BAB II LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2. Pengertian Distribusi Eksponensial Distribusi eksponensial adalah distribusi yang paling penting dan paling sederhana kegagalan mesin penghitung otomatis dan kegagalan komponen kumpulan radar yang mana data kegagalan akan baik di gambarkan dengan distribusi eksponensial. Distribusi eksponensial secara terus menerus telah memegang peranan dalam kajian waktu hidup yang disamakan dengan distribusi normal pada kajian statistik lainnya. Distribusi eksponen memiliki fungsi densitas sebagai berikut: dengan nilai ekspektasi dan varians secara berurutan ekspektasi Variansi Pembuktian fungsi densitas sama dengan ℯ 0 dan

2 Selanjutnya akan dicari fungsi kumulatifnya: ℯ [ℯ ] ℯ ℯ ℯ ℯ Pembuktian ekspektasi dan variansi pada distribusi eksponen: 0 0 II-2

3 maka: [ ] 2.2 Fungsi Maksimum Likelihood Mood Graybill and Boes 986:278 menyatakan bahwa Fungsi likelihood dari variabel random bersama dari variabel yang didefinisikan sebagai fungsi kepadatan random. Fungsi mempertimbangkan kepadatan fungsi dari bersama. Jika adalah sampel random dari fungsi kepadatan ;. Maka fungsi likelihoodnya adalah ; ; ;. II-3

4 Fungsi likelihood Contoh 2.: fungsi dari dapat dinotasikan adalah random sampel dari distribusi. : atau Jika sebagai Memiliki bentuk Fungsi likelihood seperti: : ; ; ; Karena sampel acak berdistribusi normal maka fungsi ; Dengan bentuk fungsi likelihood: : ; ;... ; Sehingga fungsi likelihood dapat ditulis sebagai berikut: : 2 II-4

5 2.3 Estimasi Parameter Maksimum Likelihood Estimasi Maksimum Likelihood EML adalah suatu metode yang memaksimumkan fungsi likelihood. Prinsip estimasi maksimum likelihood adalah memilih sebagai estimator titik untuk yang memaksimumkan ;. Metode EML dapat digunakan jika fungsi kepadatan peluang FKP atau distribusi dari variabel acak diketahui. Misalkan FKP adalah sampel acak dari suatu distribusi dengan ; kemudian dibentuk FKP bersama ditentukan fungsi likelihood dari yaitu ;. setelah itu Lee & Wang 2003 meyatakan bahwa metode estimasi maksimum likelihood membuat fungsi likelihood ; menjadi maksimum dan digunakan fungsi logaritma. Sehingga fungsi logaritma likelihood dinotasikan dengan ln ; ; dimana ; ;. Dengan menggunakan logaritma ; maka estimator likelihood diperoleh dari turunan fungsi likelihood terhadap parameternya yaitu ; 0. Contoh 2.2 : Diketahui fungsi likelihood sebagai berikut : ; dari fungsi tersebut tentukanlah estimator dari. Penyelesaian : Untuk menentukan estimator dari maka kita harus menjadikan fungsi likelihood tersebut menjadi logaritma likelihood atau ln ; ; yaitu : ; ln ln ln ln ln ln ln II-5

6 karena ; sehingga ln ln ln ln ln ln ln ln ln 0 ln 0 ln maka estimator maksimum likelihood untuk pembuktian untuk distribusi eksponen: dimana jika diketahui fungsi densitas distribusi eksponen: sehingga log log log 0 log 0 II-6

7 2.4 Rantai Markov 2.4. Pengertian Rantai Markov Isaacson and Madson 976 menyatakan bahwa Rantai Markov adalah suatu teknik yang digunakan dalam menganalisis perilaku saat ini dari beberapa variabel dengan tujuan untuk memprediksi perilaku dari variabel yang sama pada masa mendatang. Rantai Markov Markov Chains adalah suatu teknik matematika yang biasa digunakan untuk melakukan pembuatan model modelling bermacammacam sistem dan proses bisnis Subagyo Asri dan Handoko 984p243. Teknik ini dapat digunakan untuk meramalkan perubahan-perubahan di waktu yang akan datang pada variabel-variabel dinamis berdasarkan hasil pengamatan pada variabel-variabel tersebut di masa yang lalu. Model rantai Markov dikembangkan oleh seorang ahli Rusia bernama A.A.Markov pada tahun 906. Penerapan rantai Markov mula-mula adalah pada ilmu- ilmu pengetahuan fisik dan meteorologi. Teknik ini mula-mula digunakan untuk menganalisis dan memperkirakan perilaku partikel-partikel gas dalam suatu wadah container tertutup serta meramal keadaan cuaca. Sebagai suatu peralatan riset operasi dalam pengambilan keputusan manajerial rantai Markov telah banyak diterapkan untuk menganalisis perpindahan merek brand switching dalam pemasaran perhitungan rekening-rekening jasa-jasa penyewaan mobil perencanaan penjualan masalahmasalah persediaan pemeliharaan mesin antrian perubahan harga pasar saham administrasi rumah sakit dan sebagainya. Konsep dasar rantai Markov diperkenalkan pada tahun 907 oleh seorang ahli matematika dari Rusia yang bernama Andrei A. Markov Markov membuat asumsi bahwa sistem dimulai pada kondisi awal. Misalkan terdapat dua buah perusahaan yang bersaing dengan masing-masing pangsa pasar II-7

