Metode Numerik Newton
|
|
|
- Leony Yuwono
- 9 tahun lalu
- Tontonan:
Transkripsi
1 1. March 1, 2016
2 1. 1.
3 1. Berbeda dengan Metode numerik Golden Rasio dan Fibonacci yang tidak memerlukan f (x), metode numerik Newton memerlukan turunan dari fungsi f (x) tersebut.
4 1. Berbeda dengan Metode numerik Golden Rasio dan Fibonacci yang tidak memerlukan f (x), metode numerik Newton memerlukan turunan dari fungsi f (x) tersebut. Karakteristik Metode Newton Karakteristik metode numerik Newton ditandai oleh beberapa hal seperti:
5 1. Berbeda dengan Metode numerik Golden Rasio dan Fibonacci yang tidak memerlukan f (x), metode numerik Newton memerlukan turunan dari fungsi f (x) tersebut. Karakteristik Metode Newton Karakteristik metode numerik Newton ditandai oleh beberapa hal seperti: tidak memulai dengan selang a k dan b k
6 1. Berbeda dengan Metode numerik Golden Rasio dan Fibonacci yang tidak memerlukan f (x), metode numerik Newton memerlukan turunan dari fungsi f (x) tersebut. Karakteristik Metode Newton Karakteristik metode numerik Newton ditandai oleh beberapa hal seperti: tidak memulai dengan selang a k dan b k Mencari λ k+1, namun tidak mencari µ k+1
7 1. Berbeda dengan Metode numerik Golden Rasio dan Fibonacci yang tidak memerlukan f (x), metode numerik Newton memerlukan turunan dari fungsi f (x) tersebut. Karakteristik Metode Newton Karakteristik metode numerik Newton ditandai oleh beberapa hal seperti: tidak memulai dengan selang a k dan b k Mencari λ k+1, namun tidak mencari µ k+1 Konsekuensi dari tidak mencari µ k+1 adalah tidak mencari f (µ k+1 )
8 1. Algoritma Newton
9 1. Algoritma Newton tentukan nilai x awal (x 1 ) yang cukup dekat pada nilai solusi nilai x asli yang meminimumkan atau memaksimumkan f (x)
10 1. Algoritma Newton tentukan nilai x awal (x 1 ) yang cukup dekat pada nilai solusi nilai x asli yang meminimumkan atau memaksimumkan f (x) tentukan nilai f (x) dan f (x)
11 1. Algoritma Newton tentukan nilai x awal (x 1 ) yang cukup dekat pada nilai solusi nilai x asli yang meminimumkan atau memaksimumkan f (x) tentukan nilai f (x) dan f (x) tentukan x k+1 = x k f (x k ) f (x k )
12 1. Algoritma Newton tentukan nilai x awal (x 1 ) yang cukup dekat pada nilai solusi nilai x asli yang meminimumkan atau memaksimumkan f (x) tentukan nilai f (x) dan f (x) tentukan x k+1 = x k f (x k ) f (x k ) iterasi dilakukan terus sehingga diperoleh kekonvergenan barisan yang merupakan solusi asli dari permasalahan optimisasi tersebut.
13 1. Contoh Soal carilah titik x yang meminimumkan fungsi { 4x f (x) = 3 3x 4, x 0 4x 3 + 3x 4, x < 0
14 1. Contoh Soal carilah titik x yang meminimumkan fungsi { 4x f (x) = 3 3x 4, x 0 4x 3 + 3x 4, x < 0 solusi Ambil x 1 = 0.4 (Kenapa?) karena x 1 = 0.4 0, maka diambil fungsi f (x) = 4x 3 3x 4 (kenapa?) Dengan demikian f (x) = 12x 2 12x 3 dan f (x) = 24x 36x 2
15 1. lanjutan Dengan demikian f (0.4) = 1.152, f (0.4) = 3.84 dan x 2 = 0.1 0
16 1. lanjutan Dengan demikian f (0.4) = 1.152, f (0.4) = 3.84 dan x 2 = Dipilih f (x) = 4x 3 3x 4 (kenapa?)
