INTERPOLASI CHEBYSHEV MAKALAH. Disusun untuk memenuhi tugas Mata Kuliah Metode Numerik yang dibimbing oleh. Dr. Trisilowati, S.Si., M.

Ukuran: px
Mulai penontonan dengan halaman:

Download "INTERPOLASI CHEBYSHEV MAKALAH. Disusun untuk memenuhi tugas Mata Kuliah Metode Numerik yang dibimbing oleh. Dr. Trisilowati, S.Si., M."

Transkripsi

1 ITERPOLASI CHEBYSHEV MAKALAH Disusun untuk memenuhi tugas Mata Kuliah Metode umerik yang dibimbing oleh Dr. Trisilowati, S.Si., M.Sc Disusun Oleh: Danang Indrajaya ( ) M. Adib Jauhari Dwi Putra ( ) Zulfiana S. Akib( ) PROGRAM PASCASARJAA ILMU MATEMATIKA FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM UIVERSITAS BRAWIJAYA MALAG 015

2 BAB I PEDAHULUA 1.1.Latar Belakang Dalam bidang matematika analisis numerik, interpolasi adalah metode menghasilkan titik-titik data baru dalam suatu jangkauan dari suatu set diskret data-data yang diketahui. Atau dengan kata lain Interpolasi adalah suatu cara untuk mencari nilai di antara beberapa titik data yang telah diketahui. Di dunia nyata, interpolasi dapat digunakan untuk memperkirakan suatu fungsi, yang mana fungsi tersebut tidak terdefinisi dengan suatu formula, tetapi didefinisikan hanya dengan data-data atau tabel, misalnya tabel dari hasil percobaan. Ada berbagai macam interpolasi berdasarkan fungsinya, di antaranya adalah interpolasi linier, interpolasi kuadrat, dan interpolasi polinomial. Dalam makalah ini akan dibahas tentang interpolasi polinomial Chebyshev. Polinomial Chebyshev diambil dari nama Pafnuty Chebyshev, adalah sebua barisan polinomial ortogonal yang didefinisikan secara rekursif. Polinomial Chebyshev mengambil peran penting dalam analisis numerik dan perkembangan ilmu pengetahuan modern, diantaranya adalah tentang polinomial ortogonal, aproksimasi polinomial, integrasi numerik dan metode spektral untuk persamaan diferensial parsial. Dengan mempelajari polinomial Chebyshev akan mengarah pada semua bidang dalam analisis numerik. Hal ini berarti bahwa polinomial Chebyshev memberikan pelajar kesempatan untuk mengenal luas berbagai bidang analisis numerik dan matematika. 1..Rumusan Masalah Berdasarkan latar belakang tersebut, pokok permasalahan yang dibahas dalam makalah ini adalah a. Bagaimana memperoleh polinomial pendekatan pada interpolasi Chebyshev dan ketunggalan interpolasi Chebyshev.

3 b. Bagaimana perbandingan galat interpolasi dengan polinomial Lagrange dan interpolasi dengan polinomial Chebyshev 1.. Tujuan Tujuan dari penulisan makalah ini adalah: 1. Mengetahui hasil polinomial pendekatan pada interpolasi Chebyshev dan ketunggalan interpolasi Chebyshev.. Mengetahui perbandingan galat interpolasi dengan polinomial Lagrange dan interpolasi dengan polinomial Chebyshev

4 BAB II TIJAUA PUSTAKA 1.1. Galat Galat atau error adalah sumber variasi data yang tidak dapat dimasukkan ke dalam model. Ada tiga macam galat: 1. Galat bawaan, terjadi karena kekeliruan dalam menyalin data, salah membaca skala, atau karena kurangnya pengertian mengenai hukumhukum fisik dari data yang diukur.. Galat pembulatan (round-off error), terjadi karena tidak diperhitungkannya beberapa angka terakhir dari suatu bilangan. Sebagai contoh, dapat dibulatkan menjadi.14.. Galat pemotongan (truncation error), terjadi karena tidak dilakukannya hitungan sesuai dengan prosedur matematik yang benar. 1.. Interpolasi Misalkan y=f(x) adalah suatu fungsi yang diketahui nilanya pada (+1) buah titik berbeda x0,x1,,xn dalam selang [a,b]. Polinomial P(x) disebut polinom penginterpolasi berderajat bagi f(x), jika untuk setiap,1,, berlaku P (xk)=f(xk)=yi. Selanjutnya, jika P(x) digunakan untuk mengaproksimasi fungsi f(x) pada selang (x0,x) maka proses tersebut disebut proses interpolasi dan nilai P(x) disebut nilai interpolasi. Interpolasi polinomial Lagrange merupakan salah satu bentuk interpolasi yang menggunakan polinomial Lagrange sebagai polinom penginterpolasinya. Polinomial Lagrange berderajat memiliki bentuk umum yaitu, P (x) = f(x k )L,k (x) 4