8 awal sebesar 40% dan 60%. Mungkin saja pada masa mendatang pangsa pasar kedua perusahaan tersebut mengalami perubahan menjadi 45% dan 55%. Dalam memprediksi state tersebut dibutuhkan pemahaman akan kecenderungan perubahan nilai probabilitas tersebut dari perubahan satu state ke state berikutnya. Kemungkinan perubahan dari satu state ke state yang lainnya dalam proses Markov disebut kemungkinan transisi kemudian dari perubahan tersebut dapat ditampilkan dalam bentuk matriks kemungkinan transisi. Matriks kemungkinan transisi ini menunjukan kecenderungan bahwa suatu sistem akan berubah dalam satu periode ke periode berikutnya Matriks Probabilitas Transisi Rantai Markov Diskrit Rantai Markov diskrit adalah sebuah proses Markov yang ruang statenya adalah bilangan yang dapat dihitung bilangan indeksnya dan ruang state dari rantai Markov dinyatakan dengan bilangan bulat tak negatif {0 menyatakan } dan berada pada state i. Howard. M 984. Dalam bentuk formalsifat Markov dinyatakan sebagai berikut: [ ] [ ]. Berdasarkan sifat markov tersebut dapat diartikan serupa dengan keadaan probabilitas bersyarat dari kejadian yang akan datang bila diketahui kejadian yang sebelumnya. Probabilitas bersyarat [ transisi apabila untuk setiap dan dengan: [ Untuk semua ] [ stasioner dan diberi tanda dengan ] disebut probabilitas ]. maka probabilitas transisi satu langkah disebut.. Probabilitas bersyarat diberi notasi disebut probabilitas transisi langkah yang disebut juga dengan probabilitas bersyarat yang dimulai pada tingkat keadaan dan menjadi tingkat keadaan setelah langkah. Karena adalah peluang bersyarat maka harus memenuhi kondisi: II-8

9 . 0 untuk semua dan. 2.. Jika sebuah rantai markov memiliki keadaan yang mungkin yang kita sebut 23 maka probabilitas sistem itu adalah dalam keadaan kemudian sistem bergerak pada keadaan ditandai dengan pada pengamatan berikutnya yang dan sistem disebut dengan kemungkinan peralihan transition probability dari keadaan [ ke keadaan. Matriks transisi dari Rantai Markov Howard Anton 988. ] [ yang adalah jumlah keadaan dalam proses dan ] disebut matriks adalah kemungkinan transisi dari keadaan saat ke keadaan. Jika saat ini berada pada keadaan maka baris dari matriks di atas berisi angka-angka... merupakan kemungkinan berubah ke keadaan berikutnya. Oleh karena angka tersebut melambangkan kemungkinan maka semuanya merupakan bilangan non negatif dan tidak lebih dari satu dan jumlah dari secara matematis adalah: pada setiap langkah sistem bergerak dari keadaannya state dindalam keadaannya yang sama atau keadaan yang lain. adalah besarnya probabilitas pada keadaan dengan syarat keadaan sebelumnya adalah. II-9

10 [ [ [ [. ] [ ] ] ] 2 2 ] Dalam skripsi ini yang pertama sekali dilakukan adalah pemberian simbol untuk data tidak hujan dengan 0 dan untuk data hujan dengan. Adapun orde 3 dapat diartikan bahwa peristiwa hujan dan tidak hujan pada hari ini akan dipengaruhi oleh sederetan peristiwa hujan dan tidak hujan 3 hari berikutnya. Sederetan peristiwa tersebut dapat dilihat pada tabel berikut : Tabel 2. Simbol untuk Rantai Markov orde 3 Simbol Keterangan Hari ini tidak hujan dan 3 hari berikutnya juga tidak hujan Hari ini tidak hujan 2 hari berikutnya tidak hujan dan hari berikutnya hujan Hari ini tidak hujan hari berikutnya tidak hujan hari berikutnya hujan dan hari berikutnya tidak hujan Hari ini tidak hujan hari berikutnya tidak hujan dan 2 hari berikutnya hujan Hari ini tidak hujan hari berikutnya hujan dan 2 hari berikutnya tidak hujan Hari ini tidak hujan hari berikutnya hujan hari berikutnya tidak hujan dan hari berikutnya hujan. Hari tidak hujan 2 hari berikutnya hujan dan hari berikutnya tidak hujan 0 Hari ini tidak hujan dan 3 hari berikutnya tidak hujan 000 Hari ini hujan dan 3 hari berikutnya hujan 00 Hari ini hujan 2 hari berikutnya tidak hujan dan hari II-0

