FUNGSI KHUSUS DALAM BENTUK INTEGRAL
|
|
|
- Hamdani Kurnia
- 9 tahun lalu
- Tontonan:
Transkripsi
1 FUNGSI KHUSUS DALAM BENTUK INTEGRAL
2 FUNGSI FAKTORIAL Definisi n e d n! Buktikan bahwa :!! e d e d e ( ) Terbukti
3 FUNGSI Gamma Definisi ( ) p p e d ; p > Hubungan fungsi Gamma dengan fungsi Faktorial ( ) ( p ) p + + e d ( p + ) p! p e d p! ( )!, ( )!, ( 3)! dst
4 Nilai Fungsi Gamma ditabulasi untuk Gamma sampai dengan Gamma
5 Hubungan Rekursif Fungsi Gamma u p e d ( p + ) Lakukan integrasi parsial, seperti berikut : dv e du p p p d v e p p d p ( ) ( p + e e ) p ( p + ) p e d p( p) ( p + ) p( p) dp
6 Hubungan Rekursif Fungsi Gamma ( p + ) p( p) ( 3 ) ( + ) ( ) ( ) ( 4 ) ( 3+ ) 3( 3) 3( + ) 3.( ) 6( ) 6 dst
7 Hubungan Rekursif Fungsi Gamma p ( p) ( p + ),6,5,6,5 (,6) (,6 + ) (,6) (,5 ) (,5 + ) (,5 ),5,5,5,5,5,5 (,5 + ) (,5),5 (,5 ) Tabel F. Gamma Tabel F. Gamma
8 Nilai (,5),5 t t (,5) t e dt e dt Misalkan t y, maka dt y dy e y y (,5 ) e ydy (,5) e d [ ( )] ( + y,5 4 e ) d dy t
9 Nilai (,5) π / [ (,5) ] 4 e r r π e rdr dθ 4 θ π [ (,5 ) ] π (,5) π
10 Contoh soal Hitunglah integral berikut dengan Fungsi Gamma : Jawab ue e u du d e u u d Misal u, maka du d Untuk maka u Untuk maka u / e u du (,5 ) (,5) π 4 e π d 4
11 Soal Latihan Hitunglah integral-integral berikut dengan Fungsi Gamma :.. 3. te 3t dt ( y + y ) ( ln ) /3 e d y dy
12 Formula penting terkait Fungsi Gamma ( p) ( p) π sinπp Untuk p,5 (,5) (,5) (,5) (,5) [ (,5) ] (,5) π π π π sin,5π
13 Contoh soal Buktikan bahwa : Bukti z! z ( z) z!! π z sinπz ( z)! ( z + ) ( z) Ingat : ( n + ) n! dan!( z)! z( z) ( z) ( n + ) n( n) z! z! ( z)! z[ ( z) ( z) ] π ( z)! z ( z) z!! sinπz πz sinπz dan ( n) ( n) π sinπn
14 Fungsi Beta Definisi : B ( ) p ( ) q p, q d ; p > ; q >. ( p, q ) B ( q p ) B, Definisi : B ( ) p p, q y ( a y) p+ q a a q dy
15 Fungsi Beta Definisi 3 : B π / ( ) ( ) p p, q sinθ ( cosθ ) q dθ Definisi 4 : B p y dy, ( ) p+ q + y ( p q)
16 Hubungan Fungsi Beta dan Fungsi Gamma Fungsi Gamma ( p) t p e t dt Misal t y, maka ( p) y y e dy p ( ) q p ( ) ( ) ( + y p q y e ) 4 d dy q ( p) ( q) ( r cosθ ) ( r sinθ ) q q e d π / p r 4 e rdrdθ atau Jika (p) dikalikan dengan (q) dikalikan maka :
17 Hubungan Fungsi Beta Hubungan Fungsi Beta dan Fungsi Gamma dan Fungsi Gamma ( ) ( ) ( ) ( ) + / sin cos 4 θ θ θ π d dr e r q p p q r q p ( ) p + q ( ) q p B, ( ) ( ) ( ) ( ) q p B q p q p,. 4 + ( ) ( ) ( ) ( ) q p q p q p B +,
18 Hubungan Fungsi Beta dan Fungsi Gamma contoh B ( ) ( ) ( ), ( 3 ) ( )( π ) π
19 Contoh soal Selesaikan integral berikut dengan fungsi Beta π / sin 3 cos d p Solusi dengan def. Fungsi Beta 3 B( p, q) ( sinθ ) ( cosθ ) π / π / ( 3 ) ( ) 3/ sin cos / d sin ( cos ) π / / p 3 p 5 4 q 3 q 4 d q dθ π / sin 3 cos d B ( 5, 3 ) 4 4 ( 5 ) ( 3 4 4) ( )...
20 Contoh soal Selesaikan integral berikut dengan fungsi Beta y dy ( + y) 6 Solusi dengan def. Fungsi Beta 4 B( p q) p p 3 ( p + q) 6 q 3 p y dy, p+ q ( + y) Jadi y dy ( + y) 6 B ( 3,3) ( 3) ( 3) 4 ( 6)
21 Soal Latihan Selesaikan integral berikut dengan fungsi Beta yang sesuai. y dy ( 3 + y ). d 3. π / dθ sinθ
22 Aplikasi dalam persoalan Fisika Sket grafik + y 9 Gunakan fungsi Beta untuk menghitung : a. Luas daerah pada kuadran pertama b. Titik pusat massa dari daerah ini (anggap rapat massanya seragam) Jawab a y + y 9 A da d dy 3 9 y d dy 3 A 9 y dy
23 Aplikasi dalam persoalan Fisika 3 A 9 y dy Misalkan : y y dy d Batas : y y 3 9 A 9 9 d / 9 / ( 9 ) d Gunakan Fungsi Beta kedua B p ( p, q) y ( a y) a a p+ q q dy a y p q p+ q ( a y) dy a B( p, q)
24 A A / + 3/ ( 9) B( /,3/ ) ( 9) ( / ) ( 3/ ) ( ) π / π 9 A ( 9 ) π 4 Dengan rumus luas lingkaran : A π r π ( 3) π Sama
25 B. Titik pusat massa luasan tersebut dihitung dengan rumus : pm y pm dm dm y dm dm ρ da ρda ρ yda ρda Dst...
26 Fungsi Error dan Pelengkapnya Definisi Fungsi Error Erf ( ) e π t dt Definisi Pelengkap Fungsi Error Erfc ( ) π e t dt
27 Fungsi Error Erf Erf ( ) π π e t dt π ( ) ( ) π Selesaikan dengan Fungsi Gamma
28 Fungsi Error dan Pelengkapnya Erf Erf Erf Erf ( ) ( ) + t + t Erfc e dt e dt π ( ) + Erfc ( ) π e t dt ( ) + Erfc( ) Erf ( ) ( ) Erfc( ) Erfc( ) Erf ( )
29 Dari deret pangkat tak hingga : Fungsi Error e t + t + t +! 3 t + 3! 4 t ! e t t + 4 t! 6 t + 3! 8 t ! Erf t 4 dt ( ) t +... π! Erf ( ) t π 3 t t... 5.! Erf ( ) +... π 3 5.! 3 5 <<
30 Pelengkap Fungsi Error Definisi pelengkap fungsi error Kita tuliskan : dan lakukan integrasi by part sbb :
31 Pelengkap Fungsi Error Pelengkap Fungsi Error Sekarang tuliskan lagi : 3 t t e dt d t e t kemudian lakukan integral by part lagi sbb :
32 Pelengkap Fungsi Error Jika proses ini terus dilanjutkan, maka akan didapat ungkapan deret untuk pelengkap fungsi error, sbb : >>
33 Contoh soal e. d e u 5. du π / 3. e t dt π
34 Formula Stirling Formula Stirling adalah formula pendekatan untuk fungsi Faktorial dan Fungsi Gamma, sbb : Bukti Substitusi variabel baru y sehingga
35 Formula Stirling persamaan di atas menjadi : untuk p besar, logaritma dapat diekspansi dalam deret pangkat berikut : sehingga
36 Formula Stirling π Untuk p besar
37 Bandingkan nilai eksak n! dengan formula pendekatan Stirling n n! eksak n! Formula Stirling Persen selisih 5 8,,7 %,43 X 8,4 8, % 5 3,4 X 64
38 Soal. Dalam mekanika statistik sering digunakan persamaan : ln N! N ln N N disini N berorde bilangan Avogadro, N 6 Buktikan dari Formula Stirling!. Hitunglah : lim n ( n)! n ( n! ) n ( ) 3. Hitunglah : 55,5
39 Integral Eliptik Bentuk Legendre disebut juga integral eliptik tak lengkap jenis ke satu dan ke dua k disebut modulus dan φ disebut amplitudo integral eliptik. Integral ini ditabulasi untuk nilai θ arc sin k dan φ antara dan π/. k dapat dilihat dari bentuk integral, dengan mengetahui k maka θ dapat ditentukan, sedangkan φ dapat dilihat pada batas integral, dengan mengetahui θ dan φ, maka nilai integral eliptik dapat dilihat pada tabel integral eliptik F(k,φ) dan E(k,φ).
40 Integral Eliptik Integral eliptik lengkap Integral eliptik lengkap jenis pertama dan kedua adalah nilai-nilai K dan E (sebagai fungsi k) untuk φ π/ Sama seperti sebelumnya, k dapat dilihat dari bentuk integral, dengan mengetahui k maka θ dapat ditentukan, dengan mengetahui θ, maka nilai integral eliptik lengkap dapat dilihat pada tabel integral eliptik lengkap K dan E
41 Contoh soal. π / 4 dφ,5sin φ
42 Bagaimana menghitung integral eliptik untuk φ > π/??? Tinjau fungsi sin [f(sin )] yang merupakan integran dari integral eliptik 9π / 4 π π π / 4 π / π / luas A
43 7π / 4 π π π / 4 π / π / luas A catat 7π / 4 3π / 3π / π / 4 π / π / luas A
44 Contoh soal 5π / 4,37 sin φ dφ
45 Jika batas bawah integral tidak nol, maka : dan jika salah satu batas integral adalah negatif, maka : Karena F(k,φ) dan E(k,φ) merupakan fungsi ganjil
46 Contoh soal π / 4 7π /8,64sin φ dφ
47 Bentuk Jacobi Jika kita ambil sin φ, pada bentuk Legendre, maka akan didapat integral eliptik bentuk Jacobi jenis pertama dan kedua, sbb :
48 dan
49 Contoh soal,8 d ( )(,6 )
50 Contoh soal. 5π / 4,37 sin φ dφ 3. π / 4 7π /8,64sin φ dφ,5. d 4.,5 ( )( 4 3 ),5 d
Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma
Fungsi Gamma Pengantar Matematika Teknik Kimia Muthia Elma Fungsi Gamma Defenisi Merupakan salah satu fungsi khusus yang biasanya disajikan dalam pembahasan kalkulus tingkat lanjut Dalam aplikasinya fungsi
Fungsi Gamma dan Fungsi Beta. Ayundyah. Ayundyah Kesumawati. Prodi Statistika FMIPA-UII. March 31, 2015
Fungsi Kesumawati Prodi Statistika FMIPA-UII March 31, 215 Gamma Fungsi Fungsi Gamma didefinisikan sebagai integral tak wajar berikut: Γ(α) := e x x α 1 dx (1) Integral ini konvergen bila α >. Dengan menerapkan
digunakan untuk menyelesaikan integral seperti 3
Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat
Kalkulus Multivariabel I
Integral Lipat-Dua dalam Koordinat Kutub Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 214 / 2 Integral Lipat-Dua dalam Koordinat Kutub Terdapat beberapa kurva tertentu pada suatu
7. RESIDU DAN PENGGUNAAN. Contoh 1 Carilah titik singular dan tentukan jenisnya dari fungsi berikut a. f(z) = 1/z
MATEMATIKA 6 TEKNIK Residu dan Penggunaan 6 7. RESIDU DAN PENGGUNAAN 7.. RESIDU DAN KUTUB disebut titik singular dari f() bila f() gagal analitik di tetapi analitik pada suatu titik dari setiap lingkungan
panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d
INTEGAL ANGKAP. Integral angkap Dua. Volume dan Pusat Massa. Integral angkap Tiga.4 Koordinat Tabung dan Koordinat Bola.. Intergral angkap Dua Misal diberikan daerah di bidang XOY ang berbentuk persegi
Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018
Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar
Modul KALKULUS MULTIVARIABEL II
Modul KALKULUS MULTIVARIABEL II Oleh Ayundyah Kesumawati, S.Si., M.Si. (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 26 Daftar Isi Daftar Isi iv Daftar
UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK
UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +
SIFAT-SIFAT INTEGRAL LIPAT
TUGAS KALKULUS LANJUT SIFAT-SIFAT INTEGAL LIPAT Oleh: KAMELIANI 46 JUUSAN MATEMATIKA FAKULTAS MATEMATIKA AN ILMU PENGETAHUAN ALAM UNIVESITAS NEGEI MAKASSA 4 SIFAT-SIFAT INTEGAL LIPAT A. SIFAT-SIFAT INTEGAL
Kalkulus Multivariabel I
Integral Lipat-Dua dalam Koordinat Kutub Statistika FMIPA Universitas Islam Indonesia Terdapat beberapa kurva tertentu pada suatu bidang yang lebih mudah dijelaskan dengan menggunakan koordinat Kutub.
MATEMATIKA TEKNIK II BILANGAN KOMPLEKS
MATEMATIKA TEKNIK II BILANGAN KOMPLEKS 2 PENDAHULUAN SISTEM BILANGAN KOMPLEKS REAL IMAJINER RASIONAL IRASIONAL BULAT PECAHAN BULAT NEGATIF CACAH ASLI 0 3 ILUSTRASI Carilah akar-akar persamaan x 2 + 4x
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan
TEKNIK PENGINTEGRALAN
TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi
Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.
4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan
FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi
Bab V Aplikasi Selain aplikasi yang sudah diperkenalkan di bab I, teori variabel kompleks masih memiliki banyak ragam aplikasi lainnya. Beberapa di antaranya akan dibahas di dalam bab ini. Perhitungan
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan
Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu.
Kuliah PD Pertemuan ke-1: Motivasi: 1. Mekanika A. Hukum Newton ke-: Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Misalkan F: gaya, m: massa benda, a: percepatan,
, ω, L dan C adalah riil, tunjukkanlah
. Jika z j j PROBLEM SE# Sistem Bilangan Kompleks, tentukanlah bagian riil dan bagian imajiner dari bilangan kompleks z z. Carilah harga dan y yang memenuhi persamaan : y j y, j, ( ) ( ). Carilah bentuk
DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1
Jurusan Fisika-Unej BENDA TEGAR Kuliah FI-1101 Fisika 004 Dasar Dr. Linus Dr Pasasa Edy Supriyanto MS Bab 6-1 Jurusan Fisika-Unej Bahan Cakupan Gerak Rotasi Vektor Momentum Sudut Sistem Partikel Momen
Teknik Pengintegralan
Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah
DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)
DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan
SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com
SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan
A. 3 x 3 + 2x + C B. 2x 3 + 2x + C. C. 2 x 3 + 2x + C. D. 3 x 3 + 2x + C. E. 3 x 3 + 2x 2 + C A. 10 B. 20 C. 40 D. 80 E. 160
7. UN-SMA-- Diketahui sebidang tanah berbentuk persegi panjang luasnya 7 m. Jika panjangnya tiga kali lebarnya, maka panjang diagonal bidang tanah tersebut m m m m m 7. UN-SMA-- Pak Musa mempunyai kebun
1 Nama Anggota 1:Darul Afandi ( ) Jawaban soal No 40. -
Universitas Jember Jurusan Matematika - FMIPA MAM 56 Deadline: Wednesday, 9 ; :55 Analisis Kompleks Tugas Template Jawaban Nama Kelompok: Group J Nama Anggota:. Darul Afandi (8). Wahyu Nikmatus Sholihah
FUNGSI LOGARITMA ASLI
FUNGSI LOGARITMA ASLI............ Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln (Daerah asalnya adalah., 0 Turunan Logaritma Asli ln, 0 Lebih umumnya, Jika 0 dan f terdifferensialkan,
INTEGRASI Matematika Industri I
INTEGRASI TIP FTP UB Pokok Bahasan Pendahuluan Fungsi dari suatu fungsi linear Integral berbentuk Integrasi hasilkali Integrasi per bagian Integrasi dengan pecahan parsial Integrasi fungsi-fungsi trigonometris
16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.
6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)
Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan
Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Kemampuan yang diinginkan: kejelian melihat bentuk soal
BAB VI INTEGRAL TAK TENTU DAN PENGGUNAANNYA
BAB VI INTEGRAL TAK TENTU DAN PENGGUNAANNYA Jika dari suatu fungsi kita dapat memperoleh turunannya, bagaimana mengembalikan turunan suatu fungsi ke fungsi semula? Operasi semacam ini disebut operasi balikan
BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I
BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I. Pengertian PD, Orde (tingkat), & Derajat (Pangkat) Persamaan diferensial adalah suatu persamaan yang memuat derivatifderivatif (turunan) sekurang-kurangnya derivatif
APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG
Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil
Suku Banyak Chebyshev
Bab 3 Suku Banyak Chebyshev Suku banyak Chebyshev, yang diberi nama oleh Pafnuty Chebyshev, merupakan suatu deret dari suku banyak ortogonal yang dapat dituliskan secara rekursif. Suku banyak ini dibedakan
Barisan dan Deret Agus Yodi Gunawan
Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Lipat Tiga
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Lipat Tiga [MA4] Integral Lipat Tiga pada Balok ( k, k, k ) B B k k 7/6/7 [MA 4]. Partisi balok B menjadi n bagian; B, B,, B k,,
Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018
Kalkulus 2 Teknik Pengintegralan ke - 2 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 24 Daftar
BAB VIII PERSAMAAN DIFERENSIAL (PD)
BAB VIII PERSAMAAN DIFERENSIAL (PD) Banak masalah dalam kehidupan sehari-hari ang dapat dimodelkan dalam persamaan diferensial. Untuk menelesaikan masalah tersebut kita perlu menelesaikan pula persamaan
Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.
4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping
PDP linear orde 2 Agus Yodi Gunawan
PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan
MACLAURIN S SERIES. Ghifari Eka
MACLAURIN S SERIES Ghifari Eka Taylor Series Sebelum membahas mengenai Maclaurin s series alangkah lebih baiknya apabila kita mengetahui terlebih dahulu mengenai Taylor series. Misalkan terdapat fungsi
FUNGSI LOGARITMA ASLI
D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping
Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n!
Analisa Numerik Teknik Sipil 1 PENDAHULUAN 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah Dalam matematika, dikenal adanya fungsi transenden (fungsi eksponen, logaritma natural, invers dan sebagainya),
1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta
1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: [email protected] Definisi KINEMATIKA Kinematika adalah cabang ilmu fisika yang
I N T E G R A L (Anti Turunan)
I N T E G R A L (Anti Turunan) I. Integral Tak Tentu A. Rumus Integral Bentuk Baku. Derifatif d/ X n = nx n- xn = Integral x n+ n. d/ cos x = - sin x sin x = - cos x. d/ sin x = cos x cos x = sin x 4.
matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran
Kurikulum 006/03 matematika K e l a s XI TURUNAN TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan rumus turunan trigonometri
Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang
ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang
MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI
MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT
Solusi Analitis Persamaan-persamaan Diferensial Orde-1 dengan Metode Analitis Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH
Solusi Analitis Persamaan-persamaan Diferensial Orde- dengan Metode Analitis.. Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH a. Bentuk Umum: f ( ) g( ), f dan g fungsi sembarang. b. Metode
CNH2B4 / KOMPUTASI NUMERIK
CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan
DIKTAT KALKULUS MULTIVARIABEL I
DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215
3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17,
3. ORBIT KEPLERIAN AS 2201 Mekanika Benda Langit 1 3.1 PENDAHULUAN Mekanika Newton pada mulanya dimanfaatkan untuk menentukan gerak orbit benda dalam Tatasurya. Misalkan Matahari bermassa M pada titik
PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016)
PEMBAHAAN KII-KII OAL UA KALKULU PEUBAH BANYAK (TA 5/6) Arini oesatyo Putri DEEMBER 3, 5 UNIVERITA ILAM NEGERI UNAN GUNUNG DJATI BANDUNG Pembahasan oal Kisi-Kisi UA Kalkulus Peubah Banyak Tahun Ajaran
dy = f(x,y) = p(x) q(y), dx dy = p(x) dx,
5. Persamaan Diferensian Dengan Variabel Terpisah Persamaan diferensial berbentuk y = f(), dengan f suatu fungsi kontinu pada suatu interval real, dapat dicari penyelesaiannya dengan cara mengintegralkan
Persamaan Diferensial Orde Satu
Modul Persamaan Diferensial Orde Satu P PENDAHULUAN Prof. SM. Nababan, Ph. ersamaan Diferensial (PD) adalah salah satu cabang matematika ang banak digunakan untuk menjelaskan masalah-masalah fisis. Masalahmasalah
MA1201 KALKULUS 2A Do maths and you see the world
Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis
ANALISIS AKIBAT INTEGRAL CAUCHY Ricky Antonius, Helmi, Yudhi INTISARI
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 07, No. 1 (2018), hal 41-46. ANALISIS AKIBAT INTEGRAL CAUCHY Ricky Antonius, Helmi, Yudhi INTISARI Analisis kompleks salah satu cabang matematika
Listrik Statik. Agus Suroso
Listrik Statik Agus Suroso Muatan Listrik Ada dua macam: positif dan negatif. Sejenis tolak menolak, beda jenis tarik menarik. Muatan fundamental e =, 60 0 9 Coulomb. Atau, C = 6,5 0 8 e. Atom = proton
3. Kekonvergenan Deret Fourier
3. Kekonvergenan Deret Fourier Sekarang kita akan membahas kekonvergenan deret Fourier, khususnya kekonvergenan titik demi titik. Melalui Contoh 2 yang dibahas pada bab sebelumnya kita mengetahui bahwa
Kalkulus II. Institut Teknologi Kalimantan
Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Kalkulus Teknologi II Kalimantan January 31, () 2018 1 / 71 Kalkulus II Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Teknologi Kalimantan
TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22
TERAPAN INTEGRAL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 22 Topik Bahasan 1 Luas Daerah Bidang Rata 2 Nilai Rataan Fungsi (Departemen Matematika
KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom
KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran
Kalkulus Multivariabel I
dan Fungsi Implisit dan Fungsi Implisit Statistika FMIPA Universitas Islam Indonesia dan Fungsi Implisit Ingat kembali aturan rantai pada fungsi satu peubah! Jika y = f (x(t)), di mana baik f maupun t
Hendra Gunawan. 26 Februari 2014
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan
BANK SOAL METODE KOMPUTASI
BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....
perpindahan, kita peroleh persamaan differensial berikut :
1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan
BILANGAN KOMPLEKS. Muhammad Hajarul Aswad Pendidikan Matematika Institut Agama Islam Negeri (IAIN) Palopo. Aswad
4. Kompleks Kojugate (Sekawan) 5. Bentuk Polar & Eksponensial Bilangan Kompleks BILANGAN KOMPLEKS Muhammad Hajarul Aswad Pendidikan Matematika Institut Agama Islam Negeri (IAIN) Palopo 6. Perkalian & Pembagian
Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013
Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat
Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya
Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Rekap Dari materi sebelumnya telah dipelajari operasi dalam bilangan kompleks (penambahan,
Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi
Persamaan Difusi Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M Jamhuri UIN Malang April 7, 2013 Penurunan Persamaan Difusi Misalkan u(x, t) menyatakan konsentrasi dari zat pada posisi
Pengantar Metode Perturbasi Bab 1. Pendahuluan
Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait
PERSAMAAN DIFERENSIAL (PD)
PERSAMAAN DIFERENSIAL (PD) A. PENGERTIAN Persamaan yang mengandung variabel dan beberapa fungsi turunan terhadap variabel tersebut. CONTOH : + 5 5 0 disebut PD orde I + 6 + 7 0 disebut PD orde II B. PEMBENTUKAN
Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010
Metode Program Studi Pendidikan Matematika UNTIRTA 10 Maret 2010 (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret 2010 1 / 16 Ekspansi Taylor Misalkan f 2 C [a, b] dan x 0 2 [a, b], maka untuk
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Lipat Tiga [MA4] Integral Lipat Tiga pada Balok ( k, yk, k ) B y B k y k // [MA 4]. Partisi balok B menjadi n bagian; B, B,, B k,,
BAB 2 PERSAMAAN DIFFERENSIAL BIASA
BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan
Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas
Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 672 Topik dalam Matematika Terapan Semester Ganjil 2016/2017 Pendahuluan Metode perturbasi
Bilangan dan Fungsi Kompleks
Bab 5 cakul fi5080 by khbasar; sem 00-0 Bilangan dan Fungsi Kompleks Pada BAB ini dibahas mengenai konsep-konsep bilangan dan variabel kompleks serta penggunaannya dalam penyelesaian persoalan fisika.
FUNGSI-FUNGSI INVERS
FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2
BAB 2 TINJAUAN PUSTAKA
BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang
Persamaan Diferensial Biasa
Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa
: D C adalah fungsi kompleks dengan domain riil
BAB 4. INTEGRAL OMPLES 4. Integral Garis ompleks Misalkan ( : D adalah fungsi kompleks dengan domain riil b D [ a, b], maka integral (, dimana ( x( + iy( dapat dengan mudah a b dihitung, yaitu a i contoh
KARAKTERISTIK GERAK HARMONIK SEDERHANA
KARAKTERISTIK GERAK HARMONIK SEDERHANA Pertemuan 2 GETARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (15B08019), Pendidikan Fisika PPS UNM Makassar 2016 Beberapa parameter
Karakteristik Gerak Harmonik Sederhana
Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo
TEKNIK-TEKNIK PENGINTEGRALAN
TEKNIK-TEKNIK PENGINTEGRALAN 1. Teknik Subtitusi Teorema : Misal g fungsi yang terdiferensialkan dan F suatu anti turunan dari f, jika u = g() maka f(g())g () d = f(u) du = F(u) + c = F(g()) + c sin. 1.
MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d
MA1201 KALKULUS 2A (Kelas 10) Bab 8: dan Do maths and you see the world ? Pengantar Bentuk tak tentu? Bentuk apa? Bentuk tak tentu yang dimaksud adalah bentuk limit dengan nilai seolah-olah : 0 0 ; ; 0
4. Orbit dalam Medan Gaya Pusat. AS 2201 Mekanika Benda Langit
4. Orbit dalam Medan Gaya Pusat AS 2201 Mekanika Benda Langit 4. Orbit dalam Medan Gaya Pusat 4.1 Pendahuluan Pada bab ini dibahas gerak benda langit dalam medan potensial umum, misalnya potensial sebagai
DINAMIKA. Massa adalah materi yang terkandung dalam suatu zat dan dapat dikatakan sebagai ukuran dari inersia(kelembaman).
DINAMIKA Konsep Gaya dan Massa Massa adalah materi yang terkandung dalam suatu zat dan dapat dikatakan sebagai ukuran dari inersia(kelembaman). Gaya adalah penyebab terjadi gerakan pada benda. Konsep Gaya
TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :
TURUNAN FUNGSI dy (y atau f () atau ) d Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :. ( a + b) = ( a + ab + b ). ( a b) = ( a ab + b ) m n m n. a = a 4. a m = a m m m.
BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.
BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD [email protected] 2 BAB 2 MEDAN LISTRIK DAN HUKUM GAUSS Pendahuluan, Distribusi Muatan Kontinu, Mencari Medan Listrik Menggunakan Integral,
BAB VI INTEGRAL LIPAT
BAB VI INTEGRAL LIPAT 6.1 Pendahuluan Pada kalkulus dan fisika dasar, kita melihat sejumlah pemakaian integral misal untuk mencari luasan, volume, massa, momen inersia, dsb.nya. Dalam bab ini kita ingin
(A) 3 (B) 5 (B) 1 (C) 8
. Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +
Fungsi dan Grafik Diferensial dan Integral
Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,
BILANGAN KOMPLEKS. Dimana cara penyelesaiannya dengan menggunakan rumus abc, yang menghasilkan dua akar sekaligus ..(4)
BILANGAN KOMPLEKS A. Pengertian Bilangan Kompleks Himpunan bilangan yang terbesar di dalam matematika adalah himpunan bilangan komleks. Himpunan bilangan riil yang kita pakai sehari-hari merupakan himpunan
Pengantar Metode Perturbasi Bab 4. Ekspansi Asimtotik pada Persamaan Diferensial Biasa
Pengantar Metode Perturbasi Bab 4. Ekspansi Asimtotik pada Persamaan Diferensial Biasa Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester
PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN
PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN IRMA ISLAMIYAH 1105 100 056 FISIKA FMIPA INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 PENDAHULUAN LATAR BELAKANG
KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I
7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi
INTEGRAL RANGKAP DUA. diberikan daerah di bidang XOY yang berbentuk persegi panjang, {( )
Matematika asar Misal INTEGAL ANGKAP UA diberikan daerah di bidang XO yang berbentuk persegi panjang, {( ) } =, y a b, y d dan fungsi dua peubah z = f (,y ) >. Maka untuk menghitung volume benda ruang
INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP
A. Soal dan Pembahasan. ( x ) dx... Jawaban : INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP ( x) dx x dx x C x C x x C. ( x 9) dx... x Jawaban : ( x 9) dx. (x x 9) dx x 9x C x x x. (x )(x + ) dx =.
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui premis premis : () Jika Badu rajin belajar dan patuh pada orang tua, maka Ayah membelikan bola basket () Ayah tidak membelikan
