BAB III PROSES POISSON MAJEMUK

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III PROSES POISSON MAJEMUK"

Transkripsi

1 BAB III PROSES POISSON MAJEMUK Pada bab ini membahas tentang proses stokastik, proses Poisson dan proses Poisson majemuk yang akan diaplikasikan pada bab selanjutnya. 3.1 Proses Stokastik Koleksi atau barisan peubah acak =, dinamakan proses stokastik. T set indeks yaitu Jika untuk setiap, maka >, < atau =, yang selanjutnya T dinamakan ruang parameter. Pada penerapannya, interpretasi t menyatakan waktu dan menyatakan proses/keadaan pada waktu t. Jika T set indeks adalah himpunan yang terbilang maka disebut proses stokastik waktu diskrit. Sedangkan jika T set indeks adalah himpunan yang tak terbilang maka disebut proses stokastik waktu kontinu. Proses stokastik waktu kontinu dikatakan memiliki kenaikan bebas (independent increment) jika untuk setiap < < < <, peubah acak,,, saling bebas. Proses stokastik waktu kontinu dikatakan memiliki kenaikkan stasioner (stationary increment) jika + memilliki distribusi yang sama dengan untuk setiap waktu t. 18

2 19 Secara gambar, Frekuensi X(t + s) X(t) X(t + s) X(t) X(s) s s 0 s t t+s Waktu Gambar 3.1 Kenaikan Stasioner (stationary increment) pada Proses Stokastik 3.2 Proses Menghitung Proses stokastik, 0 dikatakan proses menghitung jika merupakan banyaknya peristiwa yang telah tejadi hingga waktu t. Proses menghitung harus memenuhi: (i) 0. (ii) bernilai bilangan bulat (integer). (iii) Jika < maka. (iv) Untuk <, sama dengan banyaknya peristiwa yang terjadi pada interval, ]. Proses menghitung dikatakan sebagai proses kenaikan bebas (independent increment) jika jumlah peristiwa yang terjadi dalam interval terpisah bersifat saling bebas. Ini berarti bahwa banyakya peristiwa yang telah terjadi pada waktu t harus bersifat saling bebas dengan banyaknya peristiwa yang terjadi pada interval t dan t + s. Sebagai contoh, misalkan banyaknya penjualan saham merupakan

3 20 suatu peristiwa. Banyaknya penjualan saham pada pukul 09:31:00 bersifat saling bebas (indenpendent) dengan banyaknya penjualan saham pada interval waktu 09:31:00 dan 10:00:00 Proses menghitung dikatakan sebagai proses kenaikan stasioner (stationary increment) jika distribusi dari banyaknya peristiwa yang terjadi pada suatu waktu hanya bergantung pada panjangnya interval waktu. Ini berarti bahwa proses menghitung dikatakan memilliki kenaikan stasioner jika banyaknya peristiwa pada interval +, + ] memiliki distribusi yang sama dengan banyaknya peristiwa pada interval, ] untuk setiap < dan >0. t 1 t 1 +s t 2 t 2 +s Gambar 3.2 Kenaikan Stasioner (stationary increment) pada Proses Menghitung 3.3 Proses Poisson Salah satu tipe proses menghitung adalah proses Poisson, yang didefinisikan sebagai berikut. Definisi 3.1: Proses menghitung, 0 dikatakan sebagai proses Poisson dengan intensitas, >0 jika: (i) 0 =0, (ii) Proses memiliki kenaikan bebas (independent increment),

4 21 (iii) Banyaknya peristiwa dalam beberapa interval sepanjang t berdistribusi Poisson dengan rerata. Artinya, untuk semua s, 0, + = =, =0,1,. (3.2)! Berdasarkan definisi diatas, dapat dikatakan bahwa, 0 merupakan peubah acak yang berdistribusi Poisson yang memiliki nilai ekspektasi matematik, ]=. (3.4) Definisi 3.2 (konsep fungsi f sebagai ): Fungsi f dikatakan sebagai h jika lim =0 (3.5) Definisi 3.3: Proses menghitung, 0 dikatakan sebagai proses Poisson dengan intensitas, >0 jika: (i) =0. (ii) Proses memiliki kenaikan stasioner (stationary increment) dan kenaikan bebas (independent increment). (iii) h =1 = h+ h. (iv) h 2 = h.