11 berikutnya tidak hujan Hari ini hujan hari berikutnya tidak hujan hari berikutnya hujan dan hari berikutnya tidak hujan Hari ini hujan hari berikutnya tidak hujan dan 2 hari berikutnya hujan Hari ini hujan hari berikutnya hujan dan 2 hari berikutnya tidak hujan Hari ini hujan hari berikutnya hujan hari berikutnya tidak hujan dan hari berikutnya hujan Hari ini hujan 2 hari berikutnya hujan dan hari berikutnya tidak hujan Hari ini hujan dan 3 hari berikutnya hujan Uji Kebaikan Data simulasi yang telah dihasilkan dilakukan pengujian untuk menentukan apakah data simulasi tersebut dapat digunakan untuk berbagai keperluan. Pengujian data tersebut dilakukan dengan membandingkan rata-rata statistik yang dihasilkan oleh data simulasi maupun data sebenarnya hasil simulasi dikatakan baik apabila rata-rata yang dibandingkan tersebut tidak jauh berbeda atau hampir sama atau selisih rata-rata dari data simulasi mendekati nol. Adapun rumus yang dapat digunakan untuk mencari uji kebaikan adalah: II-

12 II-2

BAB I PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi yang sangat pesat,

BAB I PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi yang sangat pesat, BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan ilmu pengetahuan dan teknologi yang sangat pesat, menjadikan statistika memegang peranan penting dalam kehidupan. Hampir semua fenomena yang terjadi

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dalam pembicaraan statistik, jawaban yang diinginkan adalah jawaban untuk ruang lingkup yang lebih luas, yakni populasi. Tetapi objek dari studi ini menggunakan sampel

Lebih terperinci

PERBANDINGAN PENGGUNAAN RANTAI MARKOV DAN DISTRIBUSI CAMPURAN DATA TIDAK HUJAN DAN DATA HUJAN UNTUK MENSIMULASI DATA HUJAN HARIAN TUGAS AKHIR

PERBANDINGAN PENGGUNAAN RANTAI MARKOV DAN DISTRIBUSI CAMPURAN DATA TIDAK HUJAN DAN DATA HUJAN UNTUK MENSIMULASI DATA HUJAN HARIAN TUGAS AKHIR PERBANDINGAN PENGGUNAAN RANTAI MARKOV DAN DISTRIBUSI CAMPURAN DATA TIDAK HUJAN DAN DATA HUJAN UNTUK MENSIMULASI DATA HUJAN HARIAN TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini diberikan beberapa konsep dasar seperti teorema dan beberapa definisi sebagai landasan dalam penelitian ini. Konsep dasar ini berkaitan dengan masalah yang dibahas dalam

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peluang Peluang mempunyai banyak persamaan arti, seperti kemungkinan, kesempatan dan kecenderungan. Peluang menunjukkan kemungkinan terjadinya suatu kejadian yang bersifat acak.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 18 BAB III METODE PENELITIAN Pada bab ini akan dikemukakan metode-metode yang akan digunakan pada bab selanjutnya. Metode-metode pada bab ini yaitu metode Value at Risk dengan pendekatan distribusi normal

Lebih terperinci

RANTAI MARKOV ( MARKOV CHAIN )

RANTAI MARKOV ( MARKOV CHAIN ) RANTAI MARKOV ( MARKOV CHAIN ) 2.1 Tujuan Praktikum Rantai markov (Markov Chain ) merupakan salah satu materi yang akan dipelajari dalam praktikum stokastik. Berikut ini terdapat beberapa tujuan yang akan

Lebih terperinci

BAB I PENDAHULUAN. Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang

BAB I PENDAHULUAN. Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang BAB I PENDAHULUAN 1.1 Latar Belakang Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang dimaksud di sini adalah peristiwa kegagalan yang dapat berupa tidak berfungsinya benda tersebut

