5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1

Ukuran: px
Mulai penontonan dengan halaman:

Download "5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1"

Transkripsi

1 5. INTERPOLASI PENDAHULUAN Bentuk umum persamaan polinomial orde n adalah: f() = a + a. + a a n. n Untuk n+ titik data, hanya terdapat satu polinomial orde n atau kurang yang melalui semua titik. orde orde orde menghubungkan titik menghubungkan titik menghubungkan 4 titik Gambar 5. INTERPOLASI POLINOMIAL NEWTON Bentuk umum interpolasi polinomial orde n adalah: f n ()=b +b.(- )+b.(- ).(- )+...+b n.(- ).(- ) (- n- ) (5.) Persamaan interpolasi polinomial Newton orde, ditulis dalam bentuk, f () = b + b.(- ) (5.) Berdasarkan titik data yang ada, kemudian dihitung koefisien b dan b. Koefisien b dihitung dari pers. (5.) dengan memasukkan nilai =, f( ) = b + b.( - ) b = f( ) (5.) Pers. (5.) disubstitusikan ke pers. (5.) dan kemudian dimasukkan nilai =, maka diperoleh b, f( ) = f( ) + b.( - ) f() f() b = (5.4) Persamaan interpolasi polinomial Newton orde, ditulis dalam bentuk, f () = b + b.(- ) + b.(- ).(- ) (5.5) Berdasarkan titik data yang ada, kemudian dihitung koefisien b, b dan b. Koefisien b dihitung dari pers. (5.5) dengan memasukkan nilai =, f( ) = b + b.( - ) + b.( - ).( - ) b = f( ) (5.6) Pers. (5.6) disubstitusikan ke pers. (5.5) dan kemudian dimasukkan nilai =, maka diperoleh b, f( ) = f( ) + b.( - ) + b.( - ).( - ) Ferianto Raharjo Analisa Numerik Interpolasi

2 b = f() f() (5.7) Pers. (5.6) dan (5.7) disubstitusikan ke pers. (5.5) dan kemudian dimasukkan nilai =, maka diperoleh b, f() f() f( ) = f( ) +.( - ) + b.( - ).( - ) atau b = f() f() f() f().( ( ).( ) b = f() f() f() f() ) (5.8) Persamaan interpolasi polinomial Newton orde n, ditulis dalam bentuk, f n ()=b +b.(- )+b.(- ).(- )+...+b n.(- ).(- ) (- n- ) (5.9) Seperti yang dilakukan dengan orde dan, titik-titik data dapat digunakan untuk mengevaluasi koefisien b, b, b,.. dan b n. Untuk interpolasi polinomial orde n, diperlukan n+ titik data,,,.., n. Dengan menggunakan titik-titik data tersebut, persamaan berikut digunakan untuk mengevaluasi koefisien, b = f( ) b = f[, ] b = f[,, ] (5.) M b n = f[ n, n-,..,, ] dengan evaluasi fungsi berkurung ([..]) adalah pembagian beda hingga. Bentuk pembagian beda hingga tersebut dapat digunakan untuk mengevaluasi koefisien-koefisien pada pers. (5.), yang kemudian disubstitusikan ke dalam pers. (5.9) untuk mendapatkan interpolasi polinomial Newton. Pembagian beda hingga yang lebih tinggi terdiri dari pembagian beda hingga yang lebih rendah, seperti pada tabel 5.. Tabel 5.. Bentuk grafis pembagian beda hingga i i f( i ) Satu Dua Tiga f( ) f[, ] f[,, ] f[,,, ] f( ) f[, ] f[,, ] f( ) f[, ] f( ) Ferianto Raharjo Analisa Numerik Interpolasi

3 Contoh 5.: Dengan menggunakan interpolasi polinomial Newton orde, hitunglah nilai ln =,69478 dan ln 6=, Nilai eksak ln 4 =,86946 i i f( ) Satu,69478, , f (4) =, ,74657.(-) =,4454,86946,4454 % =,8%,86946 Contoh 5.: Dengan menggunakan interpolasi polinomial Newton orde, hitunglah nilai ln =,69478, ln =,98689 dan ln 6 =, Nilai eksak ln 4 =,86946 i i f( i ) Satu Dua,69478, ,464,98689,496 6, f (4) =, , (-),464.(-).(-) =, ,86946, % = -,%,86946 Contoh 5.: Dengan menggunakan interpolasi polinomial Newton orde, hitunglah nilai ln =,69478, ln =,98689, ln 5 =,69479 dan ln 6 =, Nilai eksak ln 4 =,86946 i i f( i ) Satu Dua Tiga,69478, ,574,644,98689,5548 -,4675 5,69479,8557 6, Ferianto Raharjo Analisa Numerik Interpolasi