5 Proses Poisson Majemuk Proses stokastik, 0 dikatakan sebagai proses Poisson majemuk jika dapat direpresentasikan untuk 0 oleh dengan = (3.6), 0 adalah proses Poisson dan, =1,2, adalah keluarga peubah acak saling bebas dan berdistribusi identik yang saling bebas dari proses, 0. Ini berarti jika, 0 adalah proses Poisson majemuk maka adalah peubah acak Poisson majemuk. Sifat-sifat proses Poisson majemuk: (i) Nilai ekspektasi ]= ] = ] = ] ] = ] (3.7) (ii) Varians = + ] = ]+ ] = ]+ ] = + ] = + ] =

6 23 (iii) Fungsi pembangkit momen Dengan diketahui bahwa Maka, = = = = =. = = = = = = = = = = = = = = = = = = = Contoh: Misalkan investor yang datang untuk membeli saham pada suatu perusahaan pada waktu perdagangan sesi I yaitu pukul 09:30:00 s.d 12:00:00 berdistribusi poisson dengan intensitas. : banyaknya saham yang terjual pada investor ke-1, : banyaknya saham yang terjual pada investor ke-2, : banyaknya saham yang terjual pada investor ke-. Misalkan, =1,2,, berdistribusi eksponensial dengan parameter 1000.

7 24 Andaikan banyaknya saham yang terjual pada setiap investor merupakan vaiabel acak yang independen dan berdistribusi identik. Jika adalah banyaknya saham yang terjual pada semua investor yang berdatangan pada waktu t, maka, 0 adalah proses Poisson majemuk.

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T} adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu

Lebih terperinci

BAB I PENDAHULUAN. Suatu lembaga atau perusahaan akan memerlukan dana untuk kegiatan

BAB I PENDAHULUAN. Suatu lembaga atau perusahaan akan memerlukan dana untuk kegiatan BAB I PENDAHULUAN 1.1 Latar belakang Masalah Suatu lembaga atau perusahaan akan memerlukan dana untuk kegiatan lembaga atau perusahaan sebagai sarana untuk pengembangan usaha. Untuk memperoleh dana tersebut,

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK

PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK Ririn Dwi Utami, Respatiwulan, dan Siswanto Program Studi Matematika FMIPA UNS Abstrak.

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik, adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu ruang states. Jadi,

Lebih terperinci

PENDAHULUAN LANDASAN TEORI

PENDAHULUAN LANDASAN TEORI 1 PENDAHULUAN Latar Belakang Dalam kehidupan sehari-hari, banyak permasalahan yang dapat dimodelkan dengan proses stokastik. Proses stokastik dapat dibedakan menjadi dua yaitu proses stokastik dengan waktu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T } adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu

Lebih terperinci

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan diketahui

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Rantai Markov Waktu Kontinu Pendahuluan Pada bab ini, kita akan belajar mengenai

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peluang Peluang mempunyai banyak persamaan arti, seperti kemungkinan, kesempatan dan kecenderungan. Peluang menunjukkan kemungkinan terjadinya suatu kejadian yang bersifat acak.