5 dengan L,k (x) adalah koefisien polinomial Lagrange yang dinyatakan persamaan L,k (x) = n j=1(x x j ) j k n j=1(x k x j ) j k 1.. Polinomial Monik Suatu polinomial dikatakan sebagai polinomial monik jika koefisien utamanya adalah satu. Misalkan(x) adalah polinomial monik berderajat maka koefisien dari x dalam polinomial tersebut adalah satu. Bentuk umum polinomial monik berderajat dinyatakansebagaiberikut P(x) = x + a 1 x a 1 x + a 0 5

6 BAB III PEMBAHASA.1. Interpolasi Polinomial Chebyshev Metode numerik selalu berhubungan dengan eror, yaitu bagaimana meminimalkan galat atau eror. Sebelumnya kita ingat bahwa ketika kita punya fungsi f(x) yang memiliki n turunan kontinu, interpolasi erornya adalah sebagai berikut 1 f x Q x f x x n ( n 1) ( ) n( ) ( n) ( j ). ( n 1)! j 0 Dimana Qn ( x) adalah polinomial interpolasi dan n adalah titik diantara interval. Dari persamaan di atas terlihat bahwa titik interpolasi sangat mempengaruhi eror. Memang bukan hanya titik interpolasi yang berpengaruh, namun paling tidak untuk meminimalkan eror atau mendapatkan hasil yang optimal dalam interpolasi pemilihan titik interpolasi juga sangat penting. Salah satu solusinya adalah dengan menggunakan titik Chebyshev Polinomial Chebyshev Polinomial Chebysev memiliki beberapa sifat berikut. a. Persamaan rekursif Polinomial Chebyshev dapat didefinisikan sebagai relasi rekursif berikut: T ( x) 1 0 T ( x) x 1 T ( x) xt ( x) T ( x), n n n 1 n Atau dapat ditulis Tn 1( x) xtn ( x) Tn 1( x), n 1 Sebagai contohnya, T x xt x T x x, dan ( ) 1( ) 0( ) 1 T x x x. ( ) 4 b. Koefisien Utama Persamaan rekursif polinomial Chebyshev menyatakan bahwa koefisien dari x yang merupakan koefisien utama pada polinomial T (x) adalah (koefisien x 1 dalam T 1 (x)). 6

7 Oleh karena itu, koefisien dari x dalam polinomial T (x) adalah 1 untuk 1 c. Representasi trigonometri dalam [ 1, 1] Untuk setiap x [ 1,1], T x n x n 1 n ( ) cos( cos ), 0. Atau bisa ditulis sebagai T (x) = cos( arccos(x)). Bukti: Dalam trigonometri berlaku cos( n 1) cos cos n sin sin n, cos( n 1) cos cos n sin sin n. Karena itu, cos( n 1) cos cos n cos( n 1). 1 Diberikan cos x, maka x cos, dan definisikan t x n x n. 1 n ( ) cos( cos ) cos( ) Sehingga t0( x) 1, t1( x) x, tn 1( x) xtn ( x) tn 1( x), n 1. Oleh karena itu tn( x) Tn( x). d. Akar Polinomial di [-1,1] Polinomial Chebyshev T (x) dengan orde 1 memiliki buah akar dalam interval [ 1,1], yaitu x k = cos ( k+1 π) untuk k = 0,1,, 1. ilai tersebut dikatakan sebagai titik Chebyshev. Bukti: 7

8 Diketahui bahwa T (x) = cos( arccos(x)), 1 x 1 Akar persamaan T (x) ditentukan menggunakan persamaan berikut. T (x) = 0 arccos(x) = arccos(0) arccos(x) = k + 1 π x k = cos ( k+1 π), k = 0,1,, 1. Oleh karena itu, diperoleh akar persamaan T (x) pada interval [ 1,1] adalah e. x k = cos ( k+1 π), k = 0,1,, 1 ilai ini disebut titik Chebyshev... Interpolasi Chebysev Dalam kasus yang lebih umum dimana interval interpolasi untuk fungsi f(x) adalah x [a,b] pertama harus mengubah interval interpolasi ke y [-1,1] dengan Dengan b a x k = ( ) t a + b k + t k = y = cos [( + 1 k) π + ], k = 0,1,, adalah titik Chebyshev dari polinomial T +1 (x) pada [ 1,1]. Hal ini mengubah masalah interpolasi untuk f(x) di [a,b] ke f(x)=g(x(y)) pada y [-1,1]. Teorema Misalkanf fungsi terdefinisi dan kontinu pada [a, b]dan sedemikian sehingga turunan orde ke- + 1 dari f kontinu di [a, b] JikaP (x) adalah polinomial interpolasi Lagrange dengan titik interpolasinya merupakan titik Chebyshev dari T +1 (x) maka: max f(x) P (b a)+1 (x) x [a,b] +1 ( + 1)! max ξ [a,b] f(+1) (ξ)..1. Polinomial Chebyshev Polinomial interpolasi Chebyshev dapat ditulis sebagai berikut: P (x) = c k. T k (x) = c 0. T 0 (x) + c 1. T 1 (x) + + c. T (x) 8