Lebih terperinci

ANALISIS PERPIDAHAN PENGGUNAAN MEREK SIMCARD DENGAN PENDEKATAN RANTAI MARKOV

ANALISIS PERPIDAHAN PENGGUNAAN MEREK SIMCARD DENGAN PENDEKATAN RANTAI MARKOV E-Jurnal Matematika Vol. 7 (1), Januari 2018, pp. 56-63 ISSN: 2303-1751 DOI: https://doi.org/10.24843/mtk.2018.v07.i01.p185 ANALISIS PERPIDAHAN PENGGUNAAN MEREK SIMCARD DENGAN PENDEKATAN RANTAI MARKOV

Lebih terperinci

BAB III ESTIMASI BIAYA GARANSI TV. Pada bab ini akan dibahas tahapan-tahapan yang dilakukan untuk

BAB III ESTIMASI BIAYA GARANSI TV. Pada bab ini akan dibahas tahapan-tahapan yang dilakukan untuk BAB III ESTIMASI BIAYA GARANSI TV Pada bab ini akan dibahas tahapan-tahapan yang dilakukan untuk mengestimasi biaya garansi satu dimensi pada TV. Adapun tahapan-tahapan yang dilakukan seperti terlihat

Lebih terperinci

TUGAS AKHIR ARNI YUNITA

TUGAS AKHIR ARNI YUNITA SIMULASI HUJAN HARIAN DI KOTA PEKANBARU MENGGUNAKAN RANTAI MARKOV ORDE TINGGI (ORDE 3) TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh :

Lebih terperinci

BAB III. Hidden Markov Models (HMM) Namun pada beberapa situasi tertentu yang ditemukan di kehidupan nyata,

BAB III. Hidden Markov Models (HMM) Namun pada beberapa situasi tertentu yang ditemukan di kehidupan nyata, BAB III Hidden Markov Models (HMM) 3.1 Pendahuluan Rantai Markov mempunyai state yang dapat diobservasi secara langsung. Namun pada beberapa situasi tertentu yang ditemukan di kehidupan nyata, beberapa

Lebih terperinci

KONSEP DASAR TERKAIT METODE BAYES

KONSEP DASAR TERKAIT METODE BAYES KONSEP DASAR TERKAIT METODE BAYES 2.3. Peubah Acak dan Distribusi Peluang Pada statistika kita melakukan percobaan dimana percobaan tersebut akan menghasilkan suatu peluang. Ruang sampel pada percobaan

Lebih terperinci

BAB III HIDDEN MARKOV MODELS. Rantai Markov bermanfaat untuk menghitung probabilitas urutan keadaan

BAB III HIDDEN MARKOV MODELS. Rantai Markov bermanfaat untuk menghitung probabilitas urutan keadaan BAB III HIDDEN MARKOV MODELS Rantai Markov bermanfaat untuk menghitung probabilitas urutan keadaan yang dapat diamati. Tetapi terkadang ada urutan dari suatu keadaan yang ingin diketahui tetapi tidak dapat

Lebih terperinci

BAB III MARKOV SWITCHING AUTOREGRESSIVE (MSAR)

BAB III MARKOV SWITCHING AUTOREGRESSIVE (MSAR) 25 BAB III (MSAR) 3.1 Model Markov Switching Autoregressive Model runtun waktu Markov Switching Autoregressive adalah salah satu model runtun waktu yang merupakan perluasan dari model Autoregressive (AR).Ide

Lebih terperinci

BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU

BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU 3.1 Model Regresi Cox Proportional Hazard dengan Variabel Terikat oleh Waktu Model regresi Cox proportional hazard

Lebih terperinci

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer BAB I PENDAHULUAN A. Latar Belakang Statistika merupakan salah satu ilmu matematika yang terus berkembang dari waktu ke waktu. Di dalamnya mencakup berbagai sub pokok-sub pokok materi yang sangat bermanfaat

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL SKRIPSI

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL SKRIPSI MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL SKRIPSI Oleh : WINDA FAATI KARTIKA J2E 006 039 PRODI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

II. TINJAUAN PUSTAKA. real. T dinamakan himpunan indeks dari proses atau ruang parameter yang

II. TINJAUAN PUSTAKA. real. T dinamakan himpunan indeks dari proses atau ruang parameter yang II. TINJAUAN PUSTAKA 2.1 Proses Stokastik Stokastik proses = { ( ), } adalah kumpulan dari variabel acak yang didefinisikan pada ruang peluang (Ω, ς, P) yang nilai-nilainya pada bilangan real. T dinamakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teori Pemeliharaan Untuk menjamin kontinuitas kegiatan operasional suatu sistem, keandalan setiap komponen peralatan sangat dijaga agar peralatan tersebut tidak mengalami kegagalan