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 5: Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Waktu Antar Kedatangan Waktu Antar Kedatangan Misalkan T 1 menyatakan waktu dari kejadian/kedatangan pertama. Misalkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 3 BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu ruang state. Jika

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

RANCANGAN PEMBELAJARAN

RANCANGAN PEMBELAJARAN RANCANGAN PEMBELAJARAN Mata Kuliah : dan Proses Stokastik Semester : Jurusan : Dosen : TIU : respon sistem linear dengan input menggunakan konsep probabilitas dan proses stokastik (C4) No.. Mahasiswa mampu

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Bidang statistika berhubungan dengan cara atau metode pengumpulan data, pengolahan, penyajian, dan analisisnya serta pengambilan kesimpulan berdasarkan data dan analisis

Lebih terperinci

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau BAB II TINJAUAN PUSTAKA 2.1 Proses Stokastik Menurut Gross (2008), proses stokastik adalah himpunan variabel acak Semua kemungkinan nilai yang dapat terjadi pada variabel acak X(t) disebut ruang keadaan

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

BAB II PROSES MENGHITUNG DAN PROSES TITIK. acak X, dengan A menyatakan indeks parameter. Jika proses didefinisikan

BAB II PROSES MENGHITUNG DAN PROSES TITIK. acak X, dengan A menyatakan indeks parameter. Jika proses didefinisikan BAB II PROSES MENGHITUNG DAN PROSES TITIK 2.1 Proses Stokastik Proses stokastik {X(A), A R d, d 1} didefinisikan sebagai koleksi peubahpeubah acak X, dengan A menyatakan indeks parameter. Jika proses didefinisikan

Lebih terperinci

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 18 BAB III METODE PENELITIAN Pada bab ini akan dikemukakan metode-metode yang akan digunakan pada bab selanjutnya. Metode-metode pada bab ini yaitu metode Value at Risk dengan pendekatan distribusi normal

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS KODE / SKS : KK-01333 / 3 SKS 1 Pengertian dan tujuan 1. Klasifikasi Model 1 Simulasi. Perbedaan penyelesaian problem Dapat menjelaskan klasifikasi model dari matematis secara analitis dan numeris suatu

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Penelitian Operasional II Rantai Markov RANTAI MARKOV

Penelitian Operasional II Rantai Markov RANTAI MARKOV Penelitian Operasional II Rantai Markov 49 4. RANTAI MARKOV 4. PENDAHULUAN Dalam masalah pengambilan suatu keputusan, seringkali kita diperhadapkan dengan suatu ketidakpastian. Permasalahan ini dapat dimodelkan

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR BAB IV PEMBAHASAN 4.1 Proses Pencabangan model DTMC SIR Proses pencabangan suatu individu terinfeksi berbentuk seperti diagram pohon dan diasumsikan bahwa semua individu terinfeksi adalah saling independent

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teori Pemeliharaan Untuk menjamin kontinuitas kegiatan operasional suatu sistem, keandalan setiap komponen peralatan sangat dijaga agar peralatan tersebut tidak mengalami kegagalan

Lebih terperinci

4.1.1 Distribusi Binomial

4.1.1 Distribusi Binomial 4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Pengertian Distribusi Eksponensial Distribusi eksponensial adalah distribusi yang paling penting dan paling sederhana kegagalan mesin penghitung otomatis dan kegagalan komponen

Lebih terperinci

Silabus. Proses Stokastik (MMM 5403) Proses Stokastik. Contoh

Silabus. Proses Stokastik (MMM 5403) Proses Stokastik. Contoh Silabus Proses Stokastik (MMM 5403) Status: Wajib Minat Statistika Rantai Markov, klasifikasi rantai Markov. Limit rantai Markov dan aplikasinya. Rantai Markov kontinu, contoh-contoh klasik. Proses renewal,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process Prosiding Statistika ISSN: 2460-6456 Pemodelan Data Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process 1 Novi Tri Wahyuni, 2 Sutawatir Darwis, 3 Teti Sofia Yanti 1,2,3 Prodi

