METODE NUMERIK ARAH KONJUGASI

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE NUMERIK ARAH KONJUGASI"

Transkripsi

1 METODE NUMERIK ARAH KONJUGASI 14 Mei 2016 Diajukan untuk Memenuh Tugas Ujian Akhir Semester Mata kuliah Metode Numerik Dosen Pengampu Bapak Rukmono Budi Utomo,M.Sc Nur Aliyah A1 Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Tangerang

2 KATA PENGANTAR Puji syukur kita panjatkan kehadirat Allah SWT karena atas limpahan rahmat serta petunjuk-nya, maka pembuatan Makalah Metode Numerik tentang Arah Konjugasi ini bisa terselesaikan dengan ketentuan waktu yang diberikan. Disamping itu juga, saya selaku penulis mengucapkan terima kasih kepada Bapak Rukmono Budi Utomo,M.Sc selaku pembimbing kami serta teman-teman yang berpartisipasi dan memberikan dorongan sehingga makalah ini bisa selesai. Saya selaku penulis menyadari bahwa makalah ini masih banyak kekurangannya atau belum sesuai dengan apa yang kita inginkan bersama, namun saya sudah berusaha semaksimal mungkin agar makalah ini bisa terselaikan. Untuk itu, dengan masih banyaknya kekurangan terhadap isi makalah ini, saya dari penulis atau penyusun makalah ini sangat mengharapakan saran dan kritikan yang besifat membangun untuk penyempurnaan makalah ini agar bisa sesuai keinginan kita bersama dan dapat bermanfaat untuk kita semua serta bisa dijadikan sebagai pedoman untuk kedepannya. Tangerang, 14 Mei 2016 Penulis 2

3 DAFTAR ISI Kata Pengantar... 2 Daftar Isi... 3 BAB I PENDAHULUAN Latar Belakang Rumusan Masalah Tujuan... 5 BAB II PEMBAHASAN Pengertian Metode Arah Konjugasi Algoritma Arah Konjugasi Contoh Soal Menggunakan Metode Analitik BAB III PENUTUP Kesimpulan Saran DAFTAR PUSTAKA

4 BAB I PENDAHULUAN 1 Latar Belakang Dalam sejarah perkembangan ilmu pengetahuan dan teknologi, matematika memegang peranan yang sangat penting untuk memecahkan berbagai permasalahan secara kuantitatif. Optimasi sebagai salah satu cabang dalam matematika sering digunakan sebagai acuan untuk menyelesaikan permasalahan-permasalahan di bidang ekonomi, teknik, dan lainnya. Dengan optimasi maka permasalahanpermasalahan yang ada dapat di prediksi dan dicari permasalahannya yang optimal. Secara umum optimasi dikategorikan menjadi 2 bagian, yaitu optimasi dengan kendala dan optimasi tanpa kendala. Optimasi dengan kendala adalah penyelesaian permasalahan untuk mendapatkan penyelesaian yang optimal dengan memperhatikan faktor-faktor pembatas yang harus dipenuhi, melalui tahapantahapan perhitungan tertentu. Sedangkan optimasi tanpa kendala adalah penyelesaian masalah tanpa adanya faktor pembatas yang mempengaruhi proses perhitungan sampai penyelesaian optimal tercapai. Penyelesaian optimal dapat diartikan sebagai penyelesaian yang minimal maupun penyelesaian yang maksimal. Pada prinsipnya mencari nilai maksimal suatu fungsi f(x) sama artinya dengan mencari nilai maksimal dari negatif fungsi f(x). Pada makalah ini akan dibahas permasalahan optimasi tanpa kendala (untuk kasus dengan kendala diubah menjadi permasalahan tanpa kendala), dan untuk kasus meminimalkan serta fungsinya merupakan fungsi konveks. Dalam meminimalkan fungsi nonlinier multivariable f(x) tanpa kendala yaitu dengan mencari vektor x (x 1, x 2,..., x n ) sehingga fungsi f(x) minimal. Apabila penyelesaiannya dapat di usahakan secara analitik tentu akan mempermudah memperoleh penyelesaiannya yang optimal, karena penyelesaian eksaknya didapatkan. Tetapi untuk berbagai persoalan hal ini tidak selalu mudah dilakukan sehingga perlu diupayakan penyelesaian secara numerik yang mendekati penyelesaian eksak. Ada beberapa pendekatan secara numerik untuk mencari nilai minimum suatu fungsi nonlinier multivariable f(x). Pada makalah ini akan dibahas pendekatan secara numerik menggunakan metode arah konjugasi. Metode arah konjugasi merupakan metode untuk meminimumkan atau memaksimumkan suatu fungsi. Untuk mendapatkan kekonvergenan yang lebih cepat, maka selain menggunakan arah penurunan tercuram juga menggunakan arah yang saling konjugat. Metode arah konjugasi menggunakan arah pencarian yang saling ortogonal serta selalu diperbaharui pada setiap langkah iterasi, sehingga pada setiap iterasi akan bergerak maju menuju penyelesaian yang optimal. 4

5 Sebagian besar pembahasan melibatkan operasi vektor dalam bentuk matriks sehingga diasumsikan operasi matriks yang meliputi jumlah dua matriks, hasil kali matriks dengan suatu skalar dan perkalian dua matriks terdefinisi. 2 Rumusan Masalah Apa yang dimaksud dengan metode numerik arah konjugasi? Bagaimana algoritma dalam arah konjugasi? Bagaimana cara menyelesaikan persoalan numerik dengan menggunakan arah konjugasi? Bagaimana cara menyelesaikan persoalan numerik dengan analitik dalam menggunakan arah konjugasi? 3 Tujuan Untuk menambah pengetahuan mengenai berbagai metode yang dapat digunakan dalam persoalan numerik Dapat melatih mahasiswa dalam menganalisis permasalahan-permasalahan numerik Untuk menyelesaikan tugas pengganti UAS pada mata kuliah metode numerik 5