Lebih terperinci

PREDIKSI JUMLAH LULUSAN DAN PREDIKAT KELULUSAN MAHASISWA FMIPA UNTAN TAHUN ANGKATAN 2013/2014 DENGAN METODE RANTAI MARKOV

PREDIKSI JUMLAH LULUSAN DAN PREDIKAT KELULUSAN MAHASISWA FMIPA UNTAN TAHUN ANGKATAN 2013/2014 DENGAN METODE RANTAI MARKOV Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3(2015), hal 347-352. PREDIKSI JUMLAH LULUSAN DAN PREDIKAT KELULUSAN MAHASISWA FMIPA UNTAN TAHUN ANGKATAN 2013/2014 DENGAN METODE RANTAI

Lebih terperinci

DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA

DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA digilib.uns.ac.id DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA oleh ANIS TELAS TANTI M0106003 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau BAB II TINJAUAN PUSTAKA 2.1 Proses Stokastik Menurut Gross (2008), proses stokastik adalah himpunan variabel acak Semua kemungkinan nilai yang dapat terjadi pada variabel acak X(t) disebut ruang keadaan

Lebih terperinci

Markov Chain. Game Theory. Dasar Simulasi

Markov Chain. Game Theory. Dasar Simulasi Markov Chain Game Theory Dasar Simulasi Analisis Perubahan Cuaca Perpindahan merek Operasi dan maintenance mesin Perubahan harga di pasar saham dll Menyusun matriks probabilitas transisi. Menghitung probabilitas

Lebih terperinci

BAB III PROSES POISSON MAJEMUK

BAB III PROSES POISSON MAJEMUK BAB III PROSES POISSON MAJEMUK Pada bab ini membahas tentang proses stokastik, proses Poisson dan proses Poisson majemuk yang akan diaplikasikan pada bab selanjutnya. 3.1 Proses Stokastik Koleksi atau

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

TINJAUAN PUSTAKA. Kriptografi

TINJAUAN PUSTAKA. Kriptografi TINJAUAN PUSTAKA Kriptografi Kriptografi adalah studi teknik matematika yang berhubungan dengan aspek-aspek pengamanan informasi seperti kerahasiaan, integritas data, autentikasi entitas, dan autentikasi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan nyata, hampir seluruh fenomena alam mengandung ketidakpastian atau bersifat probabilistik, misalnya pergerakan lempengan bumi yang menyebabkan gempa,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. komoditas, model pergerakan harga komoditas, rantai Markov, simulasi Standard

BAB II TINJAUAN PUSTAKA. komoditas, model pergerakan harga komoditas, rantai Markov, simulasi Standard BAB II TINJAUAN PUSTAKA Pada bab ini akan dibahas beberapa tinjauan mengenai teori yang diperlukan dalam pembahasan bab-bab selanjutnya antara lain tentang kontrak berjangka komoditas, model pergerakan

Lebih terperinci

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang.

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang. MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL Winda Faati Kartika 1, Triastuti Wuryandari 2 1, 2) Program Studi Statistika Jurusan Matematika FMIPA Universitas Diponegoro

Lebih terperinci

BAB I PENDAHULUAN. Dalam kehidupan sehari-hari, sering dijumpai peristiwa-peristiwa yang terjadi

BAB I PENDAHULUAN. Dalam kehidupan sehari-hari, sering dijumpai peristiwa-peristiwa yang terjadi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam kehidupan sehari-hari, sering dijumpai peristiwa-peristiwa yang terjadi secara beruntun dan dengan kemungkinan yang berbeda-beda. Sebagai contoh sekarang

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS KODE / SKS : KK-01333 / 3 SKS 1 Pengertian dan tujuan 1. Klasifikasi Model 1 Simulasi. Perbedaan penyelesaian problem Dapat menjelaskan klasifikasi model dari matematis secara analitis dan numeris suatu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Analisis survival adalah analisis data yang memanfaatkan informasi kronologis dari suatu kejadian atau peristiwa (event). Respon yang diperhatikan adalah waktu sampai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole

Lebih terperinci

BAB IV KESIMPULAN DAFTAR PUSTAKA LAMPIRAN... 64

BAB IV KESIMPULAN DAFTAR PUSTAKA LAMPIRAN... 64 DAFTAR ISI Halaman HALAMAN JUDUL... ii HALAMAN PENGESAHAN... iii KATA PENGANTAR... v ABSTRAK... vii ABSTACT... viii DAFTAR ISI... ix DAFTAR SIMBOL... xii DAFTAR TABEL... xiv DAFTAR GAMBAR... xv DAFTAR