Lebih terperinci

Edisi Juli 2015 Volume IX No. 2 ISSN STUDI PEMBENTUKAN PROSES TITIK MELALUI PENDEKATAN UKURAN MENGHITUNG

Edisi Juli 2015 Volume IX No. 2 ISSN STUDI PEMBENTUKAN PROSES TITIK MELALUI PENDEKATAN UKURAN MENGHITUNG STUDI PEMBENTUKAN PROSES TITIK MELALUI PENDEKATAN UKURAN MENGHITUNG Rini Cahyandari Jurusan Matematika, Fakultas Sains dan Teknologi, UIN SGD Bandung email: rcahyandari@yahoo.com ABSTRAK Proses titik didefinisikan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 2 Sinyal Acak

SISTEM PENGOLAHAN ISYARAT. Kuliah 2 Sinyal Acak TK 403 SISTM PNGOLAHAN ISYARAT Kuliah Sinyal Acak Indah Susilawati, S.T., M.ng. Program Studi Teknik lektro Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana Yogyakarta 009 KULIAH SISTM PNGOLAHAN

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses

Lebih terperinci

BAB II TINJAUAN PUSTAKA. komoditas, model pergerakan harga komoditas, rantai Markov, simulasi Standard

BAB II TINJAUAN PUSTAKA. komoditas, model pergerakan harga komoditas, rantai Markov, simulasi Standard BAB II TINJAUAN PUSTAKA Pada bab ini akan dibahas beberapa tinjauan mengenai teori yang diperlukan dalam pembahasan bab-bab selanjutnya antara lain tentang kontrak berjangka komoditas, model pergerakan

Lebih terperinci

BAB I PENDAHULUAN. Dalam kehidupan sehari-hari, yang menjadi perhatian seringkali bukan

BAB I PENDAHULUAN. Dalam kehidupan sehari-hari, yang menjadi perhatian seringkali bukan BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari, yang menjadi perhatian seringkali bukan bagaimana suatu peristiwa itu terjadi, tetapi seberapa sering (banyaknya) peristiwa tersebut terjadi

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

Ekspektasi Satu Peubah Acak Diskrit

Ekspektasi Satu Peubah Acak Diskrit Chandra Novtiar 085794801125 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan Sub Pokok Pembahasan

Lebih terperinci

ANALISIS KEANDALAN PRODUK DENGAN POLA PENGGUNAAN INTERMITTENT

ANALISIS KEANDALAN PRODUK DENGAN POLA PENGGUNAAN INTERMITTENT ARIKA, Vol. 04, No. 2 Agustus 2010 ISSN: 1978-1105 ANALISIS KEANDALAN PRODUK DENGAN POLA PENGGUNAAN INTERMITTENT Farida D Sitania Dosen Program Studi Teknik Industri, Fakultas Teknik, Universitas Pattimura

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY 3.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang Ω,,. Misalkan ; adalah rantai Markov dengan state berhingga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengantar Pada bab ini akan diuraikan beberapa landasan teori untuk menunjang penulisan skripsi ini. Uraian ini terdiri dari beberapa bagian yang akan dipaparkan secara terperinci

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Fungsi Convex

Bab 2. Landasan Teori. 2.1 Fungsi Convex Bab 2 Landasan Teori Salah satu hal yang menarik dari topik tugas akhir ini adalah penggunaan sebuah ilmu dari dunia insurance (teori comonotonic) ke dunia matematika keuangan. Oleh karena itu untuk memahaminya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

BAB 3 PEMBAHASAN. Contoh 1:

BAB 3 PEMBAHASAN. Contoh 1: BAB 3 PEMBAHASAN 3.1 Pengolahan Data Seperti yang telah dijelaskan sebelumnya, rantai markov atau proses markov akan digunakan untuk menganalisa data yang diperoleh dalam penelitian ini. Contoh kasus yang

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Percobaan Bernoulli merupakan suatu percobaan yang memiliki dua nilai outcome (kemunculan) yang mungkin yakni sukses dan gagal yang masing-masing dinotasikan dengan