6 BAB I PEMBAHASAN 4 Pengertian Metode Arah Konjugasi Metode Numerik Arah Konjugasi Merupakan salah satu metode numerik yang digunakan untuk menyelesaikan masalah optimisasi. Dan langkah-langkah dalam menyelesaikan masalah optmisasi tersebut berbeda dengan metode numerik lainnya, yaitu Diberikan ZF (x 1,x 2 ),kemudian menentukan nilai X (x 1,x 2 ) R 2 yang meminimalkan atau memaksimalkan ZF {X} atau ZF (x 1,x 2 ) Kemudian Metode Arah Konjugasi lebih baik dari pada metode Steepest Descent, tetapi tidak juga dengan metode Newton. Seperti yang dilihat dari metode Steepest Descent dan metode Newton, faktor penting dalam efisiensi suatu metode pencarian berulang adalah arah pencarian pada setiap iterasi.untuk fungsi kuadrat n variabel f(x) 1 2 xt Qx x T b, x R n, Q Q T > 0, Arah pencarian terbaik disebut dengan arah Q-Konjugat. Pada dasarnya dua arah d (1) dan d (2) di R n dikatakan Q- Konjugat jika d (1)T Qd (2) 0 Metode arah konjugasi dapat dilihat sebagai penengah antara metode Steepest Descent dan metode Newton. Metode Arah konjugasi memiliki sifat sebagai berikut. Memecahkan persamaan kuadrat dari n variabel dalam n langkah Dalam algoritma arah konjugasi, memerlukan matriks Hessian Tidak ada matriks invers dan tidak ada penyimpanan n x n matriks diperlukan 5 Algoritma Arah konjugasi Diberikan fungsi ZF (x 1,x 2 ), kemudianakan ditentukan nilai X (x 1,x 2 ) yang akan meminimalkan atau memaksimumkan nilai ZF (x 1,x 2 ) Kemudian ambil Sembarang titik awal X 1 (x 1,x 2 ) R 2 Kemudaian Bentuk Matriks Hessian yakni [ H z x 2 1 z x 2 x 1 z x 1 x 2 z x 2 2 ] 6

7 dengan 2 f x f x 1 x 2 2 f x 1 x 2 2 f x 2 x 1 [ ] f x 1 x 1 [ ] f x 1 x 2 [ ] f x 2 x 1 Kemudian tetapkan arah pencarian [ ] [ 1 a d 1, d 0 2 b ] kemudian dengan d 2 d 1 T Hd 2 dan d 2 0 lalu lakukan untuk d k T 1 Hd k atau d k+1 d k T Hd k+1 Dengan d k T Transpos d k Contoh : d k a 1 a 2. a n [ ] ; dt k a 1 a 2. a n kemudian tentukan λ k min Z (X k + λ k d k ) dan X k+1 X k + λ k d k Iterasi berhenti ketika norm Xk X k 1 < ε, ε > 0 sembarang konstanta. Contoh : 6 Contoh Soal ( a 1, b 1 ) (a 2, b 2 ) (a 1, a 2 ) 2 (b 1 b 2 ) 2 Diberikan suatu fungsi f(x) 3x x x 1 x 2-6x 1-8x dengan titik awal X 1 (1,1) dan ε 0, 01. Dengan menggunakan metode Arah Konjugasi, tentukan pembuat minimum fungsi tersebut. Penyelesaian Iterasi 1 Diketahui f(x) 3x x x 1 x 2-6x 1-8x Ambil sembarang titik awal X 1 (x 1,x 2 ) R 2 yaitu X 1 (1,1) dengan toleransi kesalahan ε 0, 01 7

8 Kemudian dibentuk matriks Hessian [ H z x 2 1 z x 2 x 1 H [ z x 1 x 2 z x 2 2 ] ] Kemudian Tentukan arah pencarian pada d 1 dan d 2, sebagai berikut [ ] a 1 d 1, d 0 2 b d 2 d T 1.H.d 2 [ 1 0 ] [ 6 4 ] [ a b 6a + 4b 0 6a 4b 3a 2b ] 0 [ a b Ambil a2 dan b-3 dengan demikian diperoleh [ ] 2 d 2 3 ] Kemudian hitung λ 1 min Z (X 1 + λ 1 d 1 ) sebagai berikut: λ 1 min Z(x 1 + λ 1 d 1 ) λ 1 min Z((1, 1) + λ 1 (1, 0)) λ 1 min Z((1, 1) + (λ 1, 0) λ 1 min Z(λ 1 + 1, 1) 8

9 Subtitusikan Z(λ 1 + 1,1) pada persamaan awal, sehingga menjadi : Z(λ 1 + 1, 1) 3x x x 1 x 2 6x 1 8x (λ 1 + 1) 2 + 2(1) 2 + 4(λ 1 + 1)(1) 6(λ 1 + 1) 8(1) + 6 3(λ λ 1 + 1) (λ 1 + 1) 6λ λ λ λ λ λ λ Carilah turunan dari persamaan yang diperoleh dan samadenganka nol, agar diperoleh λ 1 dz dλ 1 6λ λ 1 4 λ Telah diperoleh λ maka akan dicari nilai X 2 Diperoleh X 2 X 1 + λ 1 d 1 ( 1, 1 ) + ( 2 3 ) ( 1, 0 ) ( 1, 1 ) + ( 2 3, 0 ) ( 1 3, 1 ) X 2 ( ) 1 3, 1 Kemudian di subtitusikan, sebagai beriku : X 2 X 1 ( 1 3, 1) (1, 1) ( 1 3 1) 2 + (1 1) 2 ( ) , 67 9