Lebih terperinci

6.6 Rantai Markov Kontinu pada State Berhingga

6.6 Rantai Markov Kontinu pada State Berhingga 6.6 Rantai Markov Kontinu pada State Berhingga Markov chain kontinu 0 adalah proses markov pada state 0, 1, 2,.... Diasumsikan bahwa probabilitas transisi adalah stasioner, pada persamaan, (6.53) Pada

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Distribusi eksponensial tergenaralisir (Generalized Eponential Distribution) pertama kali diperkenalkan oleh Gupta dan Kundu pada tahun 1999. Distribusi ini diambil

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Investasi pada hakekatnya merupakan penempatan sejumlah uang atau dana yang dilakukan pada saat ini dengan harapan memperoleh keuntungan di masa mendatang (Halim,

Lebih terperinci

KAJIAN MODEL MARKOV WAKTU DISKRIT UNTUK PENYEBARAN PENYAKIT MENULAR PADA MODEL EPIDEMIK SIR. Oleh: RAFIQATUL HASANAH NRP.

KAJIAN MODEL MARKOV WAKTU DISKRIT UNTUK PENYEBARAN PENYAKIT MENULAR PADA MODEL EPIDEMIK SIR. Oleh: RAFIQATUL HASANAH NRP. TUGAS AKHIR KAJIAN MODEL MARKOV WAKTU DISKRIT UNTUK PENYEBARAN PENYAKIT MENULAR PADA MODEL EPIDEMIK SIR Oleh: RAFIQATUL HASANAH NRP. 1208 100 021 Dosen Pembimbing: Dra. Laksmi Prita Wardhani, M.Si. Drs.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Bidang statistika berhubungan dengan cara atau metode pengumpulan data, pengolahan, penyajian, dan analisisnya serta pengambilan kesimpulan berdasarkan data dan analisis

Lebih terperinci

BAB IV ANALISIS MARKOV

BAB IV ANALISIS MARKOV BAB IV ANALISIS MARKOV 1. Pendahuluan Model Rantai Markov dikembangkan oleh seorang ahli Rusia A.A. Markov pada tahun 1906. Pada umumnya Riset Operasional bertujuan untuk mengambil keputusan yang optimal

Lebih terperinci

BAB 3 PEMBAHASAN. Contoh 1:

BAB 3 PEMBAHASAN. Contoh 1: BAB 3 PEMBAHASAN 3.1 Pengolahan Data Seperti yang telah dijelaskan sebelumnya, rantai markov atau proses markov akan digunakan untuk menganalisa data yang diperoleh dalam penelitian ini. Contoh kasus yang

Lebih terperinci

BAB III KALMAN FILTER DISKRIT. Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma)

BAB III KALMAN FILTER DISKRIT. Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma) BAB III KALMAN FILTER DISKRIT 3.1 Pendahuluan Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma) yang memberikan perhitungan efisien dalam mengestimasi state proses, yaitu dengan

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

BAB III MODEL STATE-SPACE. dalam teori kontrol modern. Model state space dapat mengatasi keterbatasan dari

BAB III MODEL STATE-SPACE. dalam teori kontrol modern. Model state space dapat mengatasi keterbatasan dari BAB III MODEL STATE-SPACE 3.1 Representasi Model State-Space Representasi state space dari suatu sistem merupakan suatu konsep dasar dalam teori kontrol modern. Model state space dapat mengatasi keterbatasan

Lebih terperinci

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process Prosiding Statistika ISSN: 2460-6456 Pemodelan Data Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process 1 Novi Tri Wahyuni, 2 Sutawatir Darwis, 3 Teti Sofia Yanti 1,2,3 Prodi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION Oleh: Desi Nur Faizah 1209 1000 17 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Lebih terperinci

ANALISIS ESTIMASI PERUBAHAN MINAT MAHASISWA UNIVERSITAS SUMATERA UTARA TERHADAP TUJUH OPERATOR GSM

ANALISIS ESTIMASI PERUBAHAN MINAT MAHASISWA UNIVERSITAS SUMATERA UTARA TERHADAP TUJUH OPERATOR GSM Saintia Matematika Vol., No. 2 (2), pp. 9 9. ANALISIS ESTIMASI PERUBAHAN MINAT MAHASISWA UNIVERSITAS SUMATERA UTARA TERHADAP TUJUH OPERATOR GSM Hasoloan M Nababan, Open Darnius Sembiring, Ujian Sinulingga

Lebih terperinci

S - 9 PERGESERAN PANGSA PASAR KARTU SELULER PRA BAYAR GSM MENGGUNAKAN ANALISIS RANTAI MARKOV (Studi Kasus: Mahasiswa FMIPA UNSRAT Manado)