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

Karakteristik Limit dari Proses Kelahiran dan Kematian

Karakteristik Limit dari Proses Kelahiran dan Kematian Karakteristik Limit dari Proses Kelahiran dan Kematian Disusun guna memenuhi tugas mata kuliah Pengantar Proses Stokastik Disusun oleh : Saidun Nariswari Setya Dewi Lisa Apriana Marvina Puspito Nita Eka

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 \ BAB I PENDAHULUAN 1.1 Latar Belakang Informasi-informasi faktual yang diperoleh berdasarkan hasil observasi maupun penelitian sangatlah beragam. Informasi yang dirangkum sedemikian rupa disebut dengan

Lebih terperinci

BAB I PENDAHULUAN. Antrian dalam kehidupan sehari-hari sering ditemui, misalnya antrian di

BAB I PENDAHULUAN. Antrian dalam kehidupan sehari-hari sering ditemui, misalnya antrian di BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Antrian dalam kehidupan sehari-hari sering ditemui, misalnya antrian di kasir supermarket, antrian di pom bensin, antrian saat bayar parkir, antrian pasien

Lebih terperinci

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan

Lebih terperinci

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan 4 II. LANDASAN TEORI Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan Schmeiser (1974), yang memiliki empat parameter dari pengembangan distribusi Lambda Tukey. Keluarga distribusi

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA KOMPUTER JAKARTA STIK SATUAN ACARA PERKULIAHAN Mata : TEKNIK SIMULASI Kode Mata : MI - 15222 Jurusan / Jenjang : D3 TEKNIK KOMPUTER Tujuan Instruksional Umum : Agar mahasiswa

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

POKOK BAHASAN YANG DIAJARKAN: 1. DISTRIBUSI PEUBAH ACAK a. Distribusi Peubah Acak Tunggal b. Distribusi Peubah Acak Ganda c. Distribusi Bersyarat d.

POKOK BAHASAN YANG DIAJARKAN: 1. DISTRIBUSI PEUBAH ACAK a. Distribusi Peubah Acak Tunggal b. Distribusi Peubah Acak Ganda c. Distribusi Bersyarat d. POKOK BAHASAN YANG DIAJARKAN:. DISTRIBUSI PEUBAH ACAK a. Distribusi Peubah Acak Tunggal b. Distribusi Peubah Acak Ganda c. Distribusi Bersyarat d. Teorema Bayes. EKSPEKTASI MATEMATIK a. Ekspektasi b. Variansi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini dibahas mengenai tinjauan pustaka yang digunakan dalam penelitian ini, khususnya yang diperlukan dalam Bab 3. Teori yang dibahas adalah teori yang mendukung pembentukan

Lebih terperinci

DISTRIBUSI SATU PEUBAH ACAK

DISTRIBUSI SATU PEUBAH ACAK 0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak

Lebih terperinci

Ekspektasi Satu Peubah Acak Kontinu

Ekspektasi Satu Peubah Acak Kontinu Chandra Novtiar 0857948015 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan Sub Pokok Pembahasan

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I V. SEBARAN FUNGSI PEUBAH ACAK V. Sebaran Fungsi Peubah Acak 1 Sebaran Fungsi Peubah Acak Dalam banyak kasus untuk melakukan inferensi terhadap suatu parameter kita lebih banyak

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

EKSPEKTASI DUA PEUBAH ACAK

EKSPEKTASI DUA PEUBAH ACAK 0 EKSPEKTASI DUA PEUBAH ACAK Dalam hal ini akan dibahas beberapa macam ukuran ang dihitung berdasarkan ekspektasi dari dua peubah acak, baik diskrit maupun kontinu, aitu nilai ekspektasi gabungan, ekspektasi

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

MODEL STOKASTIK.

