Telah Dipelajari pada Bab 2 2.1 Dua Masalah Satu Tema 2.2 Turunan 2.3 Aturan Turunan 2.4 Turunan Fungsi Trigonometri 2.5Aturan
Hendra Gunawan. 4 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 Oktober 2013 Latihan (Kuliah yg Lalu) 1. Tentukan pada selang mana grafik fungsi f(x) = x 3 2x 2 + x + 1 naik atau turun. Tentukan pula pada
Hendra Gunawan. 25 September 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 25 September 2013 Kuis 1 (Kuliah yang Lalu) 1. Selesaikan pertaksamaan 2x 3 < x. 2. Diketahui i f(x) ) = x 2 sin (1/x) untuk x 0 dan f(0) = 0.
Hendra Gunawan. 18 September 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 18 September 2013 Review: Teorema Nilai Antara Jika f kontinu pada [a,b],, f(a) < 0 dan f(b) > 0 (atau sebaliknya, f(a) > 0 dan f(b) < 0), maka
Hendra Gunawan. 11 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 11 Oktober 2013 Latihan (Kuliah yang Lalu) Dengan memperhatikan: daerah asal dan daerahhasilnya, titik titik potong dengan sumbu koordinat, asimtot
= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh
JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )
Hendra Gunawan. 9 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 9 Oktober 013 Sasaran Kuliah Hari Ini 34Masalah 3.4 Maksimum dan Minimum Lanjutan Memecahkan masalah maksimumdan minimum. 3.5 Menggambar Grafik Fungsi
Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70
Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline
(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I..
3. Aplikasi Turunan a. Nilai ekstrim Bagian ini dimulai dengan pengertian nilai ekstrim suatu fungsi yang mencakup nilai ekstrim maksimum dan nilai ekstrim minimum. Definisi 3. Diberikan fungsi f: I R,
TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50
TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan
Catatan Kuliah KALKULUS II BAB V. INTEGRAL
BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut
Catatan Kuliah MA1123 Kalkulus Elementer I
Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit
Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61
Matematika I: Turunan Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 61 Outline 1 Garis Singgung Dadang Amir Hamzah Matematika I Semester I 2015 2 / 61 Outline 1 Garis Singgung
TIM MATEMATIKA DASAR I
MATEMATIKA DASAR I DIKTAT KULIAH DISUSUN OLEH TIM MATEMATIKA DASAR I FAKULTAS SAIN DAN TEKNOLOGI UNIVERSITAS JAMBI 2013 KATA PENGANTAR Mata kuliah Matematika Dasar merupakan mata kuliah dasar yang diwajibkan
Rencana Pembelajaran
Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 5. Kalkulus Diferensial 5.1 Konsep Turunan Beberapa Definisi yang Setara Kekontinuan dan Keterdiferensialan secara Kontinu 5.2 Sifat-Sifat
Turunan Fungsi. h asalkan limit ini ada.
Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim
10. TEOREMA NILAI RATA-RATA
10. TEOREMA NILAI RATA-RATA 10.1 Maksimum dan Minimum Lokal Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c (a, b). Kita katakan bahwa f mencapai nilai maksimum lokal di c apabila f(x)
MATEMATIKA TURUNAN FUNGSI
MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XI MIA SEMESTER : (DUA) SMA Santa Angela Bandung Tahun Pelajaran 06-07 XI MIA Semester Tahun Pelajaran 06 07 PENGANTAR : TURUNAN FUNGSI Modul
Open Source. Not For Commercial Use
Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Limit dan Kekontinuan Misalkan z = f(, y) fungsi dua peubah dan (a, b) R 2. Seperti pada limit fungsi satu peubah, limit fungsi dua peubah bertujuan untuk mengamati
MATEMATIKA TURUNAN FUNGSI
MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XII IIS SEMESTER GANJIL SMA Santa Angela Bandung Tahun Pelajaran 017/018 XII IIS Semester 1 Tahun Pelajaran 017/018 PENGANTAR : TURUNAN FUNGSI
Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 75
Matematika I: Turunan Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 75 Outline 1 Garis Singgung Dadang Amir Hamzah Matematika I Semester I 2015 2 / 75 Outline 1 Garis Singgung
UJIAN TENGAH SEMESTER KALKULUS I
UJIAN TENGAH SEMESTER KALKULUS I Senin, 9 April 001 Waktu :,5 jam 1. Tentukan dy dx jika (a) y 5x (x + 1) (b) y cos x.. Dengan menggunakan de nisi turunan, tentukan f 0 (x) untuk fungsi f berikut f (x)
f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a
Nama Siswa Kelas : : aasdaa. PENGERTIAN DIFERENSIAL (TURUNAN) Turunan fungsi atau diferensial didefinisikan sebagai laju perubahan fungsi sesaat dan dinotasikan f (x). LEMBAR AKTIVITAS SISWA DIFFERENSIAL
MATEMATIKA II. Turunan dan Aplikasinya. Rudi Prihandoko. March 9, 2017 ver 0.6
MATEMATIKA II Turunan dan Aplikasinya Rudi Prihandoko March 9, 2017 ver 0.6 KUIS I KUIS Misalkan ABCDE adalah NIM Anda. Misalkan pula f(x) = (Ax2 + Bx + C) 2 Ax 2 + Dx + E adalah suatu fungsi rasional.