4 f (4) =, , (-),574.(-).(-) +,644.(-).(-).(-5) =,95694,86946,95694 % = -,5%,86946 Contoh 5.4: Misalkan anda memenangkan suatu undian, dan kepada anda diberikan pilihan untuk menerima Rp., sekarang atau Rp. 7., setiap tahun selama 5 tahun. Hubungan antara nilai sekarang (P) dan sederetan pembayaran tahunan (A) diberikan oleh informasi berikut dari tabel bunga. Tingkat Suku Bunga (%) A/P (n = 5 tahun) 5,98,48 5,785,458 di mana A/P adalah perbandingan pembayaran tahunan terhadap keuntungan sekarang. Jadi bila tingkat suku bunga 5%, pembayaran 5 tahunan (A) yang ekivalen dengan pembayaran sekarang (P) Rp., dihitung sebagai: A = (A/P).P =,98.(Rp.,) = Rp , Gunakan interpolasi polinomial Newton orde untuk menentukan tingkat suku bunga, di mana menerima Rp., sekerang menjadi keputusan yang lebih baik. A = (A/P).P (Rp. 7.) = (A/P).(Rp.,) (A/P) =,5 i i f( i ) Satu Dua Tiga,98 5 8, , ,64888,48, ,9778, ,988897,458 f (,5) = 5 + 8, (-,98) 7, (-,98).(-,48) + 4, (-,98).(-,48).(-,785) =,65468% Ferianto Raharjo Analisa Numerik Interpolasi 4

5 INTERPOLASI POLINOMIAL LAGRANGE Interpolasi polinomial Lagrange hampir sama dengan interpolasi polinomial Newton, tetapi tidak menggunakan bentuk pembagian beda hingga. Interpolasi polinomial Lagrange dapat diturunkan dari persamaan Newton. Interpolasi polinomial Lagrange orde f () = f( ) + (- ).f[, ] (5.) Pembagian beda hingga yang ada pada pers. (5.) mempunyai bentuk, f() f() f[, ] = atau f[, ] = f() f() + Substitusi pers. (5.) ke dalam pers. (5.) memberikan hasil, f () = f( ) +.f( ) +.f( ) (5.) Dengan mengelompokkan suku di ruas kanan, maka persamaan di atas menjadi, f () = +.f( ) +.f( ) atau f () =.f( ) +.f( ) (5.) Pers. (5.) dikenal sebagai interpolasi polinomial Lagrange orde. Interpolasi polinomial Lagrange orde Dengan prosedur yang sama, untuk interpolasi polinomial Lagrange orde akan didapat: f ()=.f( )+.f( )+ Interpolasi polinomial Lagrange orde n Secara umum bentuk interpolasi Lagrange orde n adalah: dengan n.f( ) (5.4) f n () = L i ().f(i) (5.5) i= n L i () = j= i j i j j (5.6) di mana simbol merupakan perkalian. Dengan pers. (5.5) dan (5.6) dapat dihitung interpolasi Lagrange orde yang lebih tinggi. Misalnya untuk interpolasi Lagrange orde, persamaannya adalah: Ferianto Raharjo Analisa Numerik Interpolasi 5

6 dengan f () = L i ().f(i) = L ().f( )+L ().f( )+L ().f( )+L ().f( ) i= L () = L () = L () = L () = Contoh 5.5: Dengan menggunakan interpolasi polinomial Lagrange orde, hitunglah nilai ln =,69478 dan ln 6=, Nilai eksak ln 4 =,86946 = f( ) =,69478 = 6 f( ) =, f (4) =., , =,4455,86946,4455 % =,8%,86946 Contoh 5.6: Dengan menggunakan interpolasi polinomial Lagrange orde, hitunglah nilai ln =,69478, ln =,98689 dan ln 6 =, Nilai eksak ln 4 =,86946 = f( ) =,69478 = f( ) =,98689 = 6 f( ) =, f (4) =., , , =,468697,86946, % = -,%,86946 Ferianto Raharjo Analisa Numerik Interpolasi 6