17 1. lanjutan Dengan demikian f (0.4) = 1.152, f (0.4) = 3.84 dan x 2 = Dipilih f (x) = 4x 3 3x 4 (kenapa?) Dengan demikian f (0.1) = 0.108, f (0.1) = 2.04 dan x 3 =
18 1. lanjutan Dengan demikian f (0.4) = 1.152, f (0.4) = 3.84 dan x 2 = Dipilih f (x) = 4x 3 3x 4 (kenapa?) Dengan demikian f (0.1) = 0.108, f (0.1) = 2.04 dan x 3 = Dipilih f (x) = 4x 3 3x 4 (kenapa?)
19 1. lanjutan Dengan demikian f (0.4) = 1.152, f (0.4) = 3.84 dan x 2 = Dipilih f (x) = 4x 3 3x 4 (kenapa?) Dengan demikian f (0.1) = 0.108, f (0.1) = 2.04 dan x 3 = Dipilih f (x) = 4x 3 3x 4 (kenapa?) f (0.047) = , f (0.047) = dan x 4 = Iterasi dilakukan terus menerus sampai terlihat konvergensi nilai x k mendekati nilai x yang sesungguhnya
20 1. Perhitungan Iterasi disajikan dalam tabel dibawah ini Iterasi λ k f λ (k) f λ (k) λ k
21 1. Perhitungan Iterasi disajikan dalam tabel dibawah ini Iterasi λ k f λ (k) f λ (k) λ k Terlihat bahwa nilai λ k konvergen ke nilai 0, dengan demikian nila asli x yang meminimumkan f (x) pada soal ini adalah x = 0
22 1. Tugas Minggu Depan Bagimana jika diberikan fungsi { 4x f (x) = 3 + 3x 4, x 0 4x 3 3x 4, x < 0 Selesaikan dengan Metode Newton Dikumpul minggu depan dalam wujud Latex Beamer
METODE NUMERIK BISEKSI
February 24, 2016 Metode Biseksi 1. Metode Biseksi 1 1. Metode Biseksi 2 Metode Biseksi Metode Biseksi memberikan alternatif perhitungan numerik menentukan x yang meminimumkan atau memaksimumkan suatu
Metode Numerik Dichotomus
Algoritma Prodi S1 Pendidikan Matematika UMT April 4, 016 Algoritma Algoritma Algoritma adalah salah satu metode numerik yang dapat digunakan untuk menentukan nilai x yang meminimumkan suatu fungsi dari
METODE NUMERIK SECANT
Prodi S1 Pendidikan Matematika UMT FKIP UMT April 4, 2016 Metode Numerik Secant Metode Numerik Secant Metode Numerik Secant Metode numerik Secant merupakan turunan dari metode Newton dan digunakan untuk
SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016
Halaman 1/4 SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016 KODE DOSEN NAMA DOSEN KODE MATA KULIAH NAMA MATA KULIAH SEMESTER/KELAS F 220 MAT RUKMONO BUDI UTOMO, M.Sc. MKP010 METODE NUMERIK VI/A1,A2,B1,B2
METODE STEEPEST DESCENT
METODE STEEPEST DESCENT Dosen Pengampu: Rukmono Budi Utomo M.Sc. Disusun Oleh : Linna Tri Lestari 6A1 1384202140 Diajukan sebagai tugas Ujian Akhir Semester UAS Metode Numerik UNIVERSITAS MUHAMMADIYAH
Metode Numerik Roosenberg
Metode Numerik Roosenberg Rukmono Budi Utomo, M.Sc. Prodi S1 Pendikan Matematika UMT email: [email protected] May 4, 2016 Metode Numerik Roosenberg Metode Numerik Roosenberg Algoritma Roosenberg
Metode Numerik Arah Konjugasi
Contoh Penyelesaian Masalah Optimisasi dengan Metode Numerik Rukmono Budi Utomo, M.Sc. Prodi S1 Pendikan Matematika UMT email: [email protected] May 2, 2016 Contoh Penyelesaian Masalah
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan
BAB I PENDAHULUAN. adalah optimasi digunakan untuk memaksimalkan keuntungan yang akan diraih
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam kehidupan sehari-hari, baik disadari maupun tidak disadari, manusia sebenarnya telah melakukan upaya optimasi untuk memenuhi kebutuhan hidupnya. Akan
Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar
Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Danang Tri Massandy (13508051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
METODE NUMERIK ARAH KONJUGASI
METODE NUMERIK ARAH KONJUGASI 14 Mei 2016 Diajukan untuk Memenuh Tugas Ujian Akhir Semester Mata kuliah Metode Numerik Dosen Pengampu Bapak Rukmono Budi Utomo,M.Sc Nur Aliyah 1384202043 6A1 Fakultas Keguruan
METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR
METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari
METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1
METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen Mulai dengan terkaan awal yang mengurung atau memuat akar
METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1
METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen
METODE NUMERIK ROSENBERG
METODE NUMERIK ROSENBERG Mata Kuliah : Metode Numerik Dosen Pengampu : Rukmono Budi Utomo, M.Sc Disusun Oleh : Rizka Apriyanti 6 A1 13840080 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU
ARAH KONJUGAT. dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni Dadang Supriadi A2
ARAH KONJUGAT dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni 2016 Dadang Supriadi 1384202098 6A2 UNIVERSITAS MUHAMMADIYAH TANGERANG FAKULTAS KEGURUAN ILMU
Bab IV Simulasi dan Pembahasan
Bab IV Simulasi dan Pembahasan IV.1 Gambaran Umum Simulasi Untuk menganalisis program pemodelan network flow analysis yang telah dirancang maka perlu dilakukan simulasi program tersebut. Dalam penelitian
MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.
KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem
BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat
1 BAB I PENDAHULUAN 1.1 Latar Belakang Sistem persamaan dapat dipandang F(x) = 0 [5], merupakan kumpulan dari beberapa persamaan nonlinear dengan fungsi tujuannya saja atau bersama fungsi kendala berbentuk
Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010
Bagi Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 20 Rumusan Masalah Bagi Tentukan solusi dengan f fungsi nonlinear.
PEMILIHAN RUTE PERJALANAN
Jurusan Teknik Sipil dan Lingkungan, Universitas Gadjah Mada Pertemuan Ke 9 dan 10 PEMILIHAN RUTE PERJALANAN Mata Kuliah: Pengantar Perencanaan Transportasi Dr.Eng. Muhammad Zudhy Irawan, S.T., M.T. PENDAHULUAN
BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut:
BAB 2 KAJIAN PUSTAKA 2.1 Masalah Optimisasi dan Program Non Linier Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut: 1. Masalah optimisasi tanpa kendala.
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan
OLEH : Riana Ekawati ( ) Dosen Pembimbing : Dra. Farida Agustini W, M.S
OLEH : Riana Ekawati (1205 100 014) Dosen Pembimbing : Dra. Farida Agustini W, M.S Salah satu bagian penting dari statistika inferensia adalah estimasi titik. Estimasi titik mendasari terbentuknya inferensi
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini semakin banyak permasalahan pada kehidupan sehari-hari yang memerlukan pendekatan optimisasi dalam penyelesaiannya. Sebagai contoh, misalkan sebuah perusahaan
Pertemuan I Mencari Akar dari Fungsi Transendental
Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson
III RELAKSASI LAGRANGE
III RELAKSASI LAGRANGE Relaksasi Lagrange merupakan salah satu metode yang terus dikembangkan dalam aplikasi pemrograman matematik. Sebagian besar konsep teoretis dari banyak aplikasi menggunakan metode
POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi
Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Tidak semua permasalahan matematis atau perhitungan dapat diselesaikan dengan mudah. Bahkan dalam prinsip matematik, dalam memandang permasalahan, terlebih dahulu
FILSAFAT SAINS Golden Rasio
FILSAFAT SAINS Golden Rasio February 25, 2016 Barisan Fibonacci 1 1. Barisan Fibonacci 2 3 Barisan Fibonacci Sejarah Penemuan Rasio Emas oleh Matematikawan asal Italia, yakni Fibonacci berawal dari pengamatan
PENURUNAN FUNGSI SECARA NUMERIK
6 PENURUNAN FUNGSI SECARA NUMERIK Èada bab ini kita membicarakan metode numerik untuk menaksir nilai turunan suatu fungsi. Suatu fungsi, baik diketahui rumusnya secara eksplisit maupun dalam bentuk data
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan
OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON
OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON Susi Ranangga [M008067], Aeroni Dwijayanti [M008078] Hamdani Citra P. [M0003], Nafi Nur Khasana [M00058]. Pendahuluan Dalam kehidupan sehari-hari
BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya.
BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan
BAB I PENDAHULUAN 1.1. Latar Belakang dan Rumusan Masalah
1 BAB I PENDAHULUAN Pada bagian ini akan dijelaskan latar belakang dan rumusan masalah, tujuan dan manfaat penelitian, tinjauan pustaka, metode penelitian, serta sistematika penulisan. 1.1. Latar Belakang
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada suatu eksperimen atau pengamatan terhadap suatu keadaan, pengambilan data merupakan salah satu bagian terpenting, agar hasil dari eksperimen dapat lebih
Persamaan yang kompleks, solusinya susah dicari. Contoh :
AKAR PERSAMAAN NON LINEAR Persamaan hingga derajat dua, masih mudah diselesaikan dengan cara analitik. Contoh : a + b + c = 0 Solusi : 1 = b ± b 4 ac a Persamaan yang kompleks, solusinya susah dicari.
Pemrograman Linier (4)
Pemrograman Linier (4) Metode dua fase Ahmad Sabri Universitas Gunadarma, Indonesia Sesuai dengan namanya, metode dua fase menyelesaikan problem PL dalam dua tahap (fase): 1 Ubah model PL ke dalam bentuk
Pada barisan bilangan 2, 7, 12, 17,., b = 7 2 = 12 7 = = 5. Pada barisan bilangan 3, 7, 11, 15,., b = 7 3 = 11 7 = = 4
Materi : Barisan Bilangan Perhatikan urutan bilangan-bilangan berikut ini a. 1, 5, 9, 13,. b. 15, 1, 9, 6,. c., 6, 18, 54,. d. 3, 16, 8, 4,. Tiap-tiap urutan di atas mempunyai aturan/pola tertentu, misalnya
Ilustrasi Persoalan Matematika
Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti
TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu
II. TINJAUAN PUSTAKA. Distribusi Weibull Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu hidup dalam tekhnik ketahanan. Distribusi ini adalah distribusi serbaguna yang dapat
Menemukan Akar-akar Persamaan Non-Linear
Menemukan Akar-akar Persamaan Non-Linear Muhtadin, ST. MT. Agenda Metode Tertutup Biseksi Regula Falsi Metode Terbuka Newton Method 3 Solusi untuk Persamaan Non Linear Akar-akar dari persamaan (y = f())
LANDASAN TEORI. Pada Bab ini akan diberikan istilah-istilah, definisi-definisi dan identitas-identitas
II. LANDASAN TEORI Pada Bab ini akan diberikan istilah-istilah, definisi-definisi dan identitas-identitas dari Bilangan Fibonacci, Bilangan Lucas dan Bilangan Gibonaccci. 2.1 Bilangan Fibonacci dan Beberapa
IMPLEMENTASI ALGORITMA PEMROGRAMAN LINIER SIMPLEKS DUA FASE MENGGUNAKAN BAHASA C++
IMPLEMENTASI ALGORITMA PEMROGRAMAN LINIER SIMPLEKS DUA FASE MENGGUNAKAN BAHASA C++ Nama : Adityo Rancaka NPM : 50412263 Jurusan : Teknik Informatika Fakultas : Teknologi Industri Universitas Gunadarma
PERENCANAAN DAN PEMODELAN TRANSPORTSI
Materi Kuliah PERENCANAAN DAN PEMODELAN TRANSPORTSI --- PEMILIHAN RUTE PERJALANAN --- PENDAHULUAN Setiap pelaku perjalanan mencoba mencari rute terbaik yang meminimumkan biaya perjalanannya. Dari beberapa
TEORI PERMAINAN. Digunakan jika permainan stabil ada titik saddle (saddle point) Titik sadel minimaks = maksimin Contoh :
TEORI PERMAINAN Aplikasi Teori Permainan Lawan pemain (punya intelegensi yang sama) Setiap pemain mempunyai beberapa strategi untuk saling mengalahkan Two-Person Zero-Sum Game Permainan dengan pemain dengan
BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi
BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva
LANDASAN TEORI. disebut dengan suku-suku. Perubahan antara suku-suku berurutan ditentukan oleh
II. LANDASAN TEORI Barisan adalah suatu susunan bilangan yang dibentuk menurut suatu urutan tertentu. Nilai-nilai dari suatu fungsi yang daerah asalnya himpunan bilangan asli disebut dengan suku-suku.
PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024
UNIVERSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA Bahan Ajar 3: Struktur Dasar Algoritma (Minggu ke-4) PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 Oleh Dr. Fahrudin Nugroho Didanai dengan
2 Akar Persamaan NonLinear
2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Sistem persamaan linear yang terdiri dari n persamaan dengan n variabel x 1, x 2,..., x n
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
METODE TITIK-INTERIOR PADA PEMROGRAMAN KUADRATIK KONVEKS Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh: Fenny Basuki NIM: 831143 PROGRAM
Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta
DESAIN OPTIMASI UNGSI TAK LINIER MENGGUNAKAN METODE PENYELIDIKAN IBONACCI Yemi Kuswardi Nurul Muhayat Abstract: optimum design is an action to design the best product based on the problem. Theoretically,
METODE SIMPLEKS KASUS MEMAKSIMUMKAN
TUGAS KELOMPOK RISET OPERASI METODE SIMPLEKS KASUS MEMAKSIMUMKAN KELOMPOK RINI ANGGRAINI S (H ) NURUL MUTHIAH (H 5) RAINA DIAH GRAHANI (H 68) FATIMAH ASHARA (H 78) PRODI STATISTIKA JURUSAN MATEMATIKA FAKULTAS
ANALISIS MAKSIMALISASI KEUNTUNGAN PADA PABRIK TAHU BANDUNG DENGAN PENDEKATAN METODE SIMPLEKS. Rully Nourmalisa N
ANALISIS MAKSIMALISASI KEUNTUNGAN PADA PABRIK TAHU BANDUNG DENGAN PENDEKATAN METODE SIMPLEKS Rully Nourmalisa N. 28213130 Latar Belakang Setiap perusahaan dibangun dan didirikan mempunyai tujuan untuk
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sistem kejadian dinamik diskrit (discrete-event dynamic system) merupakan sistem yang keadaannya berubah hanya pada titik waktu diskrit untuk menanggapi terjadinya
ALGORITMA METODE SIMPLEKS (PRIMAL)
ALGORITMA METODE SIMPLEKS (PRIMAL) Artificial Variable Algoritma Simpleks Metode M (Method of penalty) Metode dua fase Tabel Simpleks dalam bentuk matriks Artificial Variable (AV) Apabila terdapat satu
ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON
ITERASI TITIK SEDERHANA METODE NEWTON RAPHSON Metode iterasi sederhana adalah metode yang memisahkan dengan sebagian yang lain sehingga diperoleh : g(. dikenal juga sebagai metode g( Bentuk iterasi satu
Bab I Pendahuluan I.1 Latar Belakang
Bab I Pendahuluan I.1 Latar Belakang Air adalah karunia Allah SWT yang secara alami ada di seluruh muka bumi. Makhluk hidup, termasuk manusia sangat tergantung terhadap air. Untuk kelangsungan hidupnya,
ESTIMASI INTERVAL KEPERCAYAAN (CONFIDENCE INTERVAL) PARAMETER MODEL PROSES GEOMETRIK WEIBULL PADA ANALISIS UJI HIDUP UNTUK DATA TERSENSOR TIPE II
ESTIMASI INTERVAL KEPERCAYAAN (CONFIDENCE INTERVAL) PARAMETER MODEL PROSES GEOMETRIK WEIBULL PADA ANALISIS UJI HIDUP UNTUK DATA TERSENSOR TIPE II Asep Solih A 1* Rini Cahyandari 2 Tarkinih 3 123 Program
PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW
PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Polinomial real berderajat n 0 adalah fungsi yang mempunyai bentuk p n (x) = n a i x i = a 0 x 0 + a
Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f
METODE NEWTON RAPHSON (1) METODE NEWTON RAPHSON Solusi Persamaan Non Linier Oleh : Metode Newton-Raphson merupakan salah satu metode terbuka untuk menentukan solusi akar dari persamaan non linier, dengan
Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Materi Bahasan
Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Kuliah 04 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Metode simpleks dalam bentuk tabel 2 Pemecahan untuk masalah minimisasi
Pertemuan ke-4 Persamaan Non-Linier: Metode Secant
Analisa Terapan: Metode Numerik Pertemuan ke- Persamaan Non-Linier: Metode Secant Oktober Department o Civil Engineering Metode Secant Dasar ( Dalam Metode Newton (i i i - ( + ( i [ ( i i, ( i ] Turunan
kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi
Lecture 4: (B) Supaya terdapat penyelesaian basis awal yang fisibel, pada kendala berbentuk = dan perlu ditambahkan variabel semu (artificial variable) pada ruas kiri bentuk standarnya, untuk siap ke tabel
1) Untuk menentukan ketepatan (accuracy) hasil penghitungan numerik. 2) Untuk membuat kriteria stop pada
Analisa Terapan: Metode Numerik Pertemuan ke-1 Pengukuran Kesalahan (Measuring Error) 13 September 2012 Department of Civil Engineering 1 Mengapa mengukur kesalahan? 1) Untuk menentukan ketepatan (accuracy)
Penaksiran Parameter Model Kalibrasi Linier yang Berdistribusi Skew-Normal dengan Algoritma-EM
Vol. 12, No. 1, 36-47, Juli 2015 Penaksiran Parameter Model Kalibrasi Linier yang Berdistribusi Skew-Normal dengan Algoritma-EM Try Widyaiswara Hairil 1, Anna Islamiyati 1, Raupong 1 Abstrak Sebuah penelitian
APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS
Jurnal UJMC, Volume, Nomor, Hal 36-40 pissn : 460-3333 eissn : 579-907X APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Novita Eka Chandra dan Wiwin Kusniati Universitas
Optimasi. Bab Metoda Simplex. Djoko Luknanto Staf Pengajar Jurusan Teknik Sipil FT UGM
Optimasi Bab Metoda Simplex Djoko Luknanto Staf Pengajar Jurusan Teknik Sipil FT UGM Masalah Awal x 1 = 0 E(0,9) G(4,6) Maksimumkan Z = 3x 1 + 5x 2 dengan kendala x 1 4 2x 2 12 3x 1 + 2x 2 18 dan x 1 0,
Optimasi. Masalah Awal. Definisi 2. Contoh. Solusi Titik Sudut Feasible. Bab Metoda Simplex
Masalah Awal Optimasi Bab Metoda Simplex Djoko Luknanto Staf Pengajar Jurusan Teknik Sipil FT UGM E(0,9) G(4,6) E(4,0) F(6,0) Maksimumkan dengan kendala x 1 4 2x 2 12 3x 1 + 2x 2 18 dan x 1 0, x 2 0 24/08/2003
MINGGU KE-9 MACAM-MACAM KONVERGENSI
MINGGU KE-9 MACAM-MACAM KONVERGENSI Kita telah mengetahui bahwa untuk n besar dan θ kecil sedemikian hingga nθ = λ, distribusi binomial bisa dihampiri oleh distribusi Poisson. Mencari hampiran distribusi
Discrete Time Dynamical Systems
Discrete Time Dynamical Systems Sheet 1 and Solution (1) Tentukan titik tetap dari fungsi berikut. (a) f(x) = x x (b) f(x) = 2x + bx (c) f(x) = e (a) Titik tetap f memenuhi persamaan f(x) = x x x = x x
RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK
RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK Mata Kuliah: Metode Numerik Semester: 7, Kode: KMM 090 Program Studi: Pendidikan Matematika Dosen: Khairul Umam, S.Si, M.Sc.Ed Capaian Pembelajaran: SKS:
MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT
MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan
Bab 4 SOLUSI PENGAMBILAN KEPUTUSAN. 4.1 Masalah Pengambilan Keputusan Markov dengan Pendekatan Program Linier
Bab 4 SOLUSI PENGAMBILAN KEPUTUSAN Pada bab ini akan dibahas mengenai masalah pengambilan keputusan Markov pada pengelolaan mata kuliah MA1122 Kalkulus I dengan pendekatan program linier, solusi dari masalah
LANDASAN TEORI. linear (intrisnsically linear) dan nonlinear secara intrinsik nonliear (intrinsically
II. LANDASAN TEORI 2.1 Model Nonlinear Model nonlinear merupakan bentuk hubungan antara peubah respon dengan peubah penjelas yang tidak linear dalam parameter. Secara umum model nonlinear ditulis sebagai
METODE STEEPEST DESCENT
METODE STEEPEST DESCENT DENGAN UKURAN LANGKAH BARU UNTUK PENGOPTIMUMAN NIRKENDALA D. WUNGGULI 1, B. P. SILALAHI 2, S. GURITMAN 3 Abstrak Metode steepest descent adalah metode gradien sederhana untuk pengoptimuman.
PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier
PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan
METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya
METODE NUMERIK AKAR-AKAR PERSAMAAN Eka Maulana Dept. of Electrcal Engineering University of Brawijaya Pendekatan Pencarian Akar-akar Persamaan Metode Pencarian Akar Persamaan > Metode Pengurung - metode
Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi
42 ISSN 2302-7290 Vol. 2 No. 2, April 2014 Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi Global Convergence of the New Spectral Conjugate
II. LANDASAN TEORI. sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah
II. LANDASAN TEORI Peubah acak X(s) merupakan sebuah fungsi X yang menetapkan setiap anggota sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah peubah acak diskrit, yaitu banyaknya
Persamaan Non Linier
Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode
Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011
(Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Zaman yang semakin berkembang membuat persoalan semakin kompleks, tidak terkecuali persoalan yang melibatkan persoalan matematika. Dalam pemecahannya, matematika memegang
BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan
BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,
Riset Operasional LINEAR PROGRAMMING
Bahan Kuliah Riset Operasional LINEAR PROGRAMMING Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 25 1 ANALISA SISTEM Agar lebih mendekati langkah-langkah operasional, Hall & Dracup
METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT
METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neng Ipa Patimatuzzaroh Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan
Ujian Tengah Semester
Ujian Tengah Semester Mata Kuliah : PAM 252 Metode Numerik Jurusan : Matematika FMIPA Unand Hari/Tanggal : Selasa/31 Maret 2015 Waktu : 10.00 11.40 (100 menit) Dosen : Dr. Susila Bahri (Kelas A dan C)
BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear
BAB III PEMBAHASAN Pada bab ini akan dijelaskan tentang konsep dasar metode kuadrat terkecil yang digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear dan langkah-langkah penyelesaiannya
DAFTAR ISI. BAB II DASAR TEORI Himpunan Fuzzy Bilangan Fuzzy Masalah Transportasi Program Linear Multiobjective..
DAFTAR ISI HALAMAN JUDUL..... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN.. iii HALAMAN PERSEMBAHAN... iv KATA PENGANTAR... v DAFTAR ISI. vii DAFTAR LAMBANG DAN SINGKATAN... ix DAFTAR TABEL. x DAFTAR
... Difference equation dapat diselesaikan menggunakan proses iterasi. Didefinisikan fungsi
LECTURE 1: EXAMPLE OF DYNAMICAL SYSTEM A. An Example from Finance Misalkan kita mendeposito uang $1000 di sebuah bank dengan bunga 10% setiap tahun. Diasumsikan bunga 10% ditambahkan pada setiap akhir
OPTIMISASI KONVEKS: Konsep-konsep
OPTIMISASI KONVEKS: Konsep-konsep Caturiyati, M.Si 1 dan Himmawati Puji Lestari, M.Si 2 1,2 Jurdik Matematika FMIPA UNY 1 [email protected] 2 [email protected] Abstrak Pada masalah optimisasi konveks
BahanKuliahKe-3 Penelitian Operasional VARIABEL ARTIFISIAL. (Metode Penalty & Teknik Dua Fase) Oleh: Darmansyah Tjitradi, MT.
BahanKuliahKe-3 Penelitian Operasional VARIABEL ARTIFISIAL (Metode Penalty & Teknik Dua Fase) Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 2006 1 TEKNIK VARIABEL ARTIFISIAL Dalam
Bab 2. Penyelesaian Persamaan Non Linier
Bab 2. Penyelesaian Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier penentuan
Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap
BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif
BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang
BAB II KAJIAN TEORI BAB II KAJIAN TEORI A. Analisis Survival Analisis survival atau analisis ketahanan hidup adalah metode yang berhubungan dengan jangka waktu, dari awal pengamatan sampai suatu kejadian