f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a
LEMBAR AKTIVITAS SISWA DIFFERENSIAL (TURUNAN) Nama Siswa : y f(a h) f(a) x (a h) a Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.21 Memahami konsep turunan dengan menggunakan konteks matematik atau konteks
5. Aplikasi Turunan MA1114 KALKULUS I 1
5. Aplikasi Turunan MA4 KALKULUS I 5. Menggambar grafik fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi C. Kemonotonan Fungsi D. Ekstrim Fungsi E. Kecekungan
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 4 a home base to excellence TIU : Mahasiswa dapat memahami turunan fungsi dan aplikasinya TIK : Mahasiswa
TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61
TERAPAN TURUNAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 61 Topik Bahasan 1 Nilai Maksimum dan Minimum 2 Teorema Nilai Rataan (TNR) 3 Turunan
Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35
Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika
BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan
BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz
TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM
TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM Fungsi f dikatakan mencapai maksimum mutlak di c jika f c f x untuk setiap x I. Di sini f c dinamakan nilai maksimum mutlak. Dan c, f c dinamakan titik maksimum
Kalkulus Diferensial week 09. W. Rofianto, ST, MSi
Kalkulus Diferensial week 09 W. Rofianto, ST, MSi Tingkat Perubahan Rata-rata Jakarta Km 0 jam Bandung Km 140 Kecepatan rata-rata s t 140Km jam 70Km / jam Konsep Diferensiasi Bentuk y/ disebut difference
TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi
TURUNAN Ide awal turunan: Garis singgung Tali busur c +, f c + Garis singgung c, f c c P h c+h f c + f c Kemiringan garis singgung di titik P: f c + f c lim Definisi Turunan fungsi f adalah fungsi lain
Analisis Riil II: Diferensiasi
Definisi Turunan Definisi dan Teorema Aturan Rantai Fungsi Invers Definisi (Turunan) Misalkan I R sebuah interval, f : I R, dan c I. Bilangan riil L dikatakan turunan dari f di c jika diberikan sebarang
11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)
11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku
PENGGUNAAN TURUNAN. Maksimum dan Minimum. Definisi. Andaikan S, daerah asal f, memuat titik c. Kita katakan bahwa:
PENGGUNAAN TURUNAN Maksimum dan Minimum Andaikan S, daerah asal f, memuat titik c. Kita katakan bahwa: 1. f c adalah nilai maksimum f pada S jika f c f x untuk semua x di S;. f c adalah nilai minimum f
APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2
Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk
MATEMATIKA TURUNAN FUNGSI
MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XI IPS SEMESTER : (DUA) SMA Santa Angela Bandung Tahun Pelajaran 015-016 XI IPS Semester Tahun Pelajaran 015 016 PENGANTAR : TURUNAN FUNGSI Modul
Integral Tak Tentu. Modul 1 PENDAHULUAN
Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Latar Belakang Historis Fondasi dari integral pertama kali dideklarasikan oleh Cavalieri, seorang ahli matematika berkebangsaan Italia pada tahun 1635. Cavalieri menemukan bahwa
Bagian 4 Terapan Differensial
Bagian 4 Terapan Differensial Dalam bagian 4 Terapan Differensial, kita akan mempelajari materi bagaimana konsep differensial dapat dipergunakan untuk mengatasi persoalan yang terjadi di sekitar kita.
MA3231 Analisis Real
MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017
MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL)
MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL) KATA PENGANTAR Puji dan Syukur kami panjatkan ke Hadirat Tuhan Yang Maha Esa, karena berkat limpahan Rahmat dan Karunia-nya sehingga kami dapat menyusun makalah
Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc
Aplikasi Turunan Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc 1 Menggambar Grafik Fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi
5.1 Menggambar grafik fungsi
5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.