10 Iterasi Dilanjutkan karena Iterasi 2 0, 67 > ε 0, 67 > 0, 01 Diketahui : X 2 ( ) 1 3, 1 Kemudian hitung λ 2 min Z (X 2 + λ 2 d 2 ) sebagai berikut: λ 2 min Z(X 2 + λ 2 d 2 ) λ 2 min Z((1/3, 1) + λ 2 (2, 3)) λ 2 min Z((1/3, 1) + (2λ 2, 3λ 2 ) λ 2 min Z(2λ 2 + 1/3, 1 3λ 2 ) Subtitusikan Z(2λ 2 +1/3,1 3λ 2 ) pada persamaan awal, sehingga menjadi: Z ( 2λ 2 + 1/3, 1 3λ 2 ) 3x x x 1 x 2 6x 1 8x (2λ 2 + 1/3) 2 + 2(1 3λ 2 ) 2 + 4(2λ 2 + 1/3)(1 3λ 2 ) 6(2λ 2 + 1/3) 8(1 3λ 2 ) + 6 3(4λ /3λ 2 + 1/9) + 2(1 6λ 2 + 9λ 2 2 ) + 4(2λ 2 6λ /3 λ 2 ) 6(2λ 2 + 1/3) 8(1 3λ 2 ) + 6 (12λ λ 2 + 1/3) + (2 12λ λ 2 2 ) + (8λ 2 24λ /3 4λ 2 ) (12λ 2 + 2) (8 24λ 2 ) λ λ 2 + 1/ λ λ λ 2 24λ /3 4λ 2 12λ λ λ λ 2 1/3 Carilah turunan dari persamaan yang diperoleh dan samadengankan nol, agar diperoleh nilai λ 2 dz dλ 2 12λ λ 2 8 λ 2 2/3 10

11 Telah diperoleh λ maka akan dicari nilai X 3 Diperoleh X 3 X 2 + λ 2 d 2 ( 1 3, 1) + ( 2 3) (2, 3) ( 1 3, 1) + ( 4 3, 2) ( 1, 3) X 3 ( 1, 3) Kemudian Di subtitusikan, sebagai berikut : X2 X 1 ( 1, 3) ( 1 3, 1) ( 1 ) (3 1) ( ) , 4 Iterasi Dilanjutkan karena 2, 4 > ε 2, 4 > 0, 01 Iterasi 3 Diketahui : X 3 ( 1, 3) Kemudian hitung λ 3 min Z (X 3 + λ 3 d 3 ) sebagai berikut: λ 3 min Z(X 3 + λ 3 d 3 ) λ 3 min Z(( 1, 3) + λ 3 (1, 0)) λ 3 min Z(( 1, 3) + (λ 3, 0) λ 3 min Z(λ 3 1, 3) 11

12 Subtitusikan Z(λ 3 1, 3) pada persamaan awal, sehingga menjadi: Z ( λ 3 1, 3 ) 3x x x 1 x 2 6x 1 8x (λ 3 1 ) 2 + 2(3) 2 + 4(λ 3 1 )(3) 6(λ 3 1 ) 8(3) + 6 3(λ 3 2 2λ 3 + 1) (3λ 3 3) (6λ 3 6) λ 3 2 6λ λ λ λ Carilah turunan dari persamaan yang diperoleh dan samadengankan nol, agar diperoleh nilai λ 3. dz dλ 3 6λ 3 0 λ 3 0 Telah diperoleh λ 3 0. maka akan dicari nilai X 4 Diperoleh X 4 X 3 + λ 3 d 3 (( 1, 3) + 0(4, 0)) (( 1, 3) + (0, 0)) ( 1, 3) X 4 ( 1, 3) Kemudian di subtitusikan sehingga menjadi X 4 X 3 ( 1, 3) ( 1, 3) ( 1 + 1) 2 + (3 3) Terlihat bahwa 0 < ε 0 < 0, 01. Sehingga iterasi berhenti. 12

13 7 Menggunakan Metode Analitik Dengan konsep Arah Konjugasi yang telah dijelaskan di atas, maka perhitungan dapat diselesaikan dengan Metode Analitik Diketahui suatu fungsi f(x) 3x x x 1 x 2-6x 1-8x Carilah turunan pertama terhadap x 1 f dx 1 6x 1 + 4x x 1 6 4x 2 x 1 6 4x2 6 x x 2 Sehingga 2 f dx 1 6 Carilah turunan pertama terhadap x 2 f dx 2 4x 2 + 4x x ( x 2) 8 0 4x x x 2 4 x 2 3 Sehingga 2 f dx 2 4 Kemudian kita cari x 1 Karena x 2 telah diketahui x 2 3, maka kita sibtitusikan terhadap sehingga x x 2 x x 2 x (3) x x 1 1 Dengan demikian didapat x 1 1 dan x

14 Kemudian Cek apakah terbukti nila x 1 1 dan x 2 3 meminimumkan fungsi f(x) 3x x x 1 x 2-6x 1-8x atau tidak. ( ) 2 f dx 1 2 f dx 2 2 f dx 1dx 2 > f dx 1 f dx (4) > 0 Terlihat bahwa terbukti nila x 1 1 dan x 2 3 meminumumkan fungsi f(x) 3x x x 1 x 2-6x 1-8x

15 BAB III PENUTUP 8 Kesimpulan Metode Numerik Arah Konjugasi Merupakan salah satu metode numerik yang digunakan untuk menyelesaikan masalah optimisasi. Dan langkah-langkah dalam menyelesaikan masalah optmisasi tersebut berbeda dengan metode numerik lainnya, yaitu Diberikan ZF (x 1,x 2 ),kemudian menentukan nilai X (x 1,x 2 ) R 2 yang meminimalkan atau memaksimalkan ZF {X} atau ZF (x 1,x 2 ) Kemudian Metode Arah Konjugasi lebih baik dari pada metode Steepest Descent, tetapi tidak juga dengan metode Newton. Seperti yang dilihat dari metode Steepest Descent dan metode Newton, faktor penting dalam efisiensi suatu metode pencarian berulang adalah arah pencarian pada setiap iterasi.untuk fungsi kuadrat n variabel f(x) 1 2 xt Qx x T b, x R n, Q Q T > 0, Arah pencarian terbaik disebut dengan arah Q-Konjugat. Pada dasarnya dua arah d (1) dan d (2) di R n dikatakan Q- Konjugat jika d (1)T Qd (2) 0 9 Saran sebaiknya sebelum menyelesaikan permasalahan numerik menggunakan metode arah konjugat kita harus lebih dulu memahami metode numerik Steepest Descent karena algoritma arah konjugasi turunan dari metode Steepest Descent. 15