S - 9 PERGESERAN PANGSA PASAR KARTU SELULER PRA BAYAR GSM MENGGUNAKAN ANALISIS RANTAI MARKOV (Studi Kasus: Mahasiswa FMIPA UNSRAT Manado) S - 9 PERGESERAN PANGSA PASAR KARTU SELULER PRA BAYAR GSM MENGGUNAKAN ANALISIS RANTAI MARKOV (Studi Kasus: Mahasiswa FMIPA UNSRAT Manado) Djoni Hatidja 1, Sri H. Abdullah 2, dan Deiby T. Salaki 3 1,2,3

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN digilib.uns.ac.id BAB III METODE PENELITIAN Metode yang digunakan dalam penelitian ini adalah kajian pustaka dari buku referensi karya ilmiah. Karya ilmiah yang digunakan adalah hasil penelitian serta

Lebih terperinci

Prediksi Indeks Saham Syariah Indonesia Menggunakan Model Hidden Markov

Prediksi Indeks Saham Syariah Indonesia Menggunakan Model Hidden Markov JURNAL SAINS DAN SENI POMITS Vol. 6, No.2, (2017) 2337-3520 (2301-928X Print) A 39 Prediksi Indeks Saham Syariah Indonesia Menggunakan Model Hidden Markov Risa Septi Pratiwi Daryono Budi Utomo Jurusan

Lebih terperinci

MODEL STOKASTIK PERTUMBUHAN POPULASI (PURE BIRTH PROCESS)

MODEL STOKASTIK PERTUMBUHAN POPULASI (PURE BIRTH PROCESS) Jurnal Euclid, Vol. 4, No. 1, p.675 MODEL STOKASTIK PERTUMBUHAN POPULASI (PURE BIRTH PROCESS) Surya Amami Pramuditya 1, Tonah 2 1,2 Pendidikan Matematika FKIP Universitas Swadaya Gunung Jati Cirebon amamisurya@fkip-unswagati.ac.id

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengantar Pada bab ini akan diuraikan beberapa landasan teori untuk menunjang penulisan skripsi ini. Uraian ini terdiri dari beberapa bagian yang akan dipaparkan secara terperinci

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Rantai Markov Waktu Kontinu Pendahuluan Pada bab ini, kita akan belajar mengenai

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi adalah suatu metode yang digunakan untuk menganalisa hubungan antara variabel respon dan variabel prediktor. Pada umumnya analisis regresi

Lebih terperinci

Hanna Lestari, ST, M.Eng. Lecture 11 : Rantai Markov

Hanna Lestari, ST, M.Eng. Lecture 11 : Rantai Markov Hanna Lestari, ST, M.Eng Lecture 11 : Rantai Markov I. Pendahuluan Model rantai markov dikembangkan oleh A.A Markov tahun 1896. Dalam Analisis markov yang dihasilkan adalah suatu informasi probabilistik

Lebih terperinci

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang BAB II KAJIAN TEORI BAB II KAJIAN TEORI A. Analisis Survival Analisis survival atau analisis ketahanan hidup adalah metode yang berhubungan dengan jangka waktu, dari awal pengamatan sampai suatu kejadian

Lebih terperinci

BAB III REGRESI SPASIAL DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED POISSON REGRESSION (GWPR)

BAB III REGRESI SPASIAL DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED POISSON REGRESSION (GWPR) BAB III REGRESI SPASIAL DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED POISSON REGRESSION (GWPR) 3.1 Regresi Poisson Regresi Poisson merupakan suatu bentuk analisis regresi yang digunakan untuk memodelkan data

Lebih terperinci

SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION

SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION Novita Eka Chandra 1, Supriyanto 2, dan Renny 3 1 Universitas Islam Darul Ulum Lamongan, novitaekachandra@gmail.com 2 Universitas Jenderal Soedirman, supriyanto

Lebih terperinci

PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON

PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON Haposan Sirait 1 dan Rustam Efendi 2 1,2 Dosen Program Studi Matematika FMIPA Universitas Riau. Abstrak: Makalah ini menyajikan tentang

Lebih terperinci

MODEL LAJU PERUBAHAN NILAI TUKAR RUPIAH (IDR) TERHADAP POUNDSTERLING (GBP) DENGAN METODE MARKOV SWITCHING AUTOREGRESSIVE (MSAR)

MODEL LAJU PERUBAHAN NILAI TUKAR RUPIAH (IDR) TERHADAP POUNDSTERLING (GBP) DENGAN METODE MARKOV SWITCHING AUTOREGRESSIVE (MSAR) Jurnal Matematika UNAND Vol. 5 No. 3 Hal. 56 64 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND MODEL LAJU PERUBAHAN NILAI TUKAR RUPIAH (IDR) TERHADAP POUNDSTERLING (GBP) DENGAN METODE MARKOV SWITCHING