7 Contoh 5.7: Dengan menggunakan interpolasi polinomial Lagrange orde, hitunglah nilai ln =,69478, ln =,98689, ln 5 =,69479 dan ln 6 =, Nilai eksak ln 4 =,86946 = f( ) =,69478 = f( ) =,98689 = 5 f( ) =,69479 = 6 f( ) =, L (4) = L (4) = L (4) = L (4) = = -, =, = = -, f (4) = (-, )., , , , (-, )., =,9569,86946,9569 % = -,5%,86946 Ferianto Raharjo Analisa Numerik Interpolasi 7

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA Interpolasi Metode Numerik Zulhaydar Fairozal Akbar zfakbar@pens.ac.id 2017 TOPIK Pengenalan

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 3. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 3. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 3 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 27 Daftar

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

PENURUNAN FUNGSI SECARA NUMERIK

PENURUNAN FUNGSI SECARA NUMERIK 6 PENURUNAN FUNGSI SECARA NUMERIK Èada bab ini kita membicarakan metode numerik untuk menaksir nilai turunan suatu fungsi. Suatu fungsi, baik diketahui rumusnya secara eksplisit maupun dalam bentuk data

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Dalam bab ini dijelaskan metode Adams Bashforth-Moulton multiplikatif (M) orde empat beserta penerapannya. Metode tersebut memuat metode Adams Bashforth multiplikatif orde empat

Lebih terperinci

PERSAMAAN DIFERENSIAL (PD)

PERSAMAAN DIFERENSIAL (PD) PERSAMAAN DIFERENSIAL (PD) A. PENGERTIAN Persamaan yang mengandung variabel dan beberapa fungsi turunan terhadap variabel tersebut. CONTOH : + 5 5 0 disebut PD orde I + 6 + 7 0 disebut PD orde II B. PEMBENTUKAN

Lebih terperinci

Contoh Tentukanlah prakiraan nilai f pada titik x 8 dengan menggunakan metode polinomial interpolasi Lagrange dengan ketelitian hingga desimal, jika d

Contoh Tentukanlah prakiraan nilai f pada titik x 8 dengan menggunakan metode polinomial interpolasi Lagrange dengan ketelitian hingga desimal, jika d INTERPOLATION INTERPOLATION Numerical Methods Oleh : Interpolasi mrp cara utk mendapatkan kurva sesuai dgn data yang ada, tanpa menimbulkan kesalahan thp data tsb. Pembahasan interpolasi akan dititikberatkan

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I

BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I. Pengertian PD, Orde (tingkat), & Derajat (Pangkat) Persamaan diferensial adalah suatu persamaan yang memuat derivatifderivatif (turunan) sekurang-kurangnya derivatif

Lebih terperinci

Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline

Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline Pertemuan 9 : Interpolasi 1 (P9) Interpolasi Metode Newton Metode Spline Pertemuan 9 : Interpolasi 2 Interpolasi Newton Polinomial Maclaurin dan polinomial Taylor menggunakan satu titik pusat, x 0 untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

Kebalikan Transformasi Laplace

Kebalikan Transformasi Laplace TKS 4003 Matematika II Kebalikan Transformasi Laplace Fraksi Pecahan (Partial Fraction: Laplace Transform Inverse) Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PENDAHULUAN Dalam penggunaannya,

Lebih terperinci

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 148 153 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN

Lebih terperinci

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. SOAL DAN JAWABAN TENTANG NILAI MUTLAK Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. Jawaban: Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut.

Lebih terperinci

Tujuan. Interpolasi berguna untuk memperkirakan nilai-nilai tengah antara titik data yang sudah ditentukan dan tepat.