16 DAFTAR PUSTAKA Chong, Edwin. kchong, Edwin. K.P Chong, Edwin. K.P An Introduction To Optimization. A Wiley Interscience Publication, John Wiley end Sons INC: Newyork 16

ARAH KONJUGAT. dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni Dadang Supriadi A2

ARAH KONJUGAT. dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni Dadang Supriadi A2 ARAH KONJUGAT dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni 2016 Dadang Supriadi 1384202098 6A2 UNIVERSITAS MUHAMMADIYAH TANGERANG FAKULTAS KEGURUAN ILMU

Lebih terperinci

METODE STEEPEST DESCENT

METODE STEEPEST DESCENT METODE STEEPEST DESCENT Dosen Pengampu: Rukmono Budi Utomo M.Sc. Disusun Oleh : Linna Tri Lestari 6A1 1384202140 Diajukan sebagai tugas Ujian Akhir Semester UAS Metode Numerik UNIVERSITAS MUHAMMADIYAH

Lebih terperinci

METODE NUMERIK STEEPEST DESCENT

METODE NUMERIK STEEPEST DESCENT METODE NUMERIK STEEPEST DESCENT 1 Juni 2016 Ujian Akhir Semester Untuk memenuhi ujian alhir semester mata kuliah metode numerik Selvi Kusdwi Lestari (1384202138 6A1 Pendidikan Matematika Fakultas Keguruan

Lebih terperinci

Metode Numerik Arah Konjugasi

Metode Numerik Arah Konjugasi Contoh Penyelesaian Masalah Optimisasi dengan Metode Numerik Rukmono Budi Utomo, M.Sc. Prodi S1 Pendikan Matematika UMT email: rukmono.budi.u@students.itb.ac.id May 2, 2016 Contoh Penyelesaian Masalah

Lebih terperinci

METODE NUMERIK ROSENBERG

METODE NUMERIK ROSENBERG METODE NUMERIK ROSENBERG Mata Kuliah : Metode Numerik Dosen Pengampu : Rukmono Budi Utomo, M.Sc Disusun Oleh : Rizka Apriyanti 6 A1 13840080 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU

Lebih terperinci

Metode Numerik Roosenberg

Metode Numerik Roosenberg Metode Numerik Roosenberg Rukmono Budi Utomo, M.Sc. Prodi S1 Pendikan Matematika UMT email: rukmono.budi.u@students.itb.ac.id May 4, 2016 Metode Numerik Roosenberg Metode Numerik Roosenberg Algoritma Roosenberg

Lebih terperinci

OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON

OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON Susi Ranangga [M008067], Aeroni Dwijayanti [M008078] Hamdani Citra P. [M0003], Nafi Nur Khasana [M00058]. Pendahuluan Dalam kehidupan sehari-hari

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini semakin banyak permasalahan pada kehidupan sehari-hari yang memerlukan pendekatan optimisasi dalam penyelesaiannya. Sebagai contoh, misalkan sebuah perusahaan

Lebih terperinci

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN E-Jurnal Matematika Vol. 2, No.2, Mei 2013, 11-17 ISSN: 2303-1751 PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN NANDA NINGTYAS RAMADHANI UTAMI 1,

Lebih terperinci

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John... (Caturiyati) SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com

Lebih terperinci

Metode Numerik Newton

Metode Numerik Newton 1. March 1, 2016 1. 1. 1. Berbeda dengan Metode numerik Golden Rasio dan Fibonacci yang tidak memerlukan f (x), metode numerik Newton memerlukan turunan dari fungsi f (x) tersebut. 1. Berbeda dengan Metode

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier

Lebih terperinci

METODE STEEPEST DESCENT

METODE STEEPEST DESCENT METODE STEEPEST DESCENT DENGAN UKURAN LANGKAH BARU UNTUK PENGOPTIMUMAN NIRKENDALA D. WUNGGULI 1, B. P. SILALAHI 2, S. GURITMAN 3 Abstrak Metode steepest descent adalah metode gradien sederhana untuk pengoptimuman.

Lebih terperinci

OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE. Dwi Suraningsih (M ), Marifatun (M ), Nisa Karunia (M )

OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE. Dwi Suraningsih (M ), Marifatun (M ), Nisa Karunia (M ) OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE Dwi Suraningsih (M2, Marifatun (M53, Nisa Karunia (M6 I. Pendahuluan Latar Belakang. Dalam kehidupan sehari-hari disa maupun tidak, sebenarnya manusia

Lebih terperinci

Kata Pengantar. Medan, 11 April Penulis

Kata Pengantar. Medan, 11 April Penulis Kata Pengantar Puji syukur penulis panjatkan kepada Tuhan YME, bahwa penulis telah menyelesaikan tugas mata kuliah Matematika dengan membahas Numerical Optimization atau Optimasi Numerik dalam bentuk makalah.