Matematika Dasar NILAI EKSTRIM
NILAI EKSTRIM Misal diberikan kurva f( ) dan titik ( a,b ) merupakan titik puncak ( titik maksimum atau minimum ). Maka garis singgung kurva di titik ( a,b ) akan sejajar sumbu X atau [ ] mempunyai gradien
Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada
5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal
MA3231 Analisis Real
MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017
MATEMATIKA TURUNAN FUNGSI
MATEMATIKA TURUNAN FUNGSI lim 0 f ( x ) f( x) KELAS : XI IPA SEMESTER : (DUA) SMA Santa Angela Bandung Taun Pelajaran 04-05 XI IPA Semester Taun Pelajaran 04 05 PENGANTAR : TURUNAN FUNGSI Modul ini kami
Gambar 1. Gradien garis singgung grafik f
D. URAIAN MATERI 1. Definisi dan Rumus-rumus Turunan Fungsi a. Definisi Turunan Sala satu masala yang mendasari munculnya kajian tentang turunan adala gradien garis singgung. Peratikan Gambar 1. f(c +
Geometri pada Bidang, Vektor
Jurusan Matematika FMIPA Unsyiah September 9, 2011 Sebuah kurva bidang (plane curve) ditentukan oleh pasangan persamaan parametrik x = f(t), y = g(t), t dalam I dengan f dan g kontinu pada selang I. I
Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange
Pertemuan Minggu ke-11 1. Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange 1. BIDANG SINGGUNG, HAMPIRAN Tujuan mempelajari: memperoleh persamaan bidang singgung terhadap permukaan z
Hendra Gunawan. 13 September 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 13 September 2013 Latihan (Kuliah yang Lalu) sin t 1. Menggunakan fakta bahwa lim 1, t0 hitunglah: t 2 sin( 2 ) a. limsin t.cot 2t b. lim t 0 0
KED PENGGUNAAN TURUNAN
6 PENGGUNAAN TURUNAN JUMLAH PERTEMUAN : 1 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Menerapkan konsep dasar turunan fungsi dalam menentukan karakteristik grafik fungsi dan menggambarkan grafik Materi : 6.1
Turunan Fungsi dan Aplikasinya
Bab 8 Sumber: www.duniacyber.com Turunan Fungsi dan Aplikasinya Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan dalam perhitungan turunan fungsi; menggunakan turunan
LIMIT DAN KEKONTINUAN
LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen
bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c
Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat c. Turunan pertama dari fungsi f di titik c ditulis f '( c ) didefinisikan sebagai: ( ) ( ) f x f '( c) = lim f c x c x c bila limitnya ada.
Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada
5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya
MATERI KALKULUS. y' = F'(x) = f(x), y'' = F''(x) = f'(x), y'''=f'''(x) = f''(x)= g'(x)= h(x) y1= f(x) y2 = g(x) y3 = h(x)
Universitas Muhammadiyah Sukabumi Artikel Kalkulus Oleh : ardi meridian herdiansyah MATERI KALKULUS KALKULUS 1 MODUL 6 V. MAKSIMUM / MINIMUM ( EKSTREM FUNGSI ) 5.1. Pengertian Diketahui y = F(x) suatu
Zulfaneti Yulia Haryono Rina F ebriana. Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ( + ) ( ) ( )=
Zulfaneti Yulia Haryono Rina F ebriana Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ()= (+) () Penyusun Zulfaneti Yulia Haryono Rina Febriana Nama NIm : : Untuk ilmu yang bermanfaat Untuk Harapan
G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel.
G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel. Definisi. (i) Suatu fungsi f(x, y) memiliki minimum lokal pada titik
Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co.
Penerapan Turunan A. PENDAHULUAN Turunan dapat digunakan untuk: 1) Perhitungan nilai limit dengan dalil l Hôpital 2) Menentukan persamaan fungsi kecepatan dan percepatan dari persamaan fungsi posisi )
Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,
Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =
MATEMATIKA EKONOMI DAN BISNIS MINGGU IX
MATEMATIKA EKONOMI DAN BISNIS MINGGU IX KALKULUS DIFERENSIAL Prepared By : W. Rofianto ROFI 010 TINGKAT PERUBAHAN RATA-RATA Jakarta Km 0 jam Bandung Km 140 Kecepatan rata-rata s t 140Km jam 70Km / jam
Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7
Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika Kode Paket 578 Oleh : Fendi Alfi Fauzi 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus
Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.
DESKRIPSI MATA KULIAH TK-... Matematika Dasar: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika
TURUNAN FUNGSI KELAS : XI IPS
MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPS SEMESTER : (DUA) MAYA KURNIAWATI SMA N SUMBER PENGANTAR : TURUNAN FUNGSI Modul ini kami susun sebagai salah satu sumber belajar untuk siswa agar dapat dipelajari
TUJUAN INSTRUKSIONAL KHUSUS
PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep
PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
PENGGUNAAN TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ [email protected] Pada materi sebelumnya telah dijelaskan bahwa Teorema Nilai Rata-Rata (TNR dierensial) memegang peranan
TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Jika diberikan suatu fungsi f dan daerah asal S seperti gambar di samping.
LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI
LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI Afrizal, S.Pd, M.PMat Matematika MAN Kampar Juli 2010 Afrizal, S.Pd, M.PMat (Matematika) Luas Daerah Dibawah Kurva Juli 2010 1 / 29 Outline Outline 1 Limit dan Turunan
5. Aplikasi Turunan 1
5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.
Hendra Gunawan. 16 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 16 Oktober 2013 Latihan (Kuliah yang Lalu) 1. Diketahui g(x) = x 3 /3, x є [ 2,2]. Hitung nilai rata rata g pada [ 2,2] dan tentukan c є ( 2,2)
Turunan Fungsi Aljabar. , karena melengkung maka
A. Turunan sebagai Limit Fungsi Turunan Fungsi Aljabar f(t) t = t t jika dan hanya jika t = t + t m = f(t ) f(t ) t t = f( t+t ) f(t ) t = f( t+t ) f(t ) t f( t+t ) f(t ) t 0 t = f (t ) f(+x) f(x) m =
Matematika
Diferensial/ Diferensial/ dan Aplikasinya D3 Analis Kimia FMIPA Universitas Islam Indonesia Diferensial/ Diferensial/turunan adalah metode atau prosedur untuk menghitung laju perubahan. Definisi Diferensial/
Kalkulus Multivariabel I
Maksimum, Minimum, dan Statistika FMIPA Universitas Islam Indonesia Titik Kritis Misalkan p = (x, y) adalah sebuah titik peubah dan p 0 = (x 0, y 0 ) adalah sebuah titik tetap pada bidang berdimensi dua
Pembahasan SNMPTN 2011 Matematika IPA Kode 576
Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.
PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.
PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.CO MAT 4 materi78.co.nr Penerapan Turunan A. PENDAHULUAN
Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.
DESKRIPSI MATA KULIAH TK-301 Matematika: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika dan
UJIAN PERTAMA KALKULUS/KALKULUS I SEMESTER PENDEK 2004 SABTU, 17 JULI (2 JAM)
Tentukan (jika ada) UJIAN PERTAMA KALKULUS/KALKULUS I SEMESTER PENDEK 2004 SABTU, 17 JULI (2 JAM) 1. Dengan menggunakan de nisi turunan, tentukan f 0 () bila f() = 2 + 4. 2. Tentukan: (a) d d (p + sin
Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi
8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala
TEOREMA UJI TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
TEOREMA UJI TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ [email protected] UJI TURUNAN I-ekstrim relati Andaikan kontinu pada selang (a,b), yang memuat titik kritis c : (i)
AFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... 2 PEMBAHASAN... 19
DAFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... UTS Genap 009/00... UTS Ganjil 009/00... UTS Genap 008/009... 5 UTS Pendek 008/009... 6 UTS 007/008... 8 UTS 006/007... 9 UTS 005/006...
MA3231 Analisis Real
MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017
Matematika
Diferensial/ Diferensial/ dan Aplikasinya D3 Analis Kimia FMIPA Universitas Islam Indonesia Diferensial/ Diferensial/turunan adalah metode atau prosedur untuk menghitung laju perubahan. Definisi Diferensial/
DIFERENSIAL FUNGSI SEDERHANA
DIFERENSIAL FUNGSI SEDERHANA Salah satu metoe yang cukup penting alam matematika aalah turunan (iferensial). Sejalan engan perkembangannya aplikasi turunan telah banyak igunakan untuk biang-biang rekayasa
KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN
KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN MENGGAMBAR GRAFIK FUNGSI A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi : Asimtot ungsi
INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN
MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036
BAB I INTEGRAL TAK TENTU
BAB I INTEGRAL TAK TENTU TUJUAN PEMBELAJARAN: 1. Setelah mempelajari materi ini mahasiswa dapat menentukan pengertian integral sebagai anti turunan. 2. Setelah mempelajari materi ini mahasiswa dapat menyelesaikan
DERIVATIVE Arum Handini primandari
DERIVATIVE Arum Handini primandari INTRODUCTION Calculus adalah perubahan matematis, alat utama dalam studi perubahan adalah prosedur yang disebut differentiation (deferensial/turunan) Calculus dikembangkan
Turunan Fungsi dan Aplikasinya
Bab 8 Sumber: www.duniacyber.com Turunan Fungsi dan Aplikasinya Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, siat, dan aturan dalam perhitungan turunan ungsi; menggunakan turunan untuk
MA1201 KALKULUS 2A Do maths and you see the world
Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis
BAB 5 PENGGUNAAN TURUNAN
Diktat Kuliah TK Matematika BAB 5 PENGGUNAAN TURUNAN 5. Nilai Ekstrim Fungsi Nilai ekstrim fungsi adalah nilai yang berkaitan dengan maksimum atau minimum fungsi tersebut. Ada dua jenis nilai ekstrim,
Pertemuan Minggu ke Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai
Pertemuan Minggu ke-10 1. Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai 1. Keterdiferensialan Pada fungsi satu peubah, keterdiferensialan f di x berarti keujudan derivatif f (x).