Tujuan. Interpolasi berguna untuk memperkirakan nilai-nilai tengah antara titik data yang sudah ditentukan dan tepat. INTERPOLASI Tujuan Interpolasi berguna untuk memperkirakan nilai-nilai tengah antara titik data yang sudah ditentukan dan tepat. Interpolasi mempunyai orde atau derajat. Macam Interpolasi Interpolasi Linear

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN : 3 & 4 PENYELESAIAN PERSAMAAN NON LINIER METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar

Lebih terperinci

Interpolasi dan Ekstrapolasi

Interpolasi dan Ekstrapolasi Metode Numerik Bab 1 Interpolasi dan Ekstrapolasi Didalam pengertian matematika dasar, interpolasi adalah perkiran suatu nilai tengah dari satu set nilai yang diketahui. Interpoloasi dalam arti luas merupakan

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : MAtematika Lanjut 2 Kode / SKS : IT012220 / 2 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 Pendahuluan Metode Numerik Pengertian Metode Numerik Mahasiswa

Lebih terperinci

Akar-Akar Persamaan. Definisi akar :

Akar-Akar Persamaan. Definisi akar : Akar-Akar Persamaan Definisi akar : Suatu akar dari persamaan f(x) = 0 adalah suatu nilai dari x yang bilamana nilai tersebut dimasukkan dalam persamaan memberikan identitas 0 = 0 pada fungsi f(x) X 1

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-2 SISTEM BILANGAN DAN KESALAHAN METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode

Lebih terperinci

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik.

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik. SILABUS MATAKULIAH Matakuliah Jurusan : Metode Numerik : Matematika Deskripsi Matakuliah :Metode Numerik membahas permasalahan matematika yang bersifat numerik. Penyelesaian persamaan khususnya non liner,

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

IMPLEMENTASI FORMULA NEWTON-COTES UNTUK MENENTUKAN NILAI APROKSIMASI INTEGRAL TENTU MENGGUNAKAN POLINOMIAL BERORDE 4 DAN 5. Wahyu Sakti G. I.

IMPLEMENTASI FORMULA NEWTON-COTES UNTUK MENENTUKAN NILAI APROKSIMASI INTEGRAL TENTU MENGGUNAKAN POLINOMIAL BERORDE 4 DAN 5. Wahyu Sakti G. I. Sakti G.I., Implementasi Formula Newton-Cotes Untuk Menentukan Nilai Aproksimasi Integral Tentu Menggunakan Polinomial Berorde 4 dan 5 IMPLEMENTASI FORMULA NEWTON-COTES UNTUK MENENTUKAN NILAI APROKSIMASI

Lebih terperinci

Interpolasi dan Ekstrapolasi

Interpolasi dan Ekstrapolasi Interpolasi dan Ekstrapolasi JURNAL 01 Didalam pengertian matematika dasar, interpolasi adalah perkiran suatu nilai tengah dari satu set nilai yang diketahui. Interpoloasi dalam arti luas merupakan upaya

Lebih terperinci

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 2 (2016), hal 103-112 ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro

Lebih terperinci

BANK SOAL METODE KOMPUTASI

BANK SOAL METODE KOMPUTASI BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....

Lebih terperinci

DIKTAT KULIAH (3 sks) MX 211: Metode Numerik

DIKTAT KULIAH (3 sks) MX 211: Metode Numerik DIKTAT KULIAH (3 sks) MX : Metode Numerik (Revisi Terakhir: Juni 009 ) Oleh: Didit Budi Nugroho, M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA PENGANTAR

Lebih terperinci

BAB VIII PERSAMAAN DIFERENSIAL (PD)

BAB VIII PERSAMAAN DIFERENSIAL (PD) BAB VIII PERSAMAAN DIFERENSIAL (PD) Banak masalah dalam kehidupan sehari-hari ang dapat dimodelkan dalam persamaan diferensial. Untuk menelesaikan masalah tersebut kita perlu menelesaikan pula persamaan

Lebih terperinci

PD Orde 2 Lecture 3. Rudy Dikairono

PD Orde 2 Lecture 3. Rudy Dikairono PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

untuk i = 0, 1, 2,..., n

untuk i = 0, 1, 2,..., n RANGKUMAN KULIAH-2 ANALISIS NUMERIK INTERPOLASI POLINOMIAL DAN TURUNAN NUMERIK 1. Interpolasi linear a. Interpolasi Polinomial Lagrange Suatu fungsi f dapat di interpolasikan ke dalam bentuk interpolasi

Lebih terperinci

Modul 05 Persamaan Linear dan Persamaan Linear Simultan

Modul 05 Persamaan Linear dan Persamaan Linear Simultan Modul 05 Persamaan Linear dan Persamaan Linear Simultan 5.1. Persamaan Linear Persamaan adalah pernyataan kesamaan antara dua ekspresi aljabar yang cocok untuk bilangan nilai variable tertentu atau variable