MODEL STOKASTIK. 11 12. MODEL STOKASTIK alsen.medikano@gmail.com 1 PENDAHULUAN Model Stokastik adalah model matematika dimana gejala-gejala dapat diukur dengan derajat kepastian yang tidak stabil. Pada Model Stokastik

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION

SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION Novita Eka Chandra 1, Supriyanto 2, dan Renny 3 1 Universitas Islam Darul Ulum Lamongan, novitaekachandra@gmail.com 2 Universitas Jenderal Soedirman, supriyanto

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Investasi adalah komitmen atas sejumlah dana atau sumber daya lainnya yang dilakukan pada saat ini, dengan tujuan memperoleh sejumlah keuntungan di masa yang akan

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

BAB II KAJIAN TEORI. Peluang suatu kejadian adalah jumlah bobot semua titik sampel dalam A.

BAB II KAJIAN TEORI. Peluang suatu kejadian adalah jumlah bobot semua titik sampel dalam A. BAB II KAJIAN TEORI A. Variabel Random dan Distribusinya Definisi 2.1 : (Walpole, 1992) Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan diberi simbol S. Definisi 2.2 : (Walpole,

Lebih terperinci

Sampling dengan Simulasi Komputer

Sampling dengan Simulasi Komputer Modul Sampling dengan Simulasi Komputer PENDAHULUAN Sutawanir Darwis M etode statistika merupakan alat untuk menyelesaikan masalah apabila solusi analitik tidak mungkin diperoleh. Dengan metode statistika

Lebih terperinci

Lampiran A. Beberapa Definisi dan Lema Teknis

Lampiran A. Beberapa Definisi dan Lema Teknis LAMPIRAN 33 Lampiran A. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Definisi A.1 (Ruang contoh dan kejadian) Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya

Lebih terperinci

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus : BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak

Lebih terperinci

BAB III METODE SIMULASI

BAB III METODE SIMULASI BAB III METODE SIMULASI 3.1 Metode Simulasi 3.1.1 Pengertian Untuk merumuskan model stokastik pada sebuah sistem yang kompleks, perlu adanya pertimbangan yang baik dalam menentukan model tiruan sistem

Lebih terperinci

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang. MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Heteroskedastis Masalah serius lainnya yang mungkin kita hadapi dalam analisis regresi adalah heteroskedastis.ini timbul pada saat bahwa varians dari faktor konstan untuk semua

Lebih terperinci

DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak

DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN Sudarno Jurusan Matematika FMIPA UNDIP Abstrak Dalam proses stokhastik yang mana kejadian dapat muncul kembali membentuk proses pembahauruan. Proses pembaharuan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Salah satu instrumen derivatif yang mempunyai potensi untuk dikembangkan adalah opsi. Opsi adalah suatu kontrak antara dua pihak, salah satu pihak (sebagai pembeli) mempunyai hak

Lebih terperinci

SIMULASI SISTEM ANTRIAN SINGLE SERVER. Sistem: himpunan entitas yang terdefinisi dengan jelas. Atribut: nilai data yang mengkarakterisasi entitas.

SIMULASI SISTEM ANTRIAN SINGLE SERVER. Sistem: himpunan entitas yang terdefinisi dengan jelas. Atribut: nilai data yang mengkarakterisasi entitas. SIMULASI SISTEM ANTRIAN SINGLE SERVER Sistem: himpunan entitas yang terdefinisi dengan jelas. Atribut: nilai data yang mengkarakterisasi entitas. List/file/set: entitas-entitas dengan properti yang sama.

Lebih terperinci

Minggu 1 Review Peubah Acak dan Fungsi Distribusi. Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting

Minggu 1 Review Peubah Acak dan Fungsi Distribusi. Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting IKG4Q3 Ekonometrik Dosen: Aniq A Rohmawati, M.Si [Kelas Ekonometrik] CS-36-02 [Jadwal] Senin 10.30-12.30 R.A208A; Selasa 10.30-12.30 R.E302 [Materi Ekonometrik] Kuliah Pemodelan dan Simulasi berisi tentang

Lebih terperinci