Interpolasi dan Ekstrapolasi

Ukuran: px
Mulai penontonan dengan halaman:

Download "Interpolasi dan Ekstrapolasi"

Transkripsi

1 Interpolasi dan Ekstrapolasi JURNAL 01 Didalam pengertian matematika dasar, interpolasi adalah perkiran suatu nilai tengah dari satu set nilai yang diketahui. Interpoloasi dalam arti luas merupakan upaya mendefenisikan suatu fungsi dekatan suatu fungsi analitik yang tidak diketahui atau pengganti fungsi rumit yang tak mungkin diperoleh persamaan analitiknya. Nilai suatu fungsi y = f(x) diketahui berupa ordinat titik-titik x1, x, x3,, xn yang diskontinu (discontinue) atau diskrit (discret). Ekspresi analitik y = f(x) tidak diketahui. Bab ini akan membahas perkiraan ordinat atau f(x) secara numerik untuk nilai x yang berlaku di dalam interval (interpolasi) maupun di luar interval titik-titik yang diketahui (ekstrapolasi). Permasalahan utama dalam interpolasi dan ekstrapolasi adalah akurasi nilai yang dihasilkannya. Fungsi interpolasi dan ekstrapolasi merupakan fungsi model dengan bentuk tertentu yang bersifat umum supaya dapat mendekati fungsi-fungsi yang dipakai secara luas. Sejauh ini fungsi yang umum digunakan adalah polinomial dan trigonometri. Proses interpolasi dilaksanakan dalam dua tahap, yaitu pertama, menentukan fungsi interpolasi yang merupakan kombinasi dari titik-titik (data) yang ada, dan kedua, mengevaluasi fungsi interpolasi tersebut. Interpolasi dapat dilakukan untuk kasus dengan dimensi lebih dari satu, misalnya fungsi f(x,y,z). Interpolasi multidimensi selalu diselesaikan dengan urutan mulai dari interpolasi satu dimensi. 1

2 JURNAL Interpolasi Kedepan Cara Newton untuk Data dengan Interval Konstan Polinomial interpolasi kedepan Newton F f (x) dengan x 0 xn-1 sebagai titik pusatnya yang mempunyai interval (Δx) tetap sebesar h dapat dinyatakan sebagai berikut: Koefisien a 0, a 1, a, an tergantung dari x 0, x 1, x, xn dan nilai f(x) di titiktitik tersebut. Dalam bentuk lebih rinci persamaan (1-1) dapat dinyatakan sebagai berikut: disebut dengan perbedaan kedepan atau forward difference, sehingga interpolasi cara Newton yang didasarkan pada persamaan (1-) disebut dengan interpolasi kedepan cara Newton. Perbedaan kedepan dihitung sebagai berikut:

3 JURNAL 01 Secara skematis perbedaan kedepan diberikan dalam Tabel 1.1 berikut ini. 3

4 JURNAL Interpolasi Kebelakang Cara Newton untuk Data dengan Interval Konstan Polinomial interpolasi kebelakang Newton Fb(x) dengan x 0,, xn-1 yang mempunyai interval (Δx) tetap sebesar h dapat dinyatakan sebagai berikut: Koefisien fungsi interpolasi tergantung dari kombinasi data-data yang diketahui. Dalam bentuk lebih rinci persamaan (1-4) dapat dinyatakan sebagai berikut: disebut perbedaan kebelakang atau backward difference, sehingga interpolasi cara Newton yang didasarkan pada persamaan (1-5) disebut dengan interpolasi kebelakang cara Newton. Untuk n = 6, maka persamaan (1-5) menjadi: 4

5 JURNAL 01 Perbedaan kebelakang dihitung sebagai berikut: Secara skematis perbedaan kebelakang diberikan dalam Tabel 1. berikut ini Interpolasi Cara Lagrange untuk Data dengan Interval Tidak Konstan 5

6 JURNAL 01 Polinomial Interpolasi Lagrange F(x) dengan x0,, xn-1 mempunyai interval (Δx) tidak konstan dapat dinyatakan sebagai berikut: Koefisien a0, a1, a, an tergantung dari x0, x1, x, xn dan nilai f(x) di titik-titik tersebut. Koefisien-koefisien tersebut dihitung sebagai berikut: Dengan mensubstitusi persamaan (1-9) ke dalam persamaan (1-8), maka diperoleh persamaan polinomial interpolasi Lagrange yang dinyatakan sebagai berikut: 6

7 JURNAL 01 Persamaan (1-10) dapat juga digunakan, jika varibel bebasnya adalah y, sedangkan variabel tak bebasnya adalah x Interpolasi Cara Newton untuk Data dengan Interval Tidak Konstan Polinomial interpolasi Newton F(x) untuk data dengan interval (Δx) tidak konstan dikembangkan dari polinomial interpolasi Lagrange dan Newton dan dinyatakan dengan: Koefisien b0, b1, b, bn tergantung dari nilai x0, x1, x, xn dan ordinatnya, yaitu masing-masing adalah: f(x)0, f(x)1, f(x), f(xn) dan dihitung sebagai berikut: 7

8 JURNAL 01 Secara skematis harga koefisien-koefisien dalam persamaan (1-11) diberikan berikut ini Interpolasi dengan Lengkung Kubik (Cubic Spline) untuk Data dengan Interval Sembarang 8

9 JURNAL 01 Interpolasi lengkung kubik menghasilkan nilai interpolasi y = f(x), dengan kemiringan (slope) dan kurvatur (curvature) yang sama di sekitar titik x interpolasi. Untuk interval antara xi 1 dan xi, polinomial orde tiga mempunyai turunan kedua sebagai berikut: γ adalah koefisien yan tergantung dari nilai x. Penyelesaian persamaan di atas pada interval xi-1 dan xi akan menghasilkan: Sedangkan pada interval xi dan xi+1 akan menghasilkan: Jika persamaan (1-14) diintegrasi relatif terhadap interval (xi - x) akan dihasilkan persamaan berikut: sedangkan integrasi persamaan (1-15) akan menghasilkan persamaan berikut: 9

10 JURNAL 01 c1 dan c adalah konstanta integrasi. Integrasi sekali lagi akan menghasilkan: Lengkung kubik pertama melalui titik (xi-1, yi-1) dan titik (xi, yi) mempunyai bentuk: selanjutnya: 10

11 JURNAL 01 dimana y '(-) i adalah turunan di sebelah kiri titik x = xi. Demikian juga lengkung kubik kedua melalui titik (xi,yi) dan (xi+1,yi+1) mempunyai ekspresi: selanjutnya: dimana y '(+) i adalah turunan di sebelah kanan titik x = xi. Turunan di sebelah kiri dan di sebelah kanan harus mempunyai harga yang sama di titik x = xi, sehingga: dengan pengaturan selanjutnya, maka akan diperoleh ekspresi berikut: Untuk titik (data) sebanyak n buah, persamaan sebanyak (n-1) buah, maka jumlah bilangan tidak diketahui akan berjumlah (n+1) buah, yi = 0, n. Agar sistem persamaan dapat diselesaikan, maka dibutuhkan tambahan dua 11

12 JURNAL 01 persamaan lagi, yang biasanya berhubungan dengan kondisi batas di titik i = 0 dan i = n. Kedua persamaan tersebut biasanya menspesifikasikan kondisi batas, dalam hal ini mengekspresikan kemiringan di titik i = 0 dan i = n sebagai berikut: Dalam bentuk matriks, sistem persamaan linier dapat dituliskan sebagai berikut: [A] adalah matriks koefisien a ij berupa matriks tridiagonal yang elemenelemennya didefinisikan sebagai berikut: {M} adalah vektor bilangan tidak diketahui berupa yi, sedangkan {D} adalah vektor dengan elemen-elemen yang diketahui dan didefinisikan sebagai berikut: 1

13 JURNAL 01 Jika sistem persamaan linier dapat diselesaikan, maka nilai y di setiap titik x sembarang diperoleh dengan interpolasi berdasar rumus berikut: Turunan y' (-) i dan y' (+) i masing-masing dapat diperoleh dari persamaan (1-1) dan (1-3). Seringkali turunan lebih dipilih, daripada kurvatur, sebagai bilangan tidak diketahui. Transformasi kurvatur menjadi turunan mudah dilakukan. Langkah-langkah interpolasi dengan lengkung kubik: 13

14 JURNAL Interpolasi dengan Trigoneometri untuk Data Periodik Jika data-data yang diinterpolasi cenderung bersifat periodik, maka sebaiknya interpolasi dilakukan dengan menggunakan fungsi trigoneometri. Salah satunya dapat dinyatakan sebagai berikut: Koefisien c0, c1, c, cn tergantung dari nilai x0, x1, x, xn dan ordinatnya, yaitu masing-masing adalah: f(x0), f(x1), f(x), f(xn) dan dihitung sebagai berikut: Persamaan (1-13) dapat juga digunakan, jika varibel bebasnya adalah y, sedangkan variabel tak bebasnya adalah x. 14

15 JURNAL Contoh Kasus Ekstrapolasi Kedepan Cara Newton untuk Data dengan Interval Konstan Persoalan Posisi planet Mars diukur setiap 10 hari seperti ditunjukkan pada Tabel 1.4. Dari data ini diminta untuk memperkirakan posisi panet Mars pada t = 1450,5. Jawaban: Persoalan ini merupakan masalah ekstrapolasi, karena harga yang diinginkan berada di luar interval data-data yang diketahui. Ekstrapolasi dilakukan berdasar 5 data terakhir, yaitu mulai t = 1300,5. Perhitungan perbedaan nilai kedepan diberikan berikut ini. Ekstrapolasi kedepan cara Newton berdasar persamaan (1-) menghasilkan polinomial ekstrapolasi dan posisi planet Mars pada t = 1450,5 sebagai berikut: 15

16 = 581,08 JURNAL 01 x 1300, x 1300,5 x 1310,5 x 130,5 Ff ( x) = ! x 1300,5 x 1310,5 x 130,5 + 3! x 1300,5 x 1310,5 x 130,5 x 1330,5 + 4! ,5 1300, ,5 1300,5 Ff (1450,5) = ! ,5 1310,5 1450,5 130, ,5 1300,5 1450,5 1310,5 1450,5 130, ! ,5 1300,5 1450,5 1310,5 1450,5 130,5 1450,5 1330,5 + 4! Ff (1450,5) = ( ) ( ) + ( 18, ) + ( 0, ) 1.8. Contoh Interpolasi Kasus Kedepan Cara Newton untuk Data dengan Interval Tidak Konstan Persoalan: Dari pengukuran topografi didapatkan data ketinggian dan posisinya sebagai berikut: Dari data tersebut diminta membuat fungsi interpolasi kedepan cara Newton untuk elevasi topografi berdasar data pada x = 3., 4.4, 5.0, 6.0, 7.1 dan 8. (6 data). Selanjutnya dengan fungsi tersebut memperkirakan ketinggian di x = 5.5. Jawaban: 16

17 JURNAL 01 Fungsi interpolasi kedepan cara Newton untuk data dengan interval tidak konstan dinyatakan dalam persamaan (1-11). Harga koefisien-koefisien dalam persamaan (1-11) dihitung dalam tabel berikut ini. Polinomial interpolasi dengan koefisien seperti tercantum dalam Tabel 1.6 adalah: Dengan demikian untuk x = 5.5, maka ketinggiannya adalah: 1.9. Contoh Interpolasi Kasus dengan Lengkung Kubik untuk Data dengan Interval Tidak Konstan Persoalan: Erupsi Gunung Piton de la Fournaise (Pulau Reunion) memuntahkan material dengan komposisi kimia yang berubah terhadap waktu. Pengukuran rasio 17

18 JURNAL 01 (Ce/Yb)N selama interval yang diambil dari lava erupsi diberikan dalam Tabel 1.7. Dari data ini diminta memperkirakan rasio (Ce/Yb)N pada tahun Jawaban: Langkah-langkah penyelesaian: Step 1: membentuk matriks koefisien [A] berdasar persamaan (1-9), misalnya: Akhirnya matriks koefisien [A] mempunyai harga sebagai berikut: Step : membentuk vektor {D} berdasar persamaan (1-30) dengan asumsi bahwa turunan pada titik akhir sama dengan nol, misalnya: 18

19 JURNAL 01 Setelah melengkapi semua perhitungan, maka vektor {D} akan berharga: Step 3: menyelesaikan sistem persamaan linier. Berdasar persamaan (1-8), maka sistem persamaan simultan akan mempunyai bentuk sebagai berikut: Vektor {M} merupakan vektor bilangan yang tidak diketahui yang berupa turunan kedua atau {y''i}. Setelah penyelesaian sistem persamaan linier, maka diperoleh: 19

20 JURNAL 01 Step 4: menghitung turunan pertama di sebelah kiri dan kanan x berdasar persamaan (1-1) dan (1-3) yang diberikan dalam Tabel 1.8 berikut ini: 0

21 JURNAL Contoh Kasus Ekstrapolasi Trigoneometri untuk Data dengan Interval Konstan Persoalan Posisi planet Mars secara berkala ditunjukkan pada Tabel 1.4. Dari data ini kita diminta memperkirakan posisi panet Mars pada t = Jawaban: Persoalan ini merupakan masalah ekstrapolasi data periodik, sehingga dapat dikerjakan menggunakan ekstrapolasi trigoneometri. Ekstrapolasi trigoneometri dilakukan berdasar 5 data terakhir, yaitu mulai t = (perhatikan kembali Tabel 1.4). Perhitungan koefisien-koefsien fungsi ekstrapolasi diberikan berikut ini. Koefisien-koefsien tersebut disubstitusi ke dalam persamaan (1-33) akan menghasilkan persamaan ekstrapolasi berikut ini. 1

22 JURNAL 01 Hasil ekstrapolasi cara trigoneometri (17648) berbeda cukup jauh dengan hasil ekstrapolasi kedepan cara Newton (0930). Hal ini disebabkan oleh ketelitian masing-masing interpolator yang berbeda. Dari keduanya tidak dapat ditentukan mana yang lebih baik, karena keduanya tidak mempunyai mekanisme pengukuran kesalahan. Selain itu tidak ada informasi posisi planet Mars pada t = hasil observasi. Dengan memperhatikan latar belakang masalahnya, lintasan planet merupakan sesuatu yang sifatnya berkala atau periodik yang tidak dapat diantisipasi oleh ekstrapolasi kedepan cara Newton. KESIMPULAN: Interpolasi dan ekstrapolasi merupakan prosedur untuk memperkirakan nilai atau data yang tidak diketahui berdasar kombinasi beberapa nilai atau harga yang diketahui. Metode atau cara yang dipergunakan untuk itu banyak sekali. Beberapa metode yang diberikan dalam bab ini hanya sebagian diantaranya. Dalam bab ini hanya diberikan contoh fungsi interpolasi berupa polinomial dan trigoneometri satu dimensi. Pembaca dapat mencari sendiri beberapa metode lainnya. Kata kunci dalam masalah interpolasi dan ekstrapolasi adalah ketelitian interpolasi. Dalam bab ini hanya diberikan metode-metode klasik, padamana tidak disertakan hal-hal berikut ini: kriteria interpolasi, ekspresi dan optimasi ketelitian interpolasi. Satu-satunya metode interpolasi dalam bab ini yang menyertakan kriteria interpolasi adalah interpolasi lengkung kubik, dengan kriterianya adalah kesamaan kemiringan dan kurvatur di sebelah kiri dan kanan titik interpolasi. Masalah interpolasi dan ekstrapolasi dalam bab ini bertujuan hanya untuk memberi pemahaman kepada pembaca tentang adanya distribusi data dalam fungsi sederhana. Hasil interpolasinya sendiri bukan merupakan tujuan dari bab ini. Bagian III buku ini akan membahas pemodelan data yang berkenaan dengan masalah interpolasi dan ekstrapolasi menggunakan metode-metode mutakhir dan lebih baik yang didasarkan pada model deterministik maupun statistik

23 JURNAL 01 (spasial statistik), baik untuk satu maupun multi dimensi. Hasil interpolasi dengan ketelitiannya yang optimal merupakan tujuan dari Bagian III. Dengan demikian keunggulan masing-masing metode-metode interpolasi dan ekstrapolasi dapat dianalisis dan dibandingkan secara kuantitatif. Dari beberapa fungsi interpolasi yang diberikan dalam Bab 1 dapat disimpulkan, bahwa masalah utama dalam penyusunan fungsi interpolasi adalah penentuan koefisien fungsi interpolasi. Dalam hal ini besarnya koefisien tersebut tidak ditentukan misalnya tergantung dari jarak antara titik interpolasi dan titik-titik lainnya. Dalam aplikasi ilmu-ilmu kebumian, data merupakan fungsi dari jarak. Jadi penentuan koefisien fungsi interpolasi atau kemudian disebut dengan bobot merupakan masalah yang sangat kritis dalam pemodelan data. Bobot titik-titik di sekitar titik interpolasi dengan demikian lebih besar dari bobot titik-titik yang lebih jauh dari titik interpolasi. Untuk keperluan interpolasi dan ekstrapolasi dalam bidang ilmu-ilmu kebumian disarankan menggunakan metode-metode yang akan diberikan dalam Bagian III, karena ketelitiannya dapat dipertanggungjawabkan dan diuji secara statistik serta sesuai untuk aplikasi ilmu-ilmu kebumian. 3

24 JURNAL 01 Nama : NIM : Semester : ABSTRAK Interpolasi dan ekstrapolasi merupakan prosedur untuk memperkirakan nilai atau data yang tidak diketahui berdasar kombinasi beberapa nilai atau harga yang diketahui. Metode atau cara yang dipergunakan untuk itu banyak sekali. Beberapa metode yang diberikan dalam jurnal ini hanya sebagian diantaranya. fungsi interpolasi berupa polinomial dan trigoneometri satu dimensi. Pembaca dapat mencari sendiri beberapa metode lainnya.satu-satunya metode interpolasi dalam bab ini yang menyertakan kriteria interpolasi adalah interpolasi lengkung kubik, dengan kriterianya adalah kesamaan kemiringan dan kurvatur di sebelah kiri dan kanan titik interpolasi. Masalah interpolasi dan ekstrapolasi dalam jurnal ini bertujuan hanya untuk memberi pemahaman kepada pembaca tentang adanya distribusi data dalam fungsi sederhana. Perhitungan ini melibatkan sejumlah besar operasi-operasi hitungan yang berulang-ulang, melelahkan, dan menjemukan. Tetapi dengan adanya computer digital yang semakin lama semakin cepat dalam melakukan hitungan dan dengan adanya penemuan metode-metode baru dan beberapa modifikasi dari metode-metode lama, maka penggunaan metode numerik dalam menyelesaikan masalah-masalah matematika mengalami kenaikan secara dramatis. Kemajuan yang cepat pada bidang metode numerik dikarenakan perkembangan computer itu sendiri. Kita melihat perkembangan teknologi komputer tidak pernah berakhir. Keunggulan tiap generasi baru komputer dalam hal waktu, memori, ketelitian, dan kestabilan perhitungan menyebabkan pengembangan algoritma numerik yang lebih baik. Keyword: Metode Numerik, Interpolasi 4

25 JURNAL 01 DAFTAR PUSTAKA Nurjannah, 010. Pengantar Metode Numerik dan Analisis. Jakarta: Rineka Cipta Madrasah dan Guru PAI pada Sekolah, Direktorat Jenderal Pendidikan Islam Departemen Agama RI, Jakarta. Budi Susetyo, 009, Matematika Dasar, Modul Kuliah untuk Program Peningkatan Kualifikasi Guru Madrasah dan Guru PAI pada Sekolah, Direktorat Jenderal Pendidikan Islam Departemen Agama RI, Jakarta. Ott, R.L & Longnecker, M., 001, An Introduction to Mathematics Methods and Data Analysis, Duxbury, USA. Paul Suparno, 001, Pengantar Matematika Elementer, Penerbit Universitas Sanata Dharma, Yogyakarta. Ott, R.L & Longnecker, M., 001, An Introduction to Mathematics Methods and Data Analysis, Duxbury, USA. Paul Suparno, 001, Pengantar Matematika Elementer, Penerbit Universitas Sanata Dharma, Yogyakarta. Marsigit, 001. Analysis Numeric Method, Jakarta: Almahira Press. 5

Interpolasi dan Ekstrapolasi

Interpolasi dan Ekstrapolasi Metode Numerik Bab 1 Interpolasi dan Ekstrapolasi Didalam pengertian matematika dasar, interpolasi adalah perkiran suatu nilai tengah dari satu set nilai yang diketahui. Interpoloasi dalam arti luas merupakan

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Program Studi : Fisika Nama Mata Kuliah : ANALISIS NUMERIK Kode : FIS6236

Lebih terperinci

Course Note Numerical Method : Interpolation

Course Note Numerical Method : Interpolation Course Note Numerical Method : Interpolation Pengantar Interpolasi. Kalimat y = f(x), xo x xn adalah kalimat yang mengkorespondensikan setiap nilai x di dalam interval x0 x xn dengan satu atau lebih nilai-nilai

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

Kata Pengantar. Medan, 11 April Penulis

Kata Pengantar. Medan, 11 April Penulis Kata Pengantar Puji syukur penulis panjatkan kepada Tuhan YME, bahwa penulis telah menyelesaikan tugas mata kuliah Matematika dengan membahas Numerical Optimization atau Optimasi Numerik dalam bentuk makalah.

Lebih terperinci

Interpolasi Spline Kubik pada Trajektori Manusia

Interpolasi Spline Kubik pada Trajektori Manusia Interpolasi Spline Kubik pada Trajektori Manusia Samsu Sempena (13788) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 1 Bandung 4132,

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) Nama Mata Kuliah : Metode Numerik Kode Mata Kuliah : TI 016 Bobot Kredit : 3 SKS Semester Penempatan : III Kedudukan Mata Kuliah : Mata Kuliah Keilmuan Keterampilan Mata

Lebih terperinci

BAB 5 Interpolasi dan Aproksimasi

BAB 5 Interpolasi dan Aproksimasi BAB 5 Interpolasi dan Aproksimasi Interpolasi merupakan proses penentuan dan pengevaluasian suatu fungsi yang grafiknya melalui sejumlah titik tertentu. Sebaliknya, pada aproksimasi grafik fungsi yang

Lebih terperinci

5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1

5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1 5. INTERPOLASI PENDAHULUAN Bentuk umum persamaan polinomial orde n adalah: f() = a + a. + a. +.. + a n. n Untuk n+ titik data, hanya terdapat satu polinomial orde n atau kurang yang melalui semua titik.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata Kuliah : Metode Numerik Bobot Mata Kuliah : 3 Sks Deskripsi Mata Kuliah : Unified Modelling Language; Use Case Diagram; Class Diagram dan Object Diagram;

Lebih terperinci

Metode Numerik - Interpolasi WILLY KRISWARDHANA

Metode Numerik - Interpolasi WILLY KRISWARDHANA Metode Numerik - Interpolasi WILLY KRISWARDHANA Interpolasi Para rekayasawan dan ahli ilmu alam sering bekerja dengan sejumlah data diskrit (yang umumnya disajikan dalam bentuk tabel). Data di dalam tabel

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2 ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK-031248 /2 Ming gu Pokok Bahasan & TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajara n Media Tugas Referensi

Lebih terperinci

Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline

Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline Pertemuan 9 : Interpolasi 1 (P9) Interpolasi Metode Newton Metode Spline Pertemuan 9 : Interpolasi 2 Interpolasi Newton Polinomial Maclaurin dan polinomial Taylor menggunakan satu titik pusat, x 0 untuk

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN : 3 & 4 PENYELESAIAN PERSAMAAN NON LINIER METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Dalam bab ini dijelaskan metode Adams Bashforth-Moulton multiplikatif (M) orde empat beserta penerapannya. Metode tersebut memuat metode Adams Bashforth multiplikatif orde empat

Lebih terperinci

Tujuan. Interpolasi berguna untuk memperkirakan nilai-nilai tengah antara titik data yang sudah ditentukan dan tepat.

Tujuan. Interpolasi berguna untuk memperkirakan nilai-nilai tengah antara titik data yang sudah ditentukan dan tepat. INTERPOLASI Tujuan Interpolasi berguna untuk memperkirakan nilai-nilai tengah antara titik data yang sudah ditentukan dan tepat. Interpolasi mempunyai orde atau derajat. Macam Interpolasi Interpolasi Linear

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Tidak semua permasalahan matematis atau perhitungan dapat diselesaikan dengan mudah. Bahkan dalam prinsip matematik, dalam memandang permasalahan, terlebih dahulu

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-2 SISTEM BILANGAN DAN KESALAHAN METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode

Lebih terperinci

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB)

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB) Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB) Persamaan diferensial satu variabel bebas (ordinari) orde dua disebut juga sebagai Problem Kondisi Batas. Hal ini disebabkan persamaan

Lebih terperinci

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS Nafanisya Mulia 1, Yudhi Purwananto 2, Rully Soelaiman 3

Lebih terperinci

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif iii Daftar Isi TINJAUAN MATA KULIAH... xiii MODUL 1: PERSAMAAN DIFERENSIAL ORDE SATU 1.1 Pengertian PD Orde Satu dan Solusinya... 1.2 Latihan... 1.7 Rangkuman... 1.9 Tes Formatif 1..... 1.10 PD Variabel

Lebih terperinci

MATA KULIAH ANALISIS NUMERIK

MATA KULIAH ANALISIS NUMERIK BAHAN AJAR MATA KULIAH ANALISIS NUMERIK Oleh: M. Muhaemin Muhammad Saukat JURUSAN TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN 2009 Bahan Ajar Analisis

Lebih terperinci

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU), PENDAHULUAN A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa.

Lebih terperinci

PEMROGRAMAN KOMPUTER KODE MODUL: TIN 202 MODUL III LINEAR PROGRAMMING DAN VISUALISASI

PEMROGRAMAN KOMPUTER KODE MODUL: TIN 202 MODUL III LINEAR PROGRAMMING DAN VISUALISASI PEMROGRAMAN KOMPUTER KODE MODUL: TIN 202 MODUL III LINEAR PROGRAMMING DAN VISUALISASI LABORATORIUM TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA 2013 MODUL II LINEAR PROGRAMMING DAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

Analisis Komponen Utama (Principal component analysis)

Analisis Komponen Utama (Principal component analysis) Analisis Komponen Utama (Principal component analysis) A. LANDASAN TEORI Misalkan χ merupakan matriks berukuran nxp, dengan baris-baris yang berisi observasi sebanyak n dari p-variat variabel acak X. Analisis

Lebih terperinci

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di BAB II TINJAUAN PUSTAKA 2.1 Pemrograman Linier (Linear Programming) Pemrograman linier (linear programming) merupakan salah satu teknik riset operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

MATRIKS Nuryanto, ST., MT.

MATRIKS Nuryanto, ST., MT. MateMatika ekonomi MATRIKS TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6.

Lebih terperinci

BAB 4 : SISTEM PERSAMAAN LINIER

BAB 4 : SISTEM PERSAMAAN LINIER BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x

Lebih terperinci

untuk i = 0, 1, 2,..., n

untuk i = 0, 1, 2,..., n RANGKUMAN KULIAH-2 ANALISIS NUMERIK INTERPOLASI POLINOMIAL DAN TURUNAN NUMERIK 1. Interpolasi linear a. Interpolasi Polinomial Lagrange Suatu fungsi f dapat di interpolasikan ke dalam bentuk interpolasi

Lebih terperinci

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor.

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor. Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut Pertanian Bogor e-mail: syarif_abdullah@apps.ipb.ac.id 25 Maret 2016 Ringkasan Kuliah ke-6 Analisis Numerik (16 Maret 2016) Materi : System

Lebih terperinci

Komparasi Metode Interpolasi Natural Cubic Spline dengan Clamped Cubic Spline

Komparasi Metode Interpolasi Natural Cubic Spline dengan Clamped Cubic Spline Komparasi Metode Interpolasi Natural Cubic Spline dengan Clamped Cubic Spline Muhammad Indra N. S. - 23515019 Program Magister Informatika Institute Teknologi Bandung Bandung, Indonesia 23515019@std.stei.itb.ac.id

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini diuraikan beberapa tinjauan pustaka sebagai landasan teori pendukung penulisan penelitian ini. 2.1 Analisis Regresi Suatu pasangan peubah acak seperti (tinggi, berat)

Lebih terperinci

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH KODE / SKS PROGRAM STUDI : REKAYASA KOMPUTASIONAL (d/h Metode Numerik) : TI / 2 SKS : TEKNIK INFORMAA Pertemu Pokok Bahasan an ke dan 1 Pendahuluan-1 Agar mahasiswa

Lebih terperinci

OPTIMASI PROGRAM LINIER PECAHAN DENGAN FUNGSI TUJUAN BERKOEFISIEN INTERVAL

OPTIMASI PROGRAM LINIER PECAHAN DENGAN FUNGSI TUJUAN BERKOEFISIEN INTERVAL Saintia Matematika Vol. XX, No. XX (XXXX), pp. 17 24. OPTIMASI PROGRAM LINIER PECAHAN DENGAN FUNGSI TUJUAN BERKOEFISIEN INTERVAL M Khahfi Zuhanda, Syawaluddin, Esther S M Nababan Abstrak. Beberapa tahun

Lebih terperinci

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 148 153 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN

Lebih terperinci

Oleh Dr. Fahrudin Nugroho Dr. Iman Santosa

Oleh Dr. Fahrudin Nugroho Dr. Iman Santosa UNIVERSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA Buku 1 : RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 Oleh Dr. Fahrudin Nugroho

Lebih terperinci

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR Jurnal Matematika UAD Vol. 5 o. 4 Hal. 8 ISS : 233 29 c Jurusan Matematika FMIPA UAD PEMBUKTIA BETUK TUTUP RUMUS BEDA MAJU BERDASARKA DERET TAYLOR ADE PUTRI, RADHIATUL HUSA Program Studi Matematika, Fakultas

Lebih terperinci

[ 1 1 PENDAHULUAN SCILAB. Modul Praktikum Metode Numerik. 1. Struktur Scilab

[ 1 1 PENDAHULUAN SCILAB. Modul Praktikum Metode Numerik. 1. Struktur Scilab PENDAHULUAN SCILAB 1. Struktur Scilab Program Scilab sudah memiliki text editor di dalamnya. Perintah/kode program Scilab dapat dituliskan di dalam window Scilab Execution (Scilex) ataupun di window Scipad

Lebih terperinci

LAPORAN PENYUSUNAN MODUL BAHAN AJAR PROGRAM STUDI S1 MATEMATIKA

LAPORAN PENYUSUNAN MODUL BAHAN AJAR PROGRAM STUDI S1 MATEMATIKA LAPORAN PENYUSUNAN MODUL BAHAN AJAR PROGRAM STUDI S1 MATEMATIKA Hal Ke-69 PROGRAM STUDI S1 MATEMATIKA Kepada Yth. Hendro Wuryanto, S.Si., M.M,., selaku Ketua Program Studi S1 Matematika, berdasarkan data

Lebih terperinci

Perluasan Teorema Cayley-Hamilton pada Matriks

Perluasan Teorema Cayley-Hamilton pada Matriks Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss

Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss Puji Catur Siswipraptini 1, Rifarhan 2 Jurusan Teknik Informatika Sekolah Tinggi Teknik PLN Jakarta JL. Lingkar Luar Barat, Menara PLN,

Lebih terperinci

Interpolasi Polinom dan Applikasi pada Model Autoregresif

Interpolasi Polinom dan Applikasi pada Model Autoregresif Interpolasi Polinom dan Applikasi pada Model Autoregresif Rio Cahya Dwiyanto 13506041 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA Interpolasi Metode Numerik Zulhaydar Fairozal Akbar zfakbar@pens.ac.id 2017 TOPIK Pengenalan

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI TIPE A Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor Ujian dan data lainnya pada Lembar Jawab Komputer

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54812 / Metode Numerik 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

4 INTERPOLASI. dan kontinyu.

4 INTERPOLASI. dan kontinyu. 4 INTERPOLASI Á nterpolasi adalah proses pencarian dan perhitungan nilai suatu fungsi yang grafiknya melewati sekumpulan titik yang diberikan. Titik-titik tersebut mungkin merupakan hasil eksperimen dalam

Lebih terperinci

Solusi Persamaan Linier Simultan

Solusi Persamaan Linier Simultan Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem

Lebih terperinci

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan TUGAS KOMPUTASI SISTEM FISIS 2015/2016 Identitas Tugas Program Mencari Titik Nol/Titik Potong Dari Suatu Sistem 27 Oktober 2015 Disusun oleh : Zulfikar Lazuardi Maulana (10212034) Ridho Muhammad Akbar

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3. BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.

Lebih terperinci

No Kompetensi Khusus Pokok Bahasan Sub Pokok Bahasan Metode Media / Alat Mahasiswa mampu menjelaskan konsep Apa itu statistik?

No Kompetensi Khusus Pokok Bahasan Sub Pokok Bahasan Metode Media / Alat Mahasiswa mampu menjelaskan konsep Apa itu statistik? Mata Kuliah Kode/Bobot Deskripsi Singkat : GARIS BESAR PROGRAM PENGAJARAN (GBPP) : Statistika dan Probabilitas : TSP-203/ 2 SKS Mata kuliah ini membahas tentang konsep dasar statistika dan probabilitas.

Lebih terperinci

PAM 252 Metode Numerik Bab 5 Turunan Numerik

PAM 252 Metode Numerik Bab 5 Turunan Numerik Pendahuluan PAM 252 Metode Numerik Bab 5 Turunan Numerik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Turunan Numerik Permasalahan

Lebih terperinci

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK TUGAS MATEMATIKA EKONOMI DISUSUN OLEH : DENY PRASETYA 01212074 IAN ANUGERAH 01212035 M. UMAR A 01212016 ARON GARDIKA 01212140 SAIFUL RAHMAN 01212020

Lebih terperinci

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk BAB 1 PENDAHULUAN 1.1 Latar belakang Sebagian besar dari sejarah ilmu pengetahuan alam adalah catatan dari usaha manusia secara kontinu untuk merumuskan konsep-konsep yang dapat menguraikan permasalahan

Lebih terperinci

BAB III : SISTEM PERSAMAAN LINIER

BAB III : SISTEM PERSAMAAN LINIER 3.1 PENDAHULUAN BAB III : SISTEM PERSAMAAN LINIER Penyelesaian suatu sistem n persamaan dengan n bilangan tak diketahui banyak dijumpai dalam permasalahan teknik. Di dalam Bab ini akan dipelajari sistem

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

IMPLEMENTASI FORMULA NEWTON-COTES UNTUK MENENTUKAN NILAI APROKSIMASI INTEGRAL TENTU MENGGUNAKAN POLINOMIAL BERORDE 4 DAN 5. Wahyu Sakti G. I.

IMPLEMENTASI FORMULA NEWTON-COTES UNTUK MENENTUKAN NILAI APROKSIMASI INTEGRAL TENTU MENGGUNAKAN POLINOMIAL BERORDE 4 DAN 5. Wahyu Sakti G. I. Sakti G.I., Implementasi Formula Newton-Cotes Untuk Menentukan Nilai Aproksimasi Integral Tentu Menggunakan Polinomial Berorde 4 dan 5 IMPLEMENTASI FORMULA NEWTON-COTES UNTUK MENENTUKAN NILAI APROKSIMASI

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI LAMPIRAN 5 BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI Laporan 2 Pelaksanaan OSN-PERTAMINA 2012 69 Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL

Lebih terperinci

Analisa Matematik untuk Menentukan Kondisi Kestabilan Keseimbangan Pasar Berganda dengan Dua Produk Melalui Sistem Persamaan Diferensial Biasa Linear

Analisa Matematik untuk Menentukan Kondisi Kestabilan Keseimbangan Pasar Berganda dengan Dua Produk Melalui Sistem Persamaan Diferensial Biasa Linear Prosiding Penelitian SPeSIA Unisba 2015 ISSN: 2460-6464 Analisa Matematik untuk Menentukan Kondisi Kestabilan Keseimbangan Pasar Berganda dengan Dua Produk Melalui Sistem Persamaan Diferensial Biasa Linear

Lebih terperinci

STUDI MENGENAI KURVA PARAMETRIK CATMULL-ROM SPLINES SKRIPSI AZWAR SYARIF

STUDI MENGENAI KURVA PARAMETRIK CATMULL-ROM SPLINES SKRIPSI AZWAR SYARIF STUDI MENGENAI KURVA PARAMETRIK CATMULL-ROM SPLINES SKRIPSI AZWAR SYARIF 090823006 PROGRAM STUDI SARJANA MATEMATIKA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Program Dinamik

BAB 2 LANDASAN TEORI. 2.1 Program Dinamik 5 BAB 2 LANDASAN TEORI 2.1 Program Dinamik Pemrograman dinamik adalah suatu teknik matematis yang biasanya digunakan untuk membuat suatu keputusan dari serangkaian keputusan yang saling berkaitan. Pemrograman

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

INTERPOLASI CHEBYSHEV MAKALAH. Disusun untuk memenuhi tugas Mata Kuliah Metode Numerik yang dibimbing oleh. Dr. Trisilowati, S.Si., M.

INTERPOLASI CHEBYSHEV MAKALAH. Disusun untuk memenuhi tugas Mata Kuliah Metode Numerik yang dibimbing oleh. Dr. Trisilowati, S.Si., M. ITERPOLASI CHEBYSHEV MAKALAH Disusun untuk memenuhi tugas Mata Kuliah Metode umerik yang dibimbing oleh Dr. Trisilowati, S.Si., M.Sc Disusun Oleh: Danang Indrajaya (146090400111008) M. Adib Jauhari Dwi

Lebih terperinci

BAB 2 DENGAN MENGGUNAKAN INTERPOLASI INTERPOLASI SPLINE LINIER DAN INTERPOLASI SPLINE

BAB 2 DENGAN MENGGUNAKAN INTERPOLASI INTERPOLASI SPLINE LINIER DAN INTERPOLASI SPLINE 8 BAB 2 PENENTUAN SUDUT PANDANG BAB 2 WAJAH TIGA DIMENSI PENENTUAN DENGAN MENGGUNAKAN SUDUT PANDANG INTERPOLASI WAJAH TIGA LINIER DIMENSI DAN DENGAN MENGGUNAKAN INTERPOLASI INTERPOLASI SPLINE LINIER DAN

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

Pertemuan 14. persamaan linier NON HOMOGEN

Pertemuan 14. persamaan linier NON HOMOGEN Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat

Lebih terperinci

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1 METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS Metode Numerik 1 Materi yang diajarkan : 1. Pendahuluan - latar belakang - mengapa dan kapan menggunakan metode numerik - prinsip penyelesaian persamaan 2. Sistim

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

CONTOH SOLUSI UTS ANUM

CONTOH SOLUSI UTS ANUM CONTOH SOLUSI UTS ANUM 0 Propagasi eror adalah kejadian di mana eror dari operan suatu komputasi sederhana memberikan eror yang lebih besar pada hasil komputasi tersebut. Misalnya, eror awal suatu representasi

Lebih terperinci

Silabus dan Satuan Acara Perkuliahan

Silabus dan Satuan Acara Perkuliahan Fakultas Teknik No. Dokumen : FT SSAP-S3-10 Program Studi Teknik Elektro No. Revisi : 02 Silabus dan Satuan Acara Perkuliahan Tgl.Revisi :13-07-2006 Tgl. Berlaku :13-07-2006 KOMPUTASI NUMERIK DAN SIMBOLIK

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

Kelandaian maksimum untuk berbagai V R ditetapkan dapat dilihat dalam tabel berikut :

Kelandaian maksimum untuk berbagai V R ditetapkan dapat dilihat dalam tabel berikut : ALINYEMEN VERTIKAL 4.1 Pengertian Alinyemen Vertikal merupakan perpotongan bidang vertikal dengan bidang permukaan perkerasan jalan melalui sumbu jalan untuk jalan 2 lajur 2 arah atau melalui tepi dalam

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR

PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR Achmad Dimas Noorcahyo NIM 3508076 Program Studi Teknik Informatika, Institut Teknologi Bandung Jalan Ganeca 0, Bandung

Lebih terperinci

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR Jurnal Matematika UNAND Vol. VI No. Hal. 68 76 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR WIDIA ASTUTI Program Studi Matematika, Fakultas

Lebih terperinci

Interpolasi Cubic Spline

Interpolasi Cubic Spline Interpolasi Cubic Spline Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com December 13, 2006 Figure 1: Fungsi f(x) dengan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus

BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus BAB II DASAR TEORI 2.1 Meter Air Gambar 2.1 Meter Air Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus menerus melalui sistem kerja peralatan yang dilengkapi dengan unit sensor,

Lebih terperinci

LECTURE NOTES MATEMATIKA DISKRIT. Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA.

LECTURE NOTES MATEMATIKA DISKRIT. Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA. LECTURE NOTES MATEMATIKA DISKRIT Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA PONDOK CINA, MARET 2004 0 DAFTAR ISI DAFTAR ISI... 1 BAB I STRUKTUR ALJABAR...

Lebih terperinci

Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan

Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan Pengertian Metode Numerik Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan Metode Numerik Tujuan Metode Numerik

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN I MODUL ATAS RING Direncanakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pemrograman Non linier Pemrograman non linier adalah suatu bentuk pemrograman yang berhubungan dengan suatu perencanaan aktivitas tertentu yang dapat diformulasikan dalam model

Lebih terperinci

BAB 2 LANDASAN TEORI 2.1 Sistem dan Model Pengertian sistem Pengertian model

BAB 2 LANDASAN TEORI 2.1 Sistem dan Model Pengertian sistem Pengertian model BAB 2 LANDASAN TEORI 2.1 Sistem dan Model 2.1.1 Pengertian sistem Pengertian sistem dapat diketahui dari definisi yang diambil dari beberapa pendapat pengarang antara lain : Menurut Romney (2003, p2) sistem

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 19 BAB 2 LANDASAN TEORI 2.1 Analytic Hierarchy Process (AHP) Metode Analytic Hierarchy Process (AHP) dikembangkan oleh Thomas L. Saaty pada tahun 70 an ketika di Warston school. Metode AHP merupakan salah

Lebih terperinci