Lebih terperinci

UJIAN AKHIR SEMESTER METODE NUMERIS I

UJIAN AKHIR SEMESTER METODE NUMERIS I PETUNJUK UJIAN AKHIR SEMESTER METODE NUMERIS I DR. IR. ISTIARTO, M.ENG. KAMIS, 8 JUNI 017 OPEN BOOK 150 MENIT 1. Saudara tidak boleh menggunakan komputer untuk mengerjakan soal ujian ini.. Tuliskan urutan/cara/formula

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

MAKALAH INTERPOLASI LINEAR, KUADRAT, KUBIK & POLINOM LAGRANGE

MAKALAH INTERPOLASI LINEAR, KUADRAT, KUBIK & POLINOM LAGRANGE Tugas Kelompok MAKALAH INTERPOLASI LINEAR, KUADRAT, KUBIK & POLINOM LAGRANGE OLEH: KELOMPOK X FARIDAH BAHARUDDIN IMAM IKHSAN IMRAN HASANUDDIN JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8. Supriadi Putra & M. Imran

MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8. Supriadi Putra & M. Imran MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8 Supriadi Putra & M. Imran Laboratorium Komputasi Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

BAB 5 Interpolasi dan Aproksimasi

BAB 5 Interpolasi dan Aproksimasi BAB 5 Interpolasi dan Aproksimasi Interpolasi merupakan proses penentuan dan pengevaluasian suatu fungsi yang grafiknya melalui sejumlah titik tertentu. Sebaliknya, pada aproksimasi grafik fungsi yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1.1 Latar Belakang BAB I PENDAHULUAN Demografi merupakan ilmu yang mempelajari tentang penduduk, khususnya pada lima aspek yaitu ukuran, distribusi geografi, komposisi, komponen perubahan (kelahiran, kematian,

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

Silabus dan Satuan Acara Perkuliahan

Silabus dan Satuan Acara Perkuliahan Fakultas Teknik No. Dokumen : FT SSAP-S3-10 Program Studi Teknik Elektro No. Revisi : 02 Silabus dan Satuan Acara Perkuliahan Tgl.Revisi :13-07-2006 Tgl. Berlaku :13-07-2006 KOMPUTASI NUMERIK DAN SIMBOLIK

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2 ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK-031248 /2 Ming gu Pokok Bahasan & TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajara n Media Tugas Referensi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Aryati dkk.(2003) menyatakan bahwa persamaan diferensial adalah formulasi matematis dari masalah di berbagai bidang kehidupan. Persamaan diferensial sering

Lebih terperinci

BAB Solusi Persamaan Fungsi Polinomial

BAB Solusi Persamaan Fungsi Polinomial BAB Konsep Dasar BAB Solusi Persamaan Fungsi Polinomial BAB Interpolasi dan Aproksimasi Polinomial. Norm Denisi.. (Norm vektor) Norm vektor adalah pemetaan dari suatu fungsi terhadap setiap x IR N yang

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP METODE NUMERIK Disusun oleh Ir. Sudiadi, M.M.A.E. Ir. Rizani Teguh, MT SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 2015 Metode Numerik i KATA PENGANTAR Pertama-tama penulis

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 117 124. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan BAB I PENDAHULUAN 1.1 Latar Belakang Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan secara numerik. Perhitungan secara analitik dilakukan untuk menyelesaikan integral pada fungsi

Lebih terperinci

BAB I ARTI PENTING ANALISIS NUMERIK

BAB I ARTI PENTING ANALISIS NUMERIK BAB I ARTI PENTING ANALISIS NUMERIK Pendahuluan Di dalam proses penyelesaian masalah yang berhubungan dengan bidang sains, teknik, ekonomi dan bidang lainnya, sebuah gejala fisis pertama-tama harus digambarkan

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG. Data merupakan elemen dasar yang harus ada dalam penggalian atau

BAB I PENDAHULUAN 1.1 LATAR BELAKANG. Data merupakan elemen dasar yang harus ada dalam penggalian atau BAB I PENDAHULUAN 1.1 LATAR BELAKANG Data merupakan elemen dasar yang harus ada dalam penggalian atau pembentukan suatu informasi. Penting atau tidaknya suatu informasi itu tergantung dari data yang membentuknya,