9 Misalkan f(x) diinterpolasi oleh polinomial P (x) dengan + 1 titik interpolasi Chebyshev yaitu x k = cos ( k+1 π), k = 0,1,,, oleh karena itu pada titik tersebut berlaku f(x) = P (x). Akibatnya, f(x k )T j (x k ) = i=0 c i. T i (x k ). T j (x k ) = i=0 c i. i=0 T i (x k ). T j (x k ) = i=0 c i K i δ ij. Untuk i = j = 0 i=0 c i K i δ ij = i=0 c i ( + 1)δ ij = c 0 ( + 1) Sehingga c 0 = 1 +1 f(x k) Untuk i = j = 1,,, i=0 c i K i δ ij = i=0 c i Sehingga c j = f(x +1 k)t j (x k ) +1 δ +1 ij = c j Teorema: Polinomial pendekatan Chebyshev P (x) untuk fungsi f(x) pada [ 1,1] dinyatakan sebagai Dengan kosfisien c j adalah f(x) = P (x) = c j. T j (x) f(x k), j = 0 c j = { + 1 f(x k) T j (x k ), j = 1,,, Dimana T j (x k ) = cos ( jπ(k+1) ), j = 1,,, +... Sifat Ortogonal Misalkan x k = cos ( k+1 π) untuk k = 0,1,, maka polynomial Chebyshev +1 memenuhi sifat-sifat berikut: 1) T i (x k )T j (x k ) = 0 i j 9

10 T i (x k )T j (x k ) = + 1, i = j 0 ) T 0 (x k )T 0 (x k ) = + 1 Sifat ortogonal tersebut juga dapat dinyatakan dalam persamaan: Dengan: T i (x k ) T j (x k ) = K i δ ij δ ij = { 0, i = j 1, i = j K i = + 1, 1 t K 0 = + 1 Berdasarkan sifat otogonal polinomial Chebyshev diperoleh polinomial pendekatan untuk aproksimasi Chebyshev seperti yang dinyatakan dalam teorema: Teorema Polinomial pendekatan Chebyshev P (x) berderajat untuk f(x) pada selang [ 1,1] dinyatakan sebagai berikut: f(x) P (x) = j=0 Dengan koefisien {c j } dinyatakan pada persamaaan: C j T j (x) 1 n + 1 f(x k), j = 0 c j = { + 1 f(x k)t j (x k ), j = 1,,, Untuk x k = cos ( k+1 π) dan k = 0,1, Bukti: 10

11 Diketahui bahwa P (x) = j=0 c j T j (x). Karena P (x) menginterpolasi f(x) pada ( + 1) titik Chebyshev, yaitu x k = cos ( k+1 π), k = 0,1,, diperoleh pada titik tersebut berlaku f(x k ) = P (x k ). Oleh karena itu: f(x k )T j (x k ) = c i T i (x k )T j (x k ) = Untuk i = j = 0, maka: i=0 c i K i δ ij = c i ( + 1)δ ij = c 0 ( + 1) i=0 Oleh karena itu, diperoleh: i=0 f(x k ) T 0 (x k ) = c 0 ( + 1) c 0 = = f(x k) Sementara itu untuk i = j = 1,,, maka ( + 1) ( + 1) c i K i δ ij = c i δ ij = c j i=0 Oleh karena itu diperoleh: i=0 i=0 c i K i δ ij f(x k) T 0 (x k ) ( + 1) f(x k )T j (x k ) = c j c j = + 1 f(x k)t j (x k ) Berdasarkan hasil tersebut, diperoleh koefisien polinomial pendekatan seperti pada: 1 n + 1 f(x k), j = 0 c j = { + 1 f(x k)t j (x k ), j = 1,,, 11