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

MODEL RANTAI MARKOV PANGSA PASAR OPERATOR SELULAR DI UNIVERSITAS BINA NUSANTARA, JAKARTA BARAT

MODEL RANTAI MARKOV PANGSA PASAR OPERATOR SELULAR DI UNIVERSITAS BINA NUSANTARA, JAKARTA BARAT MODEL RANTAI MARKOV PANGSA PASAR OPERATOR SELULAR DI UNIVERSITAS BINA NUSANTARA, JAKARTA BARAT Tjia Fie Tjoe 1 ; Haryadi Sarjono 2 ABSTRACT Article presented the replacement of cellular cards operator

Lebih terperinci

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi Garansi dapat diartikan sebagai jaminan yang diberikan secara tertulis oleh pabrik atau supplier kepada

Lebih terperinci

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat BAB I PENDAHULUAN 1.1 Latar Belakang Jika kita mempunyai data yang terdiri dari dua atau lebih variabel maka sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat berhubungan, hubungan

Lebih terperinci

BAB III PERAMALAN DENGAN METODE DEKOMPOSISI. (memecah) data deret berkala menjadi beberapa pola dan mengidentifikasi masingmasing

BAB III PERAMALAN DENGAN METODE DEKOMPOSISI. (memecah) data deret berkala menjadi beberapa pola dan mengidentifikasi masingmasing BAB III PERAMALAN DENGAN METODE DEKOMPOSISI 3.1 Metode Dekomposisi Prinsip dasar dari metode dekomposisi deret berkala adalah mendekomposisi (memecah) data deret berkala menjadi beberapa pola dan mengidentifikasi

Lebih terperinci

BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian

BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian BAB II KAJIAN TEORI A. Probabilitas Teorema 2.1 (Walpole, 1992) Probabilitas menunjukan suatu percobaan mempunyai hasil percobaan yang berbeda dan masing-masing mempunyai kemungkinan yang sama untuk terjadi,

Lebih terperinci

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus : BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak

Lebih terperinci

BAB III ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (APARCH) Asymmetric Power Autoregressive Conditional Heteroscedasticity

BAB III ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (APARCH) Asymmetric Power Autoregressive Conditional Heteroscedasticity BAB III ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (APARCH) 3.1 Proses APARCH Asymmetric Power Autoregressive Conditional Heteroscedasticity (APARCH) diperkenalkan oleh Ding, Granger

Lebih terperinci

ANALISIS MARKOV Proses Markov Matriks kemungkinan perpindahan keadaan / transisi

ANALISIS MARKOV Proses Markov Matriks kemungkinan perpindahan keadaan / transisi ANALISIS MARKOV Analisis Markov adalah suatu teknik matematik untuk peramalan perubahan pada variabelvariabel tertentu berdasarkan pengetahuan dari perubahan sebelumnya Pada analisis ini terlihat suatu

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab 2 LANDASAN TEORI 2.1 Pemasaran 2.1.1 Definisi Pemasaran Pemasaran adalah suatu proses sosial dalam manajerial yang didalamnya individu dan kelompok mendapatkan apa saja yang mereka butuhkan dan inginkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. diperhatikan adalah jangka waktu dari awal pengamatan sampai suatu event

BAB II TINJAUAN PUSTAKA. diperhatikan adalah jangka waktu dari awal pengamatan sampai suatu event BAB II TINJAUAN PUSTAKA A. Analisis Survival Analisis survival merupakan suatu analisis data dimana variabel yang diperhatikan adalah jangka waktu dari awal pengamatan sampai suatu event terjadi dengan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teori Antrian 2.1.1. Sejarah Teori Antrian. Teori antrian adalah teori yang menyangkut studi matematis dari antrian atau baris-baris penungguan. Teori antrian berkenaan dengan

Lebih terperinci

ESTIMASI PARAMETER MODEL REGRESI POISSON TERGENERALISASI TERBATAS DENGAN METODE MAKSIMUM LIKELIHOOD

ESTIMASI PARAMETER MODEL REGRESI POISSON TERGENERALISASI TERBATAS DENGAN METODE MAKSIMUM LIKELIHOOD ESTIMASI PARAMETER MODEL REGRESI POISSON TERGENERALISASI TERBATAS DENGAN METODE MAKSIMUM LIKELIHOOD Fitra1, Saleh2, La Podje3 Mahasiswa Program Studi Statistika, FMIPA Unhas 2,3 Dosen Program Studi Statistika,

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.. Konsep Dasar Analisis Runtun Waktu