Lebih terperinci

SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016

SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016 Halaman 1/4 SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016 KODE DOSEN NAMA DOSEN KODE MATA KULIAH NAMA MATA KULIAH SEMESTER/KELAS F 220 MAT RUKMONO BUDI UTOMO, M.Sc. MKP010 METODE NUMERIK VI/A1,A2,B1,B2

Lebih terperinci

Dr. Ir. Bib Paruhum Silalahi, M.Kom

Dr. Ir. Bib Paruhum Silalahi, M.Kom Metode Descent Oleh : Andaikan fungsi tujuan kita adalah minf(x);x R n. Secara umum f(x) dapat berupa fungsi nonlinear. Metode-metode descent adalah metode iteratif untuk memperoleh solusi pendekatan dari

Lebih terperinci

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com 2 himmawatipl@yahoo.com Abstrak

Lebih terperinci

OPTIMISASI NONLINEAR MULTIVARIABEL TANPA KENDALA DENGAN METODE DAVIDON FLETCHER POWELL

OPTIMISASI NONLINEAR MULTIVARIABEL TANPA KENDALA DENGAN METODE DAVIDON FLETCHER POWELL OPTIMISASI NONLINEAR MULTIVARIABEL TANPA KENDALA DENGAN METODE DAVIDON FLETCHER POWELL SKRIPSI Untuk Memenuhi Sebagian Persyaratan Guna Memperoleh Derajat Sarjana S-1 Program Studi Matematika Disusun oleh

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Tidak semua permasalahan matematis atau perhitungan dapat diselesaikan dengan mudah. Bahkan dalam prinsip matematik, dalam memandang permasalahan, terlebih dahulu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada suatu eksperimen atau pengamatan terhadap suatu keadaan, pengambilan data merupakan salah satu bagian terpenting, agar hasil dari eksperimen dapat lebih

Lebih terperinci

BAB I PENDAHULUAN. adalah optimasi digunakan untuk memaksimalkan keuntungan yang akan diraih

BAB I PENDAHULUAN. adalah optimasi digunakan untuk memaksimalkan keuntungan yang akan diraih BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam kehidupan sehari-hari, baik disadari maupun tidak disadari, manusia sebenarnya telah melakukan upaya optimasi untuk memenuhi kebutuhan hidupnya. Akan

Lebih terperinci

BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear

BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear BAB III PEMBAHASAN Pada bab ini akan dijelaskan tentang konsep dasar metode kuadrat terkecil yang digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear dan langkah-langkah penyelesaiannya

Lebih terperinci

BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat

BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Sistem persamaan dapat dipandang F(x) = 0 [5], merupakan kumpulan dari beberapa persamaan nonlinear dengan fungsi tujuannya saja atau bersama fungsi kendala berbentuk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi

Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi 42 ISSN 2302-7290 Vol. 2 No. 2, April 2014 Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi Global Convergence of the New Spectral Conjugate

Lebih terperinci

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, optimasi selalu dilakukan untuk memenuhi kebutuhan. Tetapi optimasi yang dilakukan masyarakat awam lebih banyak

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya.

BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya. BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

LANDASAN TEORI. linear (intrisnsically linear) dan nonlinear secara intrinsik nonliear (intrinsically

LANDASAN TEORI. linear (intrisnsically linear) dan nonlinear secara intrinsik nonliear (intrinsically II. LANDASAN TEORI 2.1 Model Nonlinear Model nonlinear merupakan bentuk hubungan antara peubah respon dengan peubah penjelas yang tidak linear dalam parameter. Secara umum model nonlinear ditulis sebagai

Lebih terperinci

ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB-SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI

ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB-SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB-SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI Nama Mahasiswa : Rahmawati Erma.S. NRP : 1208100030 Jurusan : Matematika Dosen Pembimbing : 1. Subchan, M.Sc, Ph.D

Lebih terperinci

METODE NUMERIK BISEKSI

METODE NUMERIK BISEKSI February 24, 2016 Metode Biseksi 1. Metode Biseksi 1 1. Metode Biseksi 2 Metode Biseksi Metode Biseksi memberikan alternatif perhitungan numerik menentukan x yang meminimumkan atau memaksimumkan suatu

Lebih terperinci

METODE NUMERIK SECANT

METODE NUMERIK SECANT Prodi S1 Pendidikan Matematika UMT FKIP UMT April 4, 2016 Metode Numerik Secant Metode Numerik Secant Metode Numerik Secant Metode numerik Secant merupakan turunan dari metode Newton dan digunakan untuk

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, sebenarnya orang selalu melakukan optimasi untuk memenuhi kebutuhannya. Tetapi optimasi yang dilakukan masyarakat

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Rumusan Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang dan Rumusan Masalah 1 BAB I PENDAHULUAN Pada bagian ini akan dijelaskan latar belakang dan rumusan masalah, tujuan dan manfaat penelitian, tinjauan pustaka, metode penelitian, serta sistematika penulisan. 1.1. Latar Belakang

Lebih terperinci

BAB III KALMAN FILTER DISKRIT. Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma)

BAB III KALMAN FILTER DISKRIT. Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma) BAB III KALMAN FILTER DISKRIT 3.1 Pendahuluan Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma) yang memberikan perhitungan efisien dalam mengestimasi state proses, yaitu dengan

Lebih terperinci

Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta

Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta DESAIN OPTIMASI UNGSI TAK LINIER MENGGUNAKAN METODE PENYELIDIKAN IBONACCI Yemi Kuswardi Nurul Muhayat Abstract: optimum design is an action to design the best product based on the problem. Theoretically,

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Zaman yang semakin berkembang membuat persoalan semakin kompleks, tidak terkecuali persoalan yang melibatkan persoalan matematika. Dalam pemecahannya, matematika memegang

Lebih terperinci

BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika

BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika BAB 2 PROGRAM LINIER DAN TAK LINIER 2.1 Program Linier Program linier (Linear programming) adalah suatu masalah matematika yang mempunyai fungsi objektif dan kendala berbentuk linier untuk meminimalkan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

Informasi Fisher pada Algoritme Fisher Scoring untuk Estimasi Parameter Model Regresi Logistik Ordinal Terboboti Geografis (RLOTG)

Informasi Fisher pada Algoritme Fisher Scoring untuk Estimasi Parameter Model Regresi Logistik Ordinal Terboboti Geografis (RLOTG) SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Informasi Fisher pada Algoritme Fisher Scoring untuk Estimasi Parameter Model Regresi Logistik Ordinal Terboboti Geografis (RLOTG) Aulia Nugrahani

Lebih terperinci

METODE STEEPEST DESCENT DENGAN UKURAN LANGKAH BARU UNTUK PENGOPTIMUMAN NIRKENDALA DJIHAD WUNGGULI

METODE STEEPEST DESCENT DENGAN UKURAN LANGKAH BARU UNTUK PENGOPTIMUMAN NIRKENDALA DJIHAD WUNGGULI 1 METODE STEEPEST DESCENT DENGAN UKURAN LANGKAH BARU UNTUK PENGOPTIMUMAN NIRKENDALA DJIHAD WUNGGULI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2015 2 3 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Lebih terperinci

TUGAS AKHIR ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB- SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI

TUGAS AKHIR ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB- SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI TUGAS AKHIR ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB- SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI (ALGORITHM OF MODIFIED BROYDEN-FLETCHER-GOLDFARB- SHANNO (MBFGS ) FOR OPTIMIZATION PROBLEM ) Oleh:

Lebih terperinci

OPTIMISASI KONVEKS: Konsep-konsep

OPTIMISASI KONVEKS: Konsep-konsep OPTIMISASI KONVEKS: Konsep-konsep Caturiyati, M.Si 1 dan Himmawati Puji Lestari, M.Si 2 1,2 Jurdik Matematika FMIPA UNY 1 wcaturiyati@yahoo.com 2 himmawatipl@yahoo.com Abstrak Pada masalah optimisasi konveks

Lebih terperinci

PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK

PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK Sarwadi Jurusan Matematika FMIPA UNDIP Abstrak Salah satu solusi dari persamaan Korteweg - de Vries (KdV) adalah gelombang

Lebih terperinci

METODE AFFINE SCALING SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PROGRAM LINEAR. Asep Teguh Suhanda, Shantika Martha, Helmi

METODE AFFINE SCALING SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PROGRAM LINEAR. Asep Teguh Suhanda, Shantika Martha, Helmi Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 5, No. 1 (216), hal 45 52 METODE AFFINE SCALING SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PROGRAM LINEAR Asep Teguh Suhanda, Shantika Martha, Helmi

Lebih terperinci

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

OPTIMISASI KONVEKS: KONSEP-KONSEP

OPTIMISASI KONVEKS: KONSEP-KONSEP Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 OPTIMISASI KONVEKS: KONSEP-KONSEP Caturiyati 1 dan Himmawati Puji Lestari

Lebih terperinci

Kontrol Optimal Waktu Diskrit

Kontrol Optimal Waktu Diskrit Kontrol Optimal Waktu Diskrit April 2012 () Kontrol Optimal (3 SKS) April 2012 1 / 18 Ekstrim Suatu Fungsional untuk Fungsi Skalar Dalam bagian ini, kita akan menentukan syarat perlu untuk optimisasi fungsional

Lebih terperinci

LANDASAN TEORI. Dalam proses penelitian pendugaan parameter dari suatu distribusi diperlukan

LANDASAN TEORI. Dalam proses penelitian pendugaan parameter dari suatu distribusi diperlukan II. LANDASAN TEORI Dalam proses penelitian pendugaan parameter dari suatu distribusi diperlukan beberapa konsep dan teori yang mendukung dari ilmu statistika. Berikut akan dijelaskan beberapa konsep dan

Lebih terperinci

KENDALI OPTIMAL PERMAINAN NON-KOOPERATIF KONTINU SKALAR DUA PEMAIN DENGAN STRATEGI NASH TUGAS AKHIR. Oleh : M.LUTHFI RUSYDI

KENDALI OPTIMAL PERMAINAN NON-KOOPERATIF KONTINU SKALAR DUA PEMAIN DENGAN STRATEGI NASH TUGAS AKHIR. Oleh : M.LUTHFI RUSYDI KENDALI OPTIMAL PERMAINAN NON-KOOPERATIF KONTINU SKALAR DUA PEMAIN DENGAN STRATEGI NASH TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh

Lebih terperinci

OPTIMASI FUNGSI KUADRATIK TANPA KENDALA DENGAN METODE SYMMETRIC RANK ONE (SR 1), DAVIDON FLETCHER POWELL (DFP) DAN BROYDEN FLETCHER GOLDFARB

OPTIMASI FUNGSI KUADRATIK TANPA KENDALA DENGAN METODE SYMMETRIC RANK ONE (SR 1), DAVIDON FLETCHER POWELL (DFP) DAN BROYDEN FLETCHER GOLDFARB OPTIMASI FUNGSI KUADRATIK TANPA KENDALA DENGAN METODE SYMMETRIC RANK ONE (SR 1), DAVIDON FLETCHER POWELL (DFP) DAN BROYDEN FLETCHER GOLDFARB SHANNO (BFGS) Skripsi untuk memenuhi sebagai persyaratan mencapai

Lebih terperinci

Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing

Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing Wayan Firdaus Mahmudy, (wayanfm@ub.ac.id) Program Studi Ilmu Komputer, Universitas

Lebih terperinci

BAB I DASAR SISTEM OPTIMASI

BAB I DASAR SISTEM OPTIMASI BAB I DASAR SISTEM OPTIMASI. Pendahuluan Teknik optimasi merupakan suatu cara yang dilakukan untuk memberikan hasil terbaik yang diinginkan. Teknik optimasi ini banyak memberikan menfaat dalam mengambil

Lebih terperinci

Masalah maksimisasi dapat ditinjau dari metode minimisasi, karena

Masalah maksimisasi dapat ditinjau dari metode minimisasi, karena Lecture 2: Optimization of Function of One Variable A. Pendahuluan Ide dasar dari masalah optimisasi adalah mengoptimumkan (memaksimumkan/ meminimumkan) suatu besaran skalar yang merupakan harga suatu

Lebih terperinci

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Polinomial real berderajat n 0 adalah fungsi yang mempunyai bentuk p n (x) = n a i x i = a 0 x 0 + a

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa pengertian dari optimasi bersyarat dengan kendala persamaan menggunakan multiplier lagrange serta penerapannya yang akan digunakan sebagai landasan

Lebih terperinci

OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR SKRIPSI

OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR SKRIPSI OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

DIFERENSIAL FUNGSI MAJEMUK

DIFERENSIAL FUNGSI MAJEMUK DIFERENSIAL FUNGSI MAJEMUK Tujuan Instruktusional : Memahami diferensiasi untuk fungsi-fungsi yang mengandung lebih dari satu macam variabel bebas Daftar Materi Pembahasan : 1. Diferensiasi parsial 2.

Lebih terperinci

ANALISIS RISIKO TIPE I (PRODUSEN) DAN RISIKO TIPE II (KONSUMEN) DALAM KERJASAMA RANTAI PASOK. Nama Mahasiswa : Afriani Sulastinah NRP :

ANALISIS RISIKO TIPE I (PRODUSEN) DAN RISIKO TIPE II (KONSUMEN) DALAM KERJASAMA RANTAI PASOK. Nama Mahasiswa : Afriani Sulastinah NRP : ANALISIS RISIKO TIPE I (PRODUSEN) DAN RISIKO TIPE II (KONSUMEN) DALAM KERJASAMA RANTAI PASOK Nama Mahasiswa : Afriani Sulastinah NRP : 1206 100 030 Jurusan : Matematika Dosen Pembimbing : Dra. Laksmi Prita

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas

Lebih terperinci

BAB III METODE PERMUKAAN RESPON. Pengkajian pada suatu proses atau sistem sering kali terfokus pada

BAB III METODE PERMUKAAN RESPON. Pengkajian pada suatu proses atau sistem sering kali terfokus pada BAB III METODE PERMUKAAN RESPON 3.1 Pendahuluan Pengkajian pada suatu proses atau sistem sering kali terfokus pada hubungan antara respon dan variabel masukannya (input). Tujuannya adalah untuk mengoptimalkan

Lebih terperinci

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh gelar

Lebih terperinci

CATATAN TENTANG PERSAMAAN LYAPUNOV DAN PERSAMAAN ALJABAR RICCATI

CATATAN TENTANG PERSAMAAN LYAPUNOV DAN PERSAMAAN ALJABAR RICCATI J. Math. and Its Appl. ISSN: 1829-605X Vol. 4, No. 2, November 2007, 21 32 CATATAN TENTANG PERSAMAAN LYAPUNOV DAN PERSAMAAN ALJABAR RICCATI Subiono Jurusan Matematika FMIPA Institut Teknologi Sepuluh Nopember

Lebih terperinci

PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI. Lilik Prasetiyo Pratama

PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI. Lilik Prasetiyo Pratama PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI Lilik Prasetiyo Pratama Jurusan Matematika, FMIPA UNS. LATAR BELAKANG Tidak semua fungsi mudah dievaluasi, terlebih fungsi yang rumit. Pendekatan dengan

Lebih terperinci

1) Untuk menentukan ketepatan (accuracy) hasil penghitungan numerik. 2) Untuk membuat kriteria stop pada

1) Untuk menentukan ketepatan (accuracy) hasil penghitungan numerik. 2) Untuk membuat kriteria stop pada Analisa Terapan: Metode Numerik Pertemuan ke-1 Pengukuran Kesalahan (Measuring Error) 13 September 2012 Department of Civil Engineering 1 Mengapa mengukur kesalahan? 1) Untuk menentukan ketepatan (accuracy)

Lebih terperinci

OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR

OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR 40 Jurnal Matematika Vol 6 No 2 Tahun 2017 OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR OPTIMIZATION OF FOOD CROPS IN MAGELANG WITH QUADRATIC

Lebih terperinci

OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI

OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

III RELAKSASI LAGRANGE

III RELAKSASI LAGRANGE III RELAKSASI LAGRANGE Relaksasi Lagrange merupakan salah satu metode yang terus dikembangkan dalam aplikasi pemrograman matematik. Sebagian besar konsep teoretis dari banyak aplikasi menggunakan metode

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

Interpolasi dan Ekstrapolasi

Interpolasi dan Ekstrapolasi Interpolasi dan Ekstrapolasi JURNAL 01 Didalam pengertian matematika dasar, interpolasi adalah perkiran suatu nilai tengah dari satu set nilai yang diketahui. Interpoloasi dalam arti luas merupakan upaya

Lebih terperinci

PENGEMBANGAN ALGORITMA ITERATIF UNTUK MINIMISASI FUNGSI NONLINEAR

PENGEMBANGAN ALGORITMA ITERATIF UNTUK MINIMISASI FUNGSI NONLINEAR PENGEMBANGAN ALGORITMA ITERATIF UNTUK MINIMISASI FUNGSI NONLINEAR TESIS Oleh FADHILAH JULI YANTI HARAHAP 127021019/MT FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2014

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Banyak ditemukan masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan integral merupakan salah satu model matematika yang banyak digunakan

Lebih terperinci

II. LANDASAN TEORI. beberapa konsep dan teori yang berkaitan dengan penduga parameter distribusi GB2

II. LANDASAN TEORI. beberapa konsep dan teori yang berkaitan dengan penduga parameter distribusi GB2 5 II. LANDASAN TEORI Dalam proses penelitian penduga parameter dari suatu distribusi diperlukan beberapa konsep dan teori yang mendukung dari ilmu statistika. Berikut ini akan dijelaskan beberapa konsep

Lebih terperinci

OPTIMASI (Pemrograman Non Linear)

OPTIMASI (Pemrograman Non Linear) OPTIMASI (Pemrograman Non Linear) 3 SKS PILIHAN Arrival Rince Putri, 013 1 Silabus I. Pendahuluan 1. Perkuliahan: Silabus, Referensi, Penilaian. Pengantar Optimasi 3. Riview Differential Calculus II. Dasar-Dasar

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kemajuan ilmu pengetahuan dan teknologi menuntut perubahan-perubahan yang melibatkan suatu penelitian atau percobaan pada berbagai bidang. Metode Statistik

Lebih terperinci

Bab IV Simulasi dan Pembahasan

Bab IV Simulasi dan Pembahasan Bab IV Simulasi dan Pembahasan IV.1 Gambaran Umum Simulasi Untuk menganalisis program pemodelan network flow analysis yang telah dirancang maka perlu dilakukan simulasi program tersebut. Dalam penelitian

Lebih terperinci

Metode Numerik Dichotomus

Metode Numerik Dichotomus Algoritma Prodi S1 Pendidikan Matematika UMT April 4, 016 Algoritma Algoritma Algoritma adalah salah satu metode numerik yang dapat digunakan untuk menentukan nilai x yang meminimumkan suatu fungsi dari

Lebih terperinci

OPTIMASI DENGAN METODE DAKIAN TERCURAM

OPTIMASI DENGAN METODE DAKIAN TERCURAM OPTIMASI DENGAN METODE DAKIAN TERCURAM Marwan Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Syiah Kuala, Jln. Syekh Abdur Rauf No. 3 Darussalam, Banda Aceh 23111 email:

Lebih terperinci

Bab 4 SOLUSI PENGAMBILAN KEPUTUSAN. 4.1 Masalah Pengambilan Keputusan Markov dengan Pendekatan Program Linier

Bab 4 SOLUSI PENGAMBILAN KEPUTUSAN. 4.1 Masalah Pengambilan Keputusan Markov dengan Pendekatan Program Linier Bab 4 SOLUSI PENGAMBILAN KEPUTUSAN Pada bab ini akan dibahas mengenai masalah pengambilan keputusan Markov pada pengelolaan mata kuliah MA1122 Kalkulus I dengan pendekatan program linier, solusi dari masalah

Lebih terperinci

Analisis Model Regresi Linear Berganda dengan Metode Response Surface

Analisis Model Regresi Linear Berganda dengan Metode Response Surface Jurnal Gradien Vol. 10 No. 1 Januari 2014 : 957-962 Analisis Model Regresi Linear Berganda dengan Metode Response Surface * Henoh Bayu Murti, Dian Kurniasari, Widiarti Jurusan Matematika, Fakultas Matematika

Lebih terperinci

Metode Numerik (Pendahuluan) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Metode Numerik (Pendahuluan) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Metode Numerik (Pendahuluan) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Kajian Pokok Metode Numerik Tujuan: Menyelesaikan suatu persamaan menggunakan model matematika. Pemodelan penyelesaian matematika

Lebih terperinci

(D.2) OPTIMASI KOMPOSISI PERLAKUAN DENGAN MENGGUNAKAN METODE RESPONSE SURFACE. H. Sudartianto 3. Sri Winarni

(D.2) OPTIMASI KOMPOSISI PERLAKUAN DENGAN MENGGUNAKAN METODE RESPONSE SURFACE. H. Sudartianto 3. Sri Winarni Universitas Padjadjaran, November 00 (D.) OPTIMASI KOMPOSISI PERLAKUAN DENGAN MENGGUNAKAN METODE RESPONSE SURFACE Andry Ritonga H. Sudartianto Sri Winarni Mahasiswa Program Strata Jurusan Statistika FMIPA

Lebih terperinci

BAB 2 OPTIMISASI KOMBINATORIAL. Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang

BAB 2 OPTIMISASI KOMBINATORIAL. Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang BAB 2 OPTIMISASI KOMBINATORIAL 2.1 Masalah Model Optimisasi Kombinatorial Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang memenuhi kondisi atau batasan yang disebut kendala dari

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov

Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov Yuni Yulida 1, Faisal 2, Muhammad Ahsar K. 3 1,2,3 Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

PENERAPAN TEORI KENDALI PADA MASALAH PROGRAM DINAMIK

PENERAPAN TEORI KENDALI PADA MASALAH PROGRAM DINAMIK PENERAPAN TEORI KENDALI PADA MASALAH PROGRAM DINAMIK Pardi Affandi, Dewi A, Nur Salam Program Studi Matematika Universitas Lambung Mangkurat Jl Jend A Yani km 35, 8 Banjarbaru Email: pardi_affandi@yahoocom

Lebih terperinci

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI Febrian Lisnan, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

Prosiding Matematika ISSN:

Prosiding Matematika ISSN: Prosiding Matematika ISSN: 2460-6464 Optimisasi Fungsi Nonlinier Dua Variabel Bebas dengan Satu Kendala Pertidaksamaan Menggunakan Syarat Kuhn-Tucker Optimization of Nonlinear Function of Two Independent

Lebih terperinci

FUZZY LINIER PROGRAMMING UNTUK PEMILIHAN JENIS KENDARAAN DALAM MENGANTISIPASI KEMACETAN LALU LINTAS DI KOTA MEDAN

FUZZY LINIER PROGRAMMING UNTUK PEMILIHAN JENIS KENDARAAN DALAM MENGANTISIPASI KEMACETAN LALU LINTAS DI KOTA MEDAN FUZZY LINIER PROGRAMMING UNTUK PEMILIHAN JENIS KENDARAAN DALAM MENGANTISIPASI KEMACETAN LALU LINTAS DI KOTA MEDAN Zulfikar Sembiring 1* 1 Fakultas Teknik, Universitas Medan Area * Email : zoelsembiring@gmail.com

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU Vanny Octary 1 Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

Pemodelan untuk Penghitungan Headloss Jaringan Pipa Distribusi Air Studi Kasus: Jaringan Distribusi Air PDAM Kota Bandung.

Pemodelan untuk Penghitungan Headloss Jaringan Pipa Distribusi Air Studi Kasus: Jaringan Distribusi Air PDAM Kota Bandung. Pemodelan untuk Penghitungan Headloss Jaringan Pipa Distribusi Air Studi Kasus: Jaringan Distribusi Air PDAM Kota Bandung Kuntjoro A. Sidarto 1,5, Rieske Hadianti 1,5, Leksono Mucharam 2,5, Amoranto risnobudi

Lebih terperinci