12 BAB IV APLIKASI ITERPOLASI POLIOMIAL CHEBYSHEV Bandingkan polinomial pendekatan berderajat (=) untuk f(x) = e x pada selang [ 1,1] yang dibentuk dari: 1. Polinomial Lagrange dengan titik interpolasi berjarak seragam x k = 1 + k, k = 0,1,,.. Polinomial Lagrange dengan titik interpolasi Chebyshev x k = cos ( 7 k π), k = 0,1,,. 8. Polinomial Chebyshev dengan titik interpolasi Chebyshev x k = cos ( k+1 π), k = 0,1,,. 8 Penyelesaian 1. Polinomial Lagrange dengan titik interpolasi berjarak seragam x k = 1 + k, k = 0,1,,. x 0 = 1 f(x 0 ) = e 1 = 0, x 1 = 1 f(x 1) = e 1 = 0, x = 1 f(x ) = e 1 = 1,95614 x = 1 f(x ) = e 1 =, x x x x x x L ( x 1 0 x).. 0,065 0,065x 0,565x 0, 565 x0 x1 x0 x x0 x x x x x x x L ( x 0 1 x).. 0,565 1,6875x 0,565x 1, 6875 x1 x0 x1 x x1 x x x x x x x L ( x 0 1 x).. 0,565 1,6875x 0,565x 1, 6875 x x0 x x1 x x 1

13 x x x x x x L ( x 0 1 x).. 0,065 0,065x 0,565x 0, 565 x x0 x x1 x x Maka interpolasi polinomial Lagrange order sebagai berikut P ( x) L ( x). f ( x ) = i i i 0 L0 ( x). f ( x0) L1 ( x). f ( x1) L ( x). f ( x) L ( x). f ( x) = ( 0,065 0,065x 0,565x 0,565x ) 0, ( 0,565 1,6875x 0,565x 1,6875x ) 0, ( 0,565 1,6875x 0,565x 1,6875x ) 1, ( 0,065 0,065x 0,565x 0,565x ), Sehingga diperoleh P A (x) = 0, ,999049x + 0, x + 0, x. Polinomial Lagrange dengan titik interpolasi Chebyshev x k = cos ( 7 k π), k = 0,1,,. 8 x 0 = cos 7 8 π = cos 157,5o = 0,98795 f(x 0 ) = e 0,98795 = 0, x 1 = cos 5 8 π = cos 11,5o = 0,8684 f(x 1 ) = e 0,8684 = 0, x = cos 8 π = cos 67,5o = 0,8684 f(x ) = e 0,8684 = 1, x = cos 1 8 π = cos,5o = 0,98795 f(x ) = e 0,98795 =,

14 L x 1 0( ).. x0 x1 x0 x x0 x L ( x) 0, ,110858x 0, x 0, x 0 x x x x x x x x x x x x L1 ( x).. x x x x x x L ( x) 0, , x 0, x 1, x x x x x x x L ( x).. x x x x x x L ( x) 0, , x 0, x 1, x x x0 x x1 x x L ( x).. x x x x x x 0 1 L ( x) 0, ,110858x 0, x 0, x Maka interpolasi polinomial Lagrange orde dengan titik interpolasi Chebyshev sebagai berikut P ( x) L ( x). f ( x ) = i i i 0 L0 ( x). f ( x0) L1 ( x). f ( x1) L ( x). f ( x) L ( x). f ( x) = ( 0, ,110858x 0, x 0, x ) 0, ( 0, , x 0, x 1, x ) 0, ( 0, , x 0, x 1, x ) 1, ( 0, ,110858x 0, x 0, x ), Sehingga diperoleh P B (x) = 0, ,9989x + 0,549007x + 0, x 14

15 . Polinomial Chebyshev dengan titik interpolasi Chebyshev x k = cos ( k+1 π), k = 0,1,,. 8 x 0 = cos 1 8 π = cos,5o = 0,98795 f(x 0 ) = e 0,98795 =, x 1 = cos 8 π = cos 67,5o = 0,8684 f(x 1 ) = e 0,8684 = 1, x = cos 5 8 π = cos 11,5o = 0,8684 f(x ) = e 0,8684 = 0, x = cos 7 8 π = cos 157,5o = 0,98795 f(x ) = e 0,98795 = 0, Dengan memanfaatkan teorema aproksimasi Chebyshev, diperoleh c 0 = f(x k) = 1 e x 1 k = (5,064671) = 1, c 1 = + 1 f(x k) T 1 (x k ) = 1 ex k. cos (π k + 1 ) 8 = 1 (ex 0. cos ( 1 8 π) + ex 1. cos ( 8 π) + e x. cos ( 5 8 π) + ex. cos ( 7 8 π)) = 1, c = + 1 f(x k) T (x k ) = 1 ex k. cos (π k + 1 ) 8 15

16 = 1 (ex 0. cos ( 1 4 π) + ex 1. cos ( 4 π) + ex. cos ( 5 4 π) + ex. cos ( 7 4 π)) = 0, c = + 1 f(x k) T (x k ) = 1 ex k. cos (π k + 1 ) 8 = 1 (ex 0. cos ( 8 π) + ex 1. cos ( 9 8 π) + ex. cos ( 15 8 π) + ex. cos ( 1 8 π) ) = 0,04799 Sehingga interpolasi polinomial Chebyshev orde dengan titik interpolasi Chebyshev sebagai berikut P (x) = c k. T k (x) = c 0. T 0 (x) + c 1. T 1 (x) + c. T (x) + c. T (x) = (1, )(1) + (1,101500)(x) + (0,714506)(x 1) + (0,04799)(4x x) Jadi, P C (x) = 0, ,99894x + 0,549007x + 0, x 16

17 BAB V KESIMPULA 1. Berdasarkan hasil tersebut, polinomial pendekatan P B (x) = P C (x), maka polinomial pendekatan pada interpolasi Chebyshev adalah tunggal dan dapat diperoleh melalui polinomial Lagrange atau polinomial Chebyshev.. Perbandingan galat interpolasi dengan titik berjarak seragam (a) dan titik Chebyshev (b) (a). Galat interpolasi dengan titik berjarak seragam Dengan nilai error e x P(x) 0,01 f(x) P n (x) f(x) Titik Seragam E(X) galat interpolasi X X (b). Galat interpolasi dengan titik Chebyshev Dengan nilai error e x P(x) 0,

18 .5 P n (x) f(x) Titik Seragam 8 x 10-6 galat interpolasi f(x) 1.5 E(X) X X 18

19 DAFTAR PUSTAKA Levy, Doron Introduction to umerical Analysis. Maryland: University of Maryland. Mathews, John H. dan Kurtis D. Fink umerical Methods Using MATLAB (4th ed.). USA: Pearson Prentice Hall. 19

20 DAFTAR LAMPIRA a. Titik Interpolasi Seragam clc;clear;close; n=4;a=-1;b=1; for k=1:n x(k)=-1.+/*(k-1); y(k)=exp(x(k)) ; end for i=1:n pp=poly(x((1:n)~=i)); pvals(i,:)=pp./polyval(pp,x(i)); end Pn=y*pvals; xi=[a:0.01:b]; yi=polyval(pn,xi); 7 0

21 for i=1:length(xi) zi(i)=exp(xi(i)); end hi=abs(zi-yi); Hii=max(hi) subplot(1,,1); plot(xi,yi,'g',xi,zi,'r--',x,y,'o','linewidth',); grid; legend('p_n(x)','f(x)','titik Seragam','Location','orthWest'); subplot(1,,); plot(xi,hi,'r','linewidth',); grid; legend('galat interpolasi'); b. Titik Interpolasi Chebyshev clc;clear;close; n=4;a=-1;b=1; for k=1:n A=cos((pi*(n+1-k-0.5))/n); x(k)=(b-a)*a/+(a+b)/; y(k)=exp(x(k)) ; end for i=1:n pp=poly(x((1:n)~=i)); pvals(i,:)=pp./polyval(pp,x(i)); end Pn=y*pvals; xi=[a:0.01:b]; yi=polyval(pn,xi); for i=1:length(xi) zi(i)=exp(xi(i)); end hi=abs(zi-yi); Hii=max(hi) subplot(1,,1); plot(xi,yi,'g',xi,zi,'r--',x,y,'o','linewidth',); grid; legend('p_n(x)','f(x)','titik Seragam','Location','orthWest'); subplot(1,,); plot(xi,hi,'r','linewidth',); grid; legend('galat interpolasi'); 1

untuk i = 0, 1, 2,..., n

untuk i = 0, 1, 2,..., n RANGKUMAN KULIAH-2 ANALISIS NUMERIK INTERPOLASI POLINOMIAL DAN TURUNAN NUMERIK 1. Interpolasi linear a. Interpolasi Polinomial Lagrange Suatu fungsi f dapat di interpolasikan ke dalam bentuk interpolasi

Lebih terperinci

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI. Lilik Prasetiyo Pratama

PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI. Lilik Prasetiyo Pratama PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI Lilik Prasetiyo Pratama Jurusan Matematika, FMIPA UNS. LATAR BELAKANG Tidak semua fungsi mudah dievaluasi, terlebih fungsi yang rumit. Pendekatan dengan

Lebih terperinci

Course Note Numerical Method : Interpolation

Course Note Numerical Method : Interpolation Course Note Numerical Method : Interpolation Pengantar Interpolasi. Kalimat y = f(x), xo x xn adalah kalimat yang mengkorespondensikan setiap nilai x di dalam interval x0 x xn dengan satu atau lebih nilai-nilai

Lebih terperinci

Interpolasi Polinom dan Applikasi pada Model Autoregresif

Interpolasi Polinom dan Applikasi pada Model Autoregresif Interpolasi Polinom dan Applikasi pada Model Autoregresif Rio Cahya Dwiyanto 13506041 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

Suku Banyak Chebyshev

Suku Banyak Chebyshev Bab 3 Suku Banyak Chebyshev Suku banyak Chebyshev, yang diberi nama oleh Pafnuty Chebyshev, merupakan suatu deret dari suku banyak ortogonal yang dapat dituliskan secara rekursif. Suku banyak ini dibedakan

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA Irpan Riski M 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. triyana.muliawati@ma.itera.ac.id 1. Pengenalan Metode

Lebih terperinci

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Hendy Sutanto - 13507011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI Perbandingan Beberapa Metode Numerik dalam Menghitung Nilai Pi Aditya Agung Putra (13510010)1 Program Studi Teknik Informatika Sekolah Teknik

Lebih terperinci

FUNGSI RASIONAL CHEBYSHEV DAN APLIKASINYA PADA APROKSIMASI FUNGSI

FUNGSI RASIONAL CHEBYSHEV DAN APLIKASINYA PADA APROKSIMASI FUNGSI FUNGSI RASIONAL CHEBYSHEV DAN APLIKASINYA PADA APROKSIMASI FUNGSI Irvan Agus Etioko 1, Farikhin 2, Widowati 3 1,2,3 Program Studi Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, S.H. Tembalang

Lebih terperinci

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3. BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010 Metode Program Studi Pendidikan Matematika UNTIRTA 10 Maret 2010 (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret 2010 1 / 16 Ekspansi Taylor Misalkan f 2 C [a, b] dan x 0 2 [a, b], maka untuk

Lebih terperinci

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 148 153 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN

Lebih terperinci

Konsep Deret & Jenis-jenis Galat

Konsep Deret & Jenis-jenis Galat Metode Numerik (IT 402) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 2 Konsep Deret & Jenis-jenis Galat ALZ DANNY WOWOR 1. Pengatar Dalam Kalkulus, deret sering digunakan untuk

Lebih terperinci

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : EKA PUTRI ARDIANTI

Lebih terperinci

SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR. Eka Parmila Sari 1, Agusni 2 ABSTRACT

SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR. Eka Parmila Sari 1, Agusni 2 ABSTRACT SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR Eka Parmila Sari 1, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4

ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4 ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4 Asep Juarna, SSi, MKom. Fakultas Ilmu Komputer, Universitas

Lebih terperinci

Metode Numerik - Interpolasi WILLY KRISWARDHANA

Metode Numerik - Interpolasi WILLY KRISWARDHANA Metode Numerik - Interpolasi WILLY KRISWARDHANA Interpolasi Para rekayasawan dan ahli ilmu alam sering bekerja dengan sejumlah data diskrit (yang umumnya disajikan dalam bentuk tabel). Data di dalam tabel

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan

Lebih terperinci

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik.

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik. SILABUS MATAKULIAH Matakuliah Jurusan : Metode Numerik : Matematika Deskripsi Matakuliah :Metode Numerik membahas permasalahan matematika yang bersifat numerik. Penyelesaian persamaan khususnya non liner,

Lebih terperinci

Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer

Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Dewita Sonya Tarabunga - 13515021 Program Studi Tenik Informatika Sekolah Teknik

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK Nurul Ain Farhana, Imran M Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Galat & Analisisnya. FTI-Universitas Yarsi

Galat & Analisisnya. FTI-Universitas Yarsi BAB II Galat & Analisisnya Galat - error Penyelesaian secara numerik dari suatu persamaan matematis hanya memberikan nilai perkiraan yang mendekati nilai eksak (yang benar dari penyelesaian analitis. Penyelesaian

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

MODIFIKASI METODE JARRAT DENGAN VARIAN METODE NEWTON DAN RATA-RATA KONTRA HARMONIK TUGAS AKHIR. Oleh : KHARISMA JAKA ARFALD

MODIFIKASI METODE JARRAT DENGAN VARIAN METODE NEWTON DAN RATA-RATA KONTRA HARMONIK TUGAS AKHIR. Oleh : KHARISMA JAKA ARFALD MODIFIKASI METODE JARRAT DENGAN VARIAN METODE NEWTON DAN RATA-RATA KONTRA HARMONIK TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh : KHARISMA

Lebih terperinci

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif

Lebih terperinci

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR Eka Ceria 1, Agusni, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

DIKTAT PRAKTIKUM METODE NUMERIK

DIKTAT PRAKTIKUM METODE NUMERIK DIKTAT PRAKTIKUM METODE NUMERIK LABORATORIUM KOMPUTER PROGRAM STUDI FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN 2014 KATA PENGANTAR Diktat ini disusun untuk pedoman dalam

Lebih terperinci

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR Jurnal Matematika UNAND Vol. VI No. Hal. 68 76 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR WIDIA ASTUTI Program Studi Matematika, Fakultas

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. INTEGRASI NUMERIK TANPA ERROR UNTUK FUNGSI-FUNGSI TERTENTU Irma Silpia 1, Syamsudhuha, Musraini M. 1 Mahasiswi Jurusan Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 21 25 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

p2(x)

p2(x) BAB 1 Konsep Dasar 1.1 Denisi dan Teorema Dalam Kalkulus Pengembangan metoda numerik tidak terlepas dari pengembangan beberapa denisi dan teorema dalam mata kuliah kalkulus yang berkenaan dengan fungsi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Aryati dkk.(2003) menyatakan bahwa persamaan diferensial adalah formulasi matematis dari masalah di berbagai bidang kehidupan. Persamaan diferensial sering

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

BANK SOAL METODE KOMPUTASI

BANK SOAL METODE KOMPUTASI BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

BAB 5 Interpolasi dan Aproksimasi

BAB 5 Interpolasi dan Aproksimasi BAB 5 Interpolasi dan Aproksimasi Interpolasi merupakan proses penentuan dan pengevaluasian suatu fungsi yang grafiknya melalui sejumlah titik tertentu. Sebaliknya, pada aproksimasi grafik fungsi yang

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan BAB I PENDAHULUAN 1.1 Latar Belakang Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan secara numerik. Perhitungan secara analitik dilakukan untuk menyelesaikan integral pada fungsi

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline

Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline Pertemuan 9 : Interpolasi 1 (P9) Interpolasi Metode Newton Metode Spline Pertemuan 9 : Interpolasi 2 Interpolasi Newton Polinomial Maclaurin dan polinomial Taylor menggunakan satu titik pusat, x 0 untuk

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE SIMPSON-LIKE TERKOREKSI Ilis Suryani, M. Imran, Asmara Karma Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN 10.1 PENDAHULUAN Sebelum mambahas it fungsi di suatu titik terlebih dahulu kita akan mengamati perilaku suatu fungsi bila peubahnya mendekati suatu bilangan ril c tertentu. Misal

Lebih terperinci

MASALAH NILAI AWAL ITERASI NEWTON RAPHSON UNTUK ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG)

MASALAH NILAI AWAL ITERASI NEWTON RAPHSON UNTUK ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG) MASALAH NILAI AWAL ITERASI NEWTON RAPHSON UNTUK ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG) Shaifudin Zuhdi, Dewi Retno Sari Saputro Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Hendra Gunawan. 26 Februari 2014

Hendra Gunawan. 26 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan

Lebih terperinci

Metode Numerik & Lab. Muhtadin, ST. MT. Metode Numerik & Komputasi. By : Muhtadin

Metode Numerik & Lab. Muhtadin, ST. MT. Metode Numerik & Komputasi. By : Muhtadin Metode Numerik & Lab Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat Metode Numerik & Lab - Intro 3 Tujuan Pembelajaran Mahasiswa memiliki

Lebih terperinci

METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ]

METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ] METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ] Zulfaneti dan Rahimullaily* Program Studi Pendidikan Matematika STKIP PGRI Sumbar Abstract: There is

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1 METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI 1 + Lely Jusnita 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

Silabus dan Satuan Acara Perkuliahan

Silabus dan Satuan Acara Perkuliahan Fakultas Teknik No. Dokumen : FT SSAP-S3-10 Program Studi Teknik Elektro No. Revisi : 02 Silabus dan Satuan Acara Perkuliahan Tgl.Revisi :13-07-2006 Tgl. Berlaku :13-07-2006 KOMPUTASI NUMERIK DAN SIMBOLIK

Lebih terperinci

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Mahrani 1, M. Imran, Agusni 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK

METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Anisa Rizky Apriliana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika

Lebih terperinci

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 Tornados P. Silaban 1, Faiz Ahyaningsih 2 1) FMIPA, UNIMED, Medan, Indonesia email: tornados.p_silaban@yahoo.com 2)

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU Syofia Deswita 1, Syamsudhuha 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin Metode Numerik Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat 2 Metode Numerik & Teknik Komputasi - Intro 3 Tujuan Pembelajaran Mahasiswa

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Non Homogen Tk. 2 (Differential: Linier Non Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Solusi umum merupakan jumlah

Lebih terperinci

BAB I ARTI PENTING ANALISIS NUMERIK

BAB I ARTI PENTING ANALISIS NUMERIK BAB I ARTI PENTING ANALISIS NUMERIK Pendahuluan Di dalam proses penyelesaian masalah yang berhubungan dengan bidang sains, teknik, ekonomi dan bidang lainnya, sebuah gejala fisis pertama-tama harus digambarkan

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR Jurnal Matematika UAD Vol. 5 o. 4 Hal. 8 ISS : 233 29 c Jurusan Matematika FMIPA UAD PEMBUKTIA BETUK TUTUP RUMUS BEDA MAJU BERDASARKA DERET TAYLOR ADE PUTRI, RADHIATUL HUSA Program Studi Matematika, Fakultas

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar ang akan digunakan sebagai landasan berpikir seperti beberapa teorema dan definisi ang berkaitan dengan penelitian ini. Dengan begitu

Lebih terperinci

Ujian Tengah Semester

Ujian Tengah Semester Ujian Tengah Semester Mata Kuliah : PAM 252 Metode Numerik Jurusan : Matematika FMIPA Unand Hari/Tanggal : Selasa/31 Maret 2015 Waktu : 10.00 11.40 (100 menit) Dosen : Dr. Susila Bahri (Kelas A dan C)

Lebih terperinci

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini METODE NUMERIK, oleh Sri Adi Widodo, M.Pd. Hak Cipta 2015 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262; 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1 METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS Metode Numerik 1 Materi yang diajarkan : 1. Pendahuluan - latar belakang - mengapa dan kapan menggunakan metode numerik - prinsip penyelesaian persamaan 2. Sistim

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

PENURUNAN FUNGSI SECARA NUMERIK

PENURUNAN FUNGSI SECARA NUMERIK 6 PENURUNAN FUNGSI SECARA NUMERIK Èada bab ini kita membicarakan metode numerik untuk menaksir nilai turunan suatu fungsi. Suatu fungsi, baik diketahui rumusnya secara eksplisit maupun dalam bentuk data

Lebih terperinci

Metode Numerik (Pendahuluan) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Metode Numerik (Pendahuluan) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Metode Numerik (Pendahuluan) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Kajian Pokok Metode Numerik Tujuan: Menyelesaikan suatu persamaan menggunakan model matematika. Pemodelan penyelesaian matematika

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP METODE NUMERIK Disusun oleh Ir. Sudiadi, M.M.A.E. Ir. Rizani Teguh, MT SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 2015 Metode Numerik i KATA PENGANTAR Pertama-tama penulis

Lebih terperinci

BAB 1 Konsep Dasar 1

BAB 1 Konsep Dasar 1 BAB Konsep Dasar BAB Solusi Persamaan Fungsi Polinomial BAB Interpolasi dan Aproksimasi Polinomial BAB 4 Metoda Numeris untuk Sistem Nonlinier Suatu tekanan p dibutuhkan untuk menancapkan suatu plat sirkuler

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk

Lebih terperinci

Aplikasi Aljabar Lanjar pada Metode Numerik

Aplikasi Aljabar Lanjar pada Metode Numerik Aplikasi Aljabar Lanjar pada Metode Numerik IF223 Aljabar Geometri Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF223 Aljabar Geometri Apa itu Metode Numerik? Numerik: berhubungan

Lebih terperinci

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA Interpolasi Metode Numerik Zulhaydar Fairozal Akbar zfakbar@pens.ac.id 2017 TOPIK Pengenalan

Lebih terperinci

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1. Pertemuan Kesatu Matematika III Oleh Mohammad Edy Nurtamam, S.Pd., M.Si Page 1 Materi 1. Persamaan Diferensial Orde I Pengenalan bentuk dasar Pers. Diff. Orde I. Definisi Derajat,Orde. Konsep Pemisahan

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

Minggu 11. MA2151 Simulasi dan Komputasi Matematika

Minggu 11. MA2151 Simulasi dan Komputasi Matematika Minggu 11 MA2151 Simulasi dan Komputasi Matematika Model Berdasarkan Data Model Berdasarkan Data Kadangkala kita dituntut untuk membangun suatu model berdasarkan data (yang terbatas). Untuk melakukan ini,

Lebih terperinci

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79 Matematika I : Limit Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 79 Outline 1 limit Introduction to Limit Rigorous Study of Limits Limit Theorem Limit Involving Trigonometric

Lebih terperinci

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

RPS MATA KULIAH KALKULUS 1B

RPS MATA KULIAH KALKULUS 1B RPS MATA KULIAH KALKULUS 1B CAPAIAN PEMBELAJARAN MATA KULIAH: 1. Mempunyai pengetahuan dibidang matematika, statistika, komputasi (algoritma), dan pengetahuan dasar dalam menyelesaikan permasalahan dibidang

Lebih terperinci