A. Distribusi Gabungan
|
|
|
- Surya Hartono
- 8 tahun lalu
- Tontonan:
Transkripsi
1 HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan ruang sampel dari sebuah eksperimen, maka pasangan (X,Y) dinamakan peubah acak berdimensi dua, jika X dan Y masing-masing menghubungkan sebuah bilangan real dengan setiap anggota S. Definisi 2: Peubah Acak Diskrit Berdimensi Dua (X,Y) disebut peubah acak diskrit berdimensi dua, jika banyak nilai-nilai yang mungkin dari (X,Y) salah satunya berhingga atau tidak berhinga tetapi dapat dihitung disebut peubah acak diskrit berdimensi dua. Contoh 1: Sebuah kotak berisi 3 bola bernomor 1, 2, 3. Kemudian diambil dua bola secara acak dengan pengembalian. Misalkan peubah acak X menyatakan bilangan pada pengambilan bola pertama dan peubah acak Y menyatakan bilangan pada pengambilan bola kedua. Definisi 3: Peubah Acak Kontinu Berdimensi Dua (X,Y) disebut peubah acak kontinu berdimensi dua, jika banyak nilai-nilai yang mungkin dari X dan Y masing-masing berbentuk sebuah interval. Contoh 2: Dalam tubuh seorang wanita yang sehat berusia 20 sampai 29 tahun, kadar kalsium dalam darahnya, yaitu X, biasanya antara 8,5 dan 10,5 mg/dl, sedangkan kadar kolesterolnya, yaitu Y, biasanya antara 120 dan 240 mg/dl Definisi 4: Fungsi Peluang Gabungan Jika X dan Y adalah dua peubah acak diskrit, maka fungsi yang dinyatakan dengan p(x,y) = P(X = x, Y = y) untuk setiap pasangan nilai (x,y) dalam daerah hasil dari X dan Y, dinamakan fungsi peluang. Sifat-sifat Fungsi Peluang Gabungan: 1. P(x,y) 0, untuk setiap pasangan nilai (x,y) dalam daerah asalnya.
2 2. p(x, y) = 1 x y Contoh 3: Fungsi peluang gabungan dari X dan Y berbentuk : P(x,y) = c(x+2y); x=0,1,2,3 dan y= 0,1,2,3 a. Tentukan nilai konstanta c b. Hitung P(X=2, Y=1) c. Hitung P(X 1, Y 2) Definisi 4: Fungsi Densitas Gabungan Sebuah fungsi yang melibatkan dua peubah acak X dan Y dengan nilai-nilainya dinyatakan dalam bidang xy dinamakan fungsi densitas gabungan, jika dan hanya jika: A terletak dalam bidang xy Sifat-sifat Fungsi Densitas Gabungan: 1. f(x, y) 0, untuk < x, y < 2. f(x, y) dx dy = 1 P[(x, y) A] = f(x, y)dx dy Contoh 4: Misalkan fungsi densitas gabungan dari X dan Y berbentuk: f(x,y) = cxy ; 0 < x < 3, 1< y < 4 = 0 ; x, y lainnya a. Tentukan nilai konstanta c b. Hitung P[(X,Y) Є A ], dengan A adalah daerah {(x,y); 0 < x < 2, 2 < y < 3} A B. Distribusi Marginal Apabila kita mempunyai distribusi gabungan dari dua peubah acak X dan Y (bisa diskrit semua atau kontinu semua), maka kita dapat menentukan distribusi peubah acak X dan distribusi peubah acak Y. Distribusi yang diperoleh dengan cara demikian dinamakan distribusi marginal. Definisi 1: Fungsi Peluang Marginal Jika X dan Y adalah dua peubah acak diskrit dan p(x,y) adalah nilai dari fungsi peluang gabungannya di (x,y), maka fungsi yang dirumuskan dengan :
3 p 1 (x) = p(x, y) Untuk setiap x dalam daerah hasil X dinamakan fungsi peluang marginal dari X. Adapun fungsi yang dirumuskan dengan : p 2 (y) = p(x, y) Untuk setiap y dalam daerah hasil Y dinamakan fungsi peluang marginal dari Y. y x Contoh1: p(x,y) = (1/72) (x + 2y); x = 0, 1, 2, 3 y = 0, 1, 2, 3 a. Tentukan fungsi peluang marginal dari X b. Tentukan fungsi peluang marginal dari Y Definisi 2: Fungsi Densitas Marginal Jika X dan Y adalah dua peubah acak kontinu dan f(x,y) adalah nilai fungsi densitas gabungan di (x,y), maka fungsi yang dirumuskan dengan : g(x) = f(x, y)dy; < x < Adapun fungsi yang dirumuskan dengan, dinamakan fungsi densitas marginal dari X h(y) = f(x, y)dx; < y <, dinamakan fungsi densitas marginal dari Y g(x) dan h(y) masing-masing merupakan fungsi densitas, maka: 1. g(x)dx = 1 2. h(y)dy = 1 Contoh2: Misalkan fungsi densitas gabungan dari X dan Y berbentuk: f(x,y) = (4/35)xy ; 0 < x < 3, 1 < y < 4 = 0 ; x lainnya a. Tentukan fungsi densitas marginal dari X b. Tentukan fungsi densitas marginal dari Y
4 C. Distribusi Bersyarat Definisi 1: Fungsi Peluang Bersyarat Jika p(x,y) adalah nila fungsi peluang gabungan dari dua peubah acak diskrit X dan Y di (x,y) dan p 2(y) adalah nilai fungsi peluang marginal dari Y di y, maka fungsi yang dinyatakan dengan p(x y) = p(x,y) p 2 (y) ; p 2 (y) > 0 untuk setiap x dalam daerah hasil X, dinamakan fungsi peluang bersyarat dari X diberikan Y = y. Jika p 1(x) adalah nilai fungsi peluang marginal dari X di x, maka fungsi yang dirumuskan p(x y) = p(x,y) p 1 (x) ; p 1(x) > 0 untuk setiap y dalam daerah Y, dinamakan fungsi peluang bersyarat dai Y diberikan X=x. Definisi 2: Fungsi Densitas Bersyarat Jika f(x,y) adalah nila fungsi densitas gabungan dari dua peubah acak kontinu X dan Y di (x,y) dan f 2(y) adalah nilai fungsi peluang marginal dari Y di y, maka fungsi yang dinyatakan dengan: p(x y) = f(x,y) f 2 (y) ; f 2 (y) > 0 untuk setiap x dalam daerah hasil X, dinamakan fungsi peluang bersyarat dari X diberikan Y = y. Jika p 1(x) adalah nilai fungsi peluang marginal dari X di x, maka fungsi yang dirumuskan p(x y) = f(x,y) f 1 (x) ; f 1(x) > 0 untuk setiap y dalam daerah Y, dinamakan fungsi peluang bersyarat dai Y diberikan X =x. Contoh: 1. p(x,y) = (1/21) (x + y) ; x = 1, 2, 3; y = 1,2 a. Tentukan p(x y) b. Tentukan p(y x) c. Hitunglah p(x y = 1) 2. Diketahui fungsi densitas gabungan dari X dan Y adalah f(x,y) = 4xy ; 0 < x < 1, 0 < y < 1 = 0 ; x lainnya
5 a. Tentukan g(x y) b. Tentukan h(y x) D. Kebebasan Stokastik Definisi 1: Kebebasan Stokastik Diskrit Misalkan dua peubah acak diskrit X dan Y mempunyai nilai fungsi peluang gabungan di (x,y), yaitu p(x,y) serta masing-masing mempunyai nilai fungsi peluang marginal dari X di x, yaitu p 1(x) dan nilai fungsi peluang marginal dari Y di y, yaitu p 2 (y). Kedua peubah acak X dan Y dikatakan bebas stokastik, jika dan hanya jika: p(x, y) = p 1(x). p 2 (y) Untuk semua pasangan nilai (x,y) Contoh 1: p(x,y) = (1/72) (x+2y); x = 0, 1, 2, 3 ; y = 0, 1, 2, 3 Apakah X dan Y bebas stokastik? Definisi 2: Kebebasan Stokastik Kontinu Misalkan dua peubah acak kontinu X dan Y mempunyai nilai fungsi densitas gabungan di (x,y), yaitu f(x,y) serta masing-masing mempunyai nilai fungsi peluang marginal dari X di x, yaitu f 1(x) dan nilai fungsi peluang marginal dari Y di y, yaitu f 2 (y). Kedua peubah acak X dan Y dikatakan bebas stokastik, jika dan hanya jika: f(x, y) = f 1(x). f 2 (y) Contoh 2: f(x,y) = x + y ; 0<x< 1; 0<y<1 Apakah X dan Y bebas stokastik?
A. Distribusi Gabungan
HANDOUT PERKULIAHAN Mata Kuliah : Statistika Matematika Pertemuan Ke : 5 Pokok Bahasan : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua
Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya
DISTRIBUSI SATU PEUBAH ACAK
0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak
BI5106 Analisis Biostatistik 18 September 2012 Utriweni Mukhaiyar
FUNGSI PELUANG GABUNGAN BI5106 Analisis Biostatistik 18 September 2012 Utriweni Mukhaiyar Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ditawarkan dengan kategori-kategori yang
FUNGSI PELUANG GABUNGAN M A P E N G A N T A R S T A T I S T I K A 14 F E B R U A R I 2013 U T R I W E N I M U K H A I Y A R
FUNGSI PELUANG GABUNGAN M A 4 0 8 5 P E N G A N T A R S T A T I S T I K A 14 F E B R U A R I 2013 U T R I W E N I M U K H A I Y A R ILUSTRASI Suatu perusahaan properti memiliki banyak gedung/bangunan yang
Distribusi Peluang. Maka peubah acak X dinyatakan dengan banyaknya kemunculan angka. angka sama sekali. angka.
Distribusi Peluang Definisi peubah acak: Misalkan E adalah sebuah percobaan dengan ruang sampel T. Sebuah fungsi X yang memetakan setiap anggota t T dengan sebuah bilangan real X(t) dinamakan peubah acak.
Joint Distribution Function
DISTRIBUSI PROBABILITAS MARGINAL & BERSYARAT TI2131 TEORI PROBABILITAS MINGGU KE-6 1 Joint Distribution Function Distribusi peluang gabungan dari dua variabel random X dan Y merupakan distribusi peluang
BEBERAPA TEKNIK DISTRIBUSI FUNGSI PEUBAH ACAK
0 BEBERAPA TEKNIK DISTRIBUSI FUNGSI PEUBAH ACAK Dalam hal ini akan dibahas beberapa teknik yang digunakan dalam menentukan distribusi dari fungsi peubah acak, yaitu teknik fungsi distribusi, teknik transformasi
(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar
1 EKSPEKTASI (HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 0 September 01 Utriweni Mukhaiyar Ekspektasi Suatu Peubah Acak Misalkan X peubah acak Ekspektasi dari X EX [ ] xp( X x), jika X peubah acak
Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah
MA3181 Teori Peluang - Khreshna Syuhada Bab 8 1 Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah Ilustrasi 8.1 Sebuah perusahaan asuransi menduga bahwa setiap orang akan mengalami dan memiliki parameter
MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR 24 FEBRUARI 2011
Fungsi Peluang Gabungan MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR 24 FEBRUARI 2011 Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ditawarkan dengan kategori-kategori yang berbeda.
HANDOUT PERKULIAHAN. Pertemuan Ke : 3 : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak
HANDOUT PERKULIAHAN Pertemuan Ke : 3 Pokok Bahasan : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak URAIAN POKOK PERKULIAHAN A. Peubah Acak Definisi 1 : Peubah Acak Misalkan E adalah suatu
BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL
BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi
Situasi 1: a. Buatlah pernyataan-pernyataan yang sesuai dengan situasi di atas!
BAHAN AJAR 3 DISTRIBUSI PEUBAH ACAK GABUNGAN DAN FUNGSI PELUANG MARGINAL Situasi 1: Sebuah kotak berisi tiga ballpoint berwarna merah, dua berwarna biru dan tiga berwarna hitam. Kemudian dua buah ballpoint
Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah
BAB 1 Peluang dan Ekspektasi Bersyarat 1.1 EKSPEKTASI Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah E(X) x x p X (x) dan E(X)
STATISTIK PERTEMUAN VI
STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi
Distribusi Peubah Acak
Chandra Novtiar 085794801125 [email protected] PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG 4 April 2017 Garis Besar Pembahasan FUNGSI
Fungsi Peluang Gabungan
Fungsi Peluang Gabungan MA3181 Teori Peluang 15 September 2014 Utriweni Mukhaiyar Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ingin diasuransikan dengan kategori-kategori yang
Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Variansi dan Kovariansi Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Variansi Kita sudah memahami bahwa nilai harapan peubah acak X seringkali
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika
Sebaran Peubah Acak Bersama
Bab 6 Sebaran Peubah Acak Bersama 6. Peubah Acak Ganda Misalnya terdapat suatu tindakan pelemparan sekeping mata uang seimbang sebanyak 3 kali, dan X adalah peubah acak banyaknya sisi muka yang muncul
Sebaran Peubah Acak Bersama
Bab 6 Sebaran Peubah Acak Bersama 6. Peubah Acak Ganda Misalnya terdapat suatu tindakan pelemparan sekeping mata uang seimbang sebanyak 3 kali, dan X adalah peubah acak banyaknya sisi muka yang muncul
Statistika & Probabilitas
Statistika & Probabilitas Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita lebih tertarik bukan pada titik sampelnya, tetapi gambaran numerik dari hasil. Misalkan pada pelemparan sebuah
MA3081 STATISTIKA MATEMATIKA We love Statistics
Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak
KALKULUS MULTIVARIABEL II
Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang
Pengantar Statistika Matematik(a)
Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014
Minggu 3 Peluang Bersyarat (Teorema Bayes) Minggu 4 Peubah Acak, Fungsi Peluang, Fungsi Distribusi. Minggu 6 Distribusi Peubah Acak Diskrit (PAD)
MUGE Statistika Dosen: Aniq A Rohmawati, M.Si [Kelas Statistika] CS-8-0 [Jadwal] Rabu 1.0-14.0 R.KU.05.14; Jumat 16.0-18.0 R.KU.05.15 [Materi Statistika] Minggu 1 Statistika deskriptif Minggu Tipe kejadian
BAHAN AJAR 1 DISTRIBUSI PEUBAH ACAK
Contoh Draf Bahan Ajar 1 BAHAN AJAR 1 DISTRIBUSI PEUBAH ACAK Situasi 1: Seorang mahasiswa mengundi 2 buah mata uang yang seimbang secara bersamaan. Misalkan X menyatakan banyaknya huruf (H) yang muncul.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika
Peubah Acak. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Peubah Acak Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita
MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA
MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA VARIABEL RANDOM Misalkan (Ω, A, P) ruang probabilitas dan R = {x < x < } dan B : Borel field pada R. Andaikan X : Ω R dan untuk setiap A R, kita definisikan
STATISTIKA UNIPA SURABAYA
MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi
AK5161 Matematika Keuangan Aktuaria
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika
Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R
Bab Peubah Acak. Konsep Dasar Peubah Acak Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh peubah acak: Jika X adalah peubah acak banyaknya sisi muka yang muncul pada
Statistika Variansi dan Kovariansi. Adam Hendra Brata
Statistika dan Adam Hendra Brata Kita sudah memahami bahwa nilai harapan peubah acak X seringkali disebut rataan (mean) dan dilambangkan dengan μ. Tetapi, rataan tidak memberikan gambaran dispersi atau
AK5161 Matematika Keuangan Aktuaria
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika
Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Harapan Matematik Bahan Kuliah II09 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Harapan Matematik Satu konsep yang penting di dalam teori peluang
Harapan Matematik (Teori Ekspektasi)
(Teori Ekspektasi) PROBABILITAS DAN STATISTIKA Semester Genap 2014/2015 LUTFI FANANI [email protected] Sifat Definisi Harapan matematik atau nilai ekspektasi adalah satu konsep yang penting di dalam
= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh
JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )
PEUBAH ACAK DAN SEBARANNYA
LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah
MA 2081 Statistika Dasar Utriweni Mukhaiyar. 11 September 2012
1 PEUBAH ACAK DAN DISTRIBUSINYA MA 2081 Statistika Dasar Utriweni Mukhaiyar 11 September 2012 2 Pemetaan (Fungsi) Suatu pemetaan / fungsi Kategori fungsi: 1. Fungsi titik 2. Fungsi himpunan A A B B 3 Peubah
POKOK BAHASAN YANG DIAJARKAN: 1. DISTRIBUSI PEUBAH ACAK a. Distribusi Peubah Acak Tunggal b. Distribusi Peubah Acak Ganda c. Distribusi Bersyarat d.
POKOK BAHASAN YANG DIAJARKAN:. DISTRIBUSI PEUBAH ACAK a. Distribusi Peubah Acak Tunggal b. Distribusi Peubah Acak Ganda c. Distribusi Bersyarat d. Teorema Bayes. EKSPEKTASI MATEMATIK a. Ekspektasi b. Variansi
PEUBAH ACAK DAN DISTRIBUSINYA. MA 2081 Statistika Dasar Utriweni Mukhaiyar
PEUBAH ACAK DAN DISTRIBUSINYA MA 208 Statistika Dasar Utriweni Mukhaiyar 0 Februari 20 Pemetaan (Fungsi) Suatu pemetaan / fungsi Kategori fungsi:. Fungsi titik 2. Fungsi himpunan 2 A A B B Peubah Acak
BAB II PEUBAH ACAK dan DISTRIBUSI PELUANG
A. PENGERTIAN BAB II PEUBAH ACAK dan DISTRIBUSI PELUANG PEUBAH ACAK adalah suatu fungsi yang mengaitkan suatu bilangan real pada setiap unsur dalam ruang sampel Dari suatu kotak yang berisi 4 uang logam
Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah
Variabel Random dan Nilai Harapan Oleh Azimmatul Ihwah Outcomes dari suatu eksperimen dapat dinyatakan dengan angka untuk mempermudah. Suatu variabel yang mengasosiakan outcomes dari suatu eksperimen dengan
Peubah Acak dan Distribusi Kontinu
BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi
BAHAN AJAR 6 PELUANG BERSYARAT DAN KEBEBASAN STOKASTIK Kemampuan Prasyarat: Kalkulus 2 dan Teori Peluang Situasi 1:
BAHAN AJAR 6 PELUANG BERSYARAT DAN KEBEBASAN STOKASTIK Kemampuan Prasyarat: Kalkulus 2 dan Teori Peluang Situasi 1: Di suatu perusahaan terdapat kelompok pekerja pria dan dan wanita dengan skala penggajian
2. Peubah Acak (Random Variable)
. Peubah Acak (Random Variable) EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 0. Review dari EL009 KonsepPeubahAcak Sebaran Peluang Diskrit Sebaran Peluang Kontinyu Sebaran Empiris Sebaran
Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70
Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline
PEUBAH ACAK DAN. MA 2181 Analisis Data Utriweni Mukhaiyar. 22 Agustus 2011
1 PEUBAH ACAK DAN DISTRIBUSINYA MA 2181 Analisis Data Utriweni Mukhaiyar 22 Agustus 2011 Pemetaan (Fungsi) 2 Suatu pemetaan / fungsi Kategori fungsi: 1. Fungsi titik 2. Fungsi himpunan A A B B Peubah Acak
PERSAMAAN DIFFERENSIAL LINIER
PERSAMAAN DIFFERENSIAL LINIER Persamaan Differensial Linier Pengertian : Suatu persamaan differensial orde satu dikatakan linier jika persamaan tersebut dapat dituliskan sbb: y + p x y = r(x) (1) linier
PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA
PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan
SIFAT-SIFAT INTEGRAL LIPAT
TUGAS KALKULUS LANJUT SIFAT-SIFAT INTEGAL LIPAT Oleh: KAMELIANI 46 JUUSAN MATEMATIKA FAKULTAS MATEMATIKA AN ILMU PENGETAHUAN ALAM UNIVESITAS NEGEI MAKASSA 4 SIFAT-SIFAT INTEGAL LIPAT A. SIFAT-SIFAT INTEGAL
KONSEP DASAR TERKAIT METODE BAYES
KONSEP DASAR TERKAIT METODE BAYES 2.3. Peubah Acak dan Distribusi Peluang Pada statistika kita melakukan percobaan dimana percobaan tersebut akan menghasilkan suatu peluang. Ruang sampel pada percobaan
Disusun oleh: 1. Diah Sani Susilawati ( / 7B) 2. Farid Hidayat ( / 7B) 3. Rico Nurcahyo ( / 7B)
DISTRIBUSI MARGINAL DAN DISTRIBUSI GABUNGAN Disusun guna memenuhi tugas mata kuliah Statistika Matematika Dosen Pengampu: Supandi, M.Si Disusun oleh:. Diah Sani Susilawati (8355/ 7B). Farid Hidaat (836/
Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata
dan Statistika dan Fungsi Peluang Adam Hendra Brata acak adalah sebuah fungsi yang memetakan hasil kejadian yang ada di alam (seperti : buka dan tutup; terang, redup dan gelap; merah, kuning dan hijau;
BAB II DISTRIBUSI PEUBAH ACAK
H. Maman Suherman,Drs.,M.Si BAB II DISTIBUSI PEUBAH ACAK. Peubah Acak Variable andom Pada bab anda telah mengenal ruang peluang S, Ω, P dimana S adalah ruang sampel dari eksperimen acak, Ω adalah lapangan
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik A. Jadwal kuliah:
TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Fungsi Dua Peubah Bila untuk setiap pasangan (x,y) dari harga harga dua peubah bebas
DISTRIBUSI DUA PEUBAH ACAK
0 DISTRIBUSI DUA PEUBAH ACAK Dala hal ini akan dibahas aca-aca fungsi peluang atau fungsi densitas ang berkaitan dengan dua peubah acak, aitu distribusi gabungan, distribusi arginal, distribusi bersarat,
BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.
BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut
BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang
BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam
Discrete Time Dynamical Systems
Discrete Time Dynamical Systems Sheet 1 and Solution (1) Tentukan titik tetap dari fungsi berikut. (a) f(x) = x x (b) f(x) = 2x + bx (c) f(x) = e (a) Titik tetap f memenuhi persamaan f(x) = x x x = x x
BAB 2 PERSAMAAN DIFFERENSIAL BIASA
BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan
Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan
BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f
BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK
Matematika Peminatan SMA kelas X Kurikulum 2013 BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK I. Pertidaksamaan Rasional (Bentuk Pecahan) A. Pengertian Secara umum, terdapat empat macam bentuk umum
Luas daerah yang dibatasi oleh beberapa kurva dapat ditentukan dengan menghitung integral tertentu.
IKA ARFIANI,S.T. Luas daerah yang dibatasi oleh beberapa kurva dapat ditentukan dengan menghitung integral tertentu. Andaikan kurva y = f(x) dan kurva y = g(x) kontinu pada interval a x b, dan kurva y
Hendra Gunawan. 25 September 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 25 September 2013 Kuis 1 (Kuliah yang Lalu) 1. Selesaikan pertaksamaan 2x 3 < x. 2. Diketahui i f(x) ) = x 2 sin (1/x) untuk x 0 dan f(0) = 0.
DIFERENSIAL TOTAL. 1 Kalkulus Lanjut Blog: aswhat.wordpress.com. dz dx dy x y dx x y dy. dz , ,04 0,65
DIFERENSIAL TOTAL 1. Pendahuluan Ingat kembali konsep diferensial pada fungsi satu variabel y = f(x). suatu diferensial dx terhadap variabel bebas didefinisikan sebagai: dy = f (x) dx selanjutnya, misalkan
Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu Lanjut. Adam Hendra Brata
Probabilitas dan Statistika Fungsi Lanjut Adam Hendra Brata Gabungan Gabungan Fungsi Acak Fungsi Rapat Kumulatif Gabungan Untuk variabel random kontinu, analog dengan kasus diskrit, fungsi rapat probabilitas
BAB 2 MOMEN DAN ENTROPI
BAB MOMEN DAN ENTROPI. Satu Peubah Acak (Univariat) Misalkan diketahui suatu peubah acak X. Didefinisikan ekspektasi dari peubah acak X adalah sebagai berikut E [ X ] - P X =, X diskrit = f d, X kontinu
Var X y x E X y. g x y dx. dan varians bersyarat dari Y diberikan X = x dirumuskan sebagai berikut: Var Y x y E Y x. h y x dy
0 VARIANS BERSYARAT Penenuan varians bersara dari sebuah peubah acak diberikan peubah acak lainna, baik diskri maupun koninu dijelaskan dalam Definisi 7.. Definisi 7.: VARIANS BERSYARAT UMUM Jika X dan
RPS STATISTIKA MATEMATIKA
RPS STATISTIKA MATEMATIKA Fenny Fitriani, S.Si, M.Si UNIVERSITAS PGRI ADI BUANA SURABAYA Fakultas Keguruan dan Ilmu Pendidikan Program Studi Pendidikan Matematika Jalan Ngagel Dadi III-B / 37, Surabaya
PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.
PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan
Distribusi Peluang. Pendahuluan
1 Sufyani Prabawanto Bahan Belajar Mandiri 6 Distribusi Peluang Pendahuluan Di bahan belajar mandiri sebelumnya telah disinggung sedikit tenatng peubah. Ditinjau dari diskret atau tidaknya, Peubah dapat
Ujian Akhir Nasional Tahun Pelajaran 2002/2003
DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran / SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D) SELASA, 6 MEI Pukul 7.. DEPARTEMEN PENDIDIKAN NASIONAL --D-P Hak Cipta pada
MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.
MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial
Notasi turunan. Penggunaan turunan. 6. Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah.
Turunan fungsi adalah fungsi lain dari suatu fungsi sebelumnya misalkan fungsi f menjadi f' TURUNAN Notasi turunan y' atau f'(x) atau dy/dx fungsi naik Penggunaan turunan fungsi turun persamaan garis singgung
Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat
MA38 Teori Peluang - Khreshna Syuhada Bab 9 Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat Ilustrasi 9. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat.
1 PROBABILITAS. Pengertian
PROBABILITAS Pengertian Pada awal perkuliahan, sebelum menjelaskan probabilitas, dibahas sepintas sebagai pengantar tentang eksperimen, titik sampel, ruang sampel, dan peristiwa, serta variabel random
BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia
BAB III Diferensial Departemen Teknik Kimia Universitas Indonesia BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz
PEUBAH ACAK DAN DISTRIBUSINYA
PEUBAH ACAK DAN DISTRIBUSINYA MA3181 Teori Peluang 8 September 2014 Utriweni Mukhaiyar 1 Pemetaan (Fungsi) O Suatu pemetaan / fungsi O Kategori fungsi: 1. Fungsi titik 2. Fungsi himpunan A A B B 2 Peubah
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.
PEUBAH ACAK & DISTRIBUSI PROBABILITAS. Nur Hayati, S.ST, MT Yogyakarta, Februari 2016
PEUBAH ACAK & DISTRIBUSI PROBABILITAS Nur Hayati, S.ST, MT Yogyakarta, Februari 2016 Pendahuluan Bidang Statistika Penarikan kesimpulan populasi dan sifat populasi. Percobaan hasil berkemungkinan Percobaan
Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35
Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika
Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole
Metode Statistika STK211/ 3(2-3)
Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan
2 SKS. Oleh ; N. Setyaningsih
2 SKS Oleh ; N. Setyaningsih MATERI PERKULIAHAN (1)Pendahuluan peran statistika dalam penelitian ; (2)Penyajian data : dalam bentuk (a) tabel dan (b) diagram; (3) ukuran tendensi sentaral, ukuran penyimpangan,
Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb
Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial
Kalkulus II. Diferensial dalam ruang berdimensi n
Kalkulus II Diferensial dalam ruang berdimensi n Minggu ke-9 DIFERENSIAL DALAM RUANG BERDIMENSI-n 1. Fungsi Dua Peubah atau Lebih 2. Diferensial Parsial 3. Limit dan Kekontinuan 1. Fungsi Dua Peubah atau
PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09)
PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) 1. Luas daerah yang dibatasi oleh kurva y = x + x + 5, sumbu x, dan 0 x 1... satuan luas (A) (C) (E) 5 (B) 0 (D) 5 1. Diketahui segitiga ABC, siku-siku di
Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN
BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz dan Turunan Tingkat Tinggi Penurunan Implisit Laju yang Berkaitan
MA1201 MATEMATIKA 2A Hendra Gunawan
MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 1 Maret 017 Bab Sebelumnya 9.1 Barisan Tak Terhingga 9. Deret Tak Terhingga 9.3 Deret Positif: Uji Integral 9.4 Deret Positif: Uji Lainnya 9.5 Deret
Hendra Gunawan. 16 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 16 Oktober 2013 Latihan (Kuliah yang Lalu) 1. Diketahui g(x) = x 3 /3, x є [ 2,2]. Hitung nilai rata rata g pada [ 2,2] dan tentukan c є ( 2,2)
Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata
Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi
Hendra Gunawan. 30 Agustus 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 30 Agustus 2013 Latihan (Kuliah yang Lalu) Selesaikan pertaksamaan berikut: 1. x + 1 < 2/x. (sudah dijawab) 2. x 3 < x + 1. 8/30/2013 (c) Hendra
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit
BAB II PERSAMAAN DIFERENSIAL ORDE SATU
BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah
Variabel Banyak Bernilai Real 1 / 1
Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk