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

Oleh : Anna Nur Nazilah Chamim

Oleh : Anna Nur Nazilah Chamim Oleh : Anna Nur Nazilah Chamim 1. Silabus 2. Referensi 3. Kriteria Penilaian 4. Tata Tertib Perkuliahan 5. Pembentukan Kelompok 6. Materi 1 : pengantar Analisa Numerik Setelah mengikuti mata kuliah metode

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

MODEL LOGISTIK PENGARUH POHON TERHADAP POPULASI BURUNG

MODEL LOGISTIK PENGARUH POHON TERHADAP POPULASI BURUNG Bab 4 MODEL LOGISTIK PENGARUH POHON TERHADAP POPULASI BURUNG Seperti dijelaskan pada bagian awal, burung sebagai makhluk hidup memerlukan tempat tinggal. Pohon sebagai salah satu tempat alami yang dapat

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK Mata Kuliah: Metode Numerik Semester: 7, Kode: KMM 090 Program Studi: Pendidikan Matematika Dosen: Khairul Umam, S.Si, M.Sc.Ed Capaian Pembelajaran: SKS:

Lebih terperinci

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL Dra.Sri Rejeki Dwi Putranti, M.Kes. Fakultas Teknik - Universitaas Yos Soedarso Surabaya Email : riccayusticia@gmail.com Abstrak Hubungan antara Differensial dan

Lebih terperinci

INTERPOLASI POLINOM DENGAN METODE LAGRANGE DAN METODE REGRESI POLINOM UNTUK MEMREDIKSI PINJAMAN PADA KOPERASI SIMPAN PINJAM (KSP) CITRA MANDIRI

INTERPOLASI POLINOM DENGAN METODE LAGRANGE DAN METODE REGRESI POLINOM UNTUK MEMREDIKSI PINJAMAN PADA KOPERASI SIMPAN PINJAM (KSP) CITRA MANDIRI INTERPOLASI POLINOM DENGAN METODE LAGRANGE DAN METODE REGRESI POLINOM UNTUK MEMREDIKSI PINJAMAN PADA KOPERASI SIMPAN PINJAM (KSP) CITRA MANDIRI ARTIKEL SKRIPSI Diajukan Untuk Memenuhi Sabagian Syarat Guna

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 21 25 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

Oleh : Debrina Puspita Andriani, ST., M.Eng Teknik Industri Universitas Brawijaya

Oleh : Debrina Puspita Andriani, ST., M.Eng Teknik Industri Universitas Brawijaya 3 Oleh : Debrina Puspita Andriani, ST., M.Eng Teknik Industri Universitas Brawijaya e-mail : debrina@ub.ac.id www.debrina.lecture.ub.ac.id 1. Nilai Uang Dari Waktu 2. Perhitungan Bunga 1. Bunga Sederhana

Lebih terperinci

[ 1 1 PENDAHULUAN SCILAB. Modul Praktikum Metode Numerik. 1. Struktur Scilab

[ 1 1 PENDAHULUAN SCILAB. Modul Praktikum Metode Numerik. 1. Struktur Scilab PENDAHULUAN SCILAB 1. Struktur Scilab Program Scilab sudah memiliki text editor di dalamnya. Perintah/kode program Scilab dapat dituliskan di dalam window Scilab Execution (Scilex) ataupun di window Scipad

Lebih terperinci

PRAKTIKUM 13 PENYELESAIAN PERSAMAAN ALJABAR

PRAKTIKUM 13 PENYELESAIAN PERSAMAAN ALJABAR PRAKTIKUM 13 PENYELESAIAN PERSAMAAN ALJABAR Dalam bab ini kita akan menggunakan Matlab untuk menyelesaikan persamaan aljabar. Kita akan mulai dengan menyelesaikan persamaan sederhana (persamaan dengan

Lebih terperinci

Hendra Gunawan. 26 Februari 2014

Hendra Gunawan. 26 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan

Lebih terperinci

Gambar 4.1 Devaluasi suatu asset

Gambar 4.1 Devaluasi suatu asset B. Metode Biaya Tahunan Ekivalen Mengubah semua pembayaran dan pemeliharaan tanpa melihat perbedaan jumlah menjadi biaya-biaya tahunan yang seragam ekivalen. a. Perhitungan Secara Pendekatan Semua barang

Lebih terperinci

𝑥 Mempunyai Solusi 𝑥 R???

𝑥 Mempunyai Solusi 𝑥 R??? Mempunyai Solusi R??? ( )... ... m n m n m n a b... a b ... > >... ... ( ) ( ) > ( ) ( ). >...... > ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )... ( ) ( ) > >

Lebih terperinci

Mempunyai Solusi untuk Setiap x R???

Mempunyai Solusi untuk Setiap x R??? Mempunyai Solusi untuk Setiap R??? a a m m q q b b c c d e e h h j j k k m m q q y y f f n n y y g g p p z z. a a a a a {, } . ( ).......... ( ). ( ). ( ) ( ). ( ) ( )... ( )... ( ) ( ) ( ) a a a a

Lebih terperinci

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 672 Topik dalam Matematika Terapan Semester Ganjil 2016/2017 Pendahuluan Metode perturbasi

Lebih terperinci

Course Note Numerical Method : Interpolation

Course Note Numerical Method : Interpolation Course Note Numerical Method : Interpolation Pengantar Interpolasi. Kalimat y = f(x), xo x xn adalah kalimat yang mengkorespondensikan setiap nilai x di dalam interval x0 x xn dengan satu atau lebih nilai-nilai

Lebih terperinci

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Polinomial real berderajat n 0 adalah fungsi yang mempunyai bentuk p n (x) = n a i x i = a 0 x 0 + a

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal Bab 2 TEORI DASAR 2.1 Linearisasi Persamaan Air Dangkal Persamaan air dangkal merupakan persamaan untuk gelombang permukaan air yang dipengaruhi oleh kedalaman air tersebut. Kedalaman air dapat dikatakan

Lebih terperinci

Pendahuluan

Pendahuluan Pendahuluan Pendahuluan Numerik dengan Matlab KOMPUTASI NUMERIK dengan MATLAB Oleh : Ardi Pujiyanta Edisi Pertama Cetakan Pertama, 2007 Hak Cipta 2007 pada penulis, Hak Cipta dilindungi undang-undang.

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU

BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU Definisi: Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen x, suatu variabel dependen y, dan satu atau lebih turunan

Lebih terperinci

BAB III : SISTEM PERSAMAAN LINIER

BAB III : SISTEM PERSAMAAN LINIER 3.1 PENDAHULUAN BAB III : SISTEM PERSAMAAN LINIER Penyelesaian suatu sistem n persamaan dengan n bilangan tak diketahui banyak dijumpai dalam permasalahan teknik. Di dalam Bab ini akan dipelajari sistem

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : EKA PUTRI ARDIANTI

Lebih terperinci

PETUNJUK PRAKTIKUM METODE NUMERIK (MT318)

PETUNJUK PRAKTIKUM METODE NUMERIK (MT318) PETUNJUK PRAKTIKUM METODE NUMERIK (MT38) Oleh : Dewi Rachmatin, S.Si., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 9 Dewi Rachmatin PRAKTIKUM

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU

PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU Lilik Prasetiyo Pratama Jurusan Matematika, FMIPA UNS 1. LATAR BELAKANG

Lebih terperinci

BAB IV PENYELESAIAN PERSAMAAN DIFERENSIAL SECARA NUMERIK

BAB IV PENYELESAIAN PERSAMAAN DIFERENSIAL SECARA NUMERIK BAB IV PENYELESAIAN PERSAMAAN DIFERENSIAL SECARA NUMERIK 41 METODE EULER Pertimbangkan masalah menentukan nilai uang saat ini dan akan datang dengan menggunakan suku bunga misalkan pada saat $ didepositokan

Lebih terperinci

koefisien a n dan b n pada persamaan (36) dan (37), yaitu

koefisien a n dan b n pada persamaan (36) dan (37), yaitu 4 Metode Birge-Vieta Metode Birge-Vieta menggunakan kombinasi dari metode pembagian sintetik dan metode Newton-Raphson untuk memperoleh akar-akar polinomial Pollaczek. Prosedur pembagian sintetik dari

Lebih terperinci

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN LINIER NON HOMOGEN Contoh PD linier non homogen orde 2. Bentuk umum persamaan PD Linier Non Homogen Orde 2, adalah sebagai berikut : y + f(x) y + g(x) y = r(x) ( 2-35) Solusi umum y(x) akan didapatkan

Lebih terperinci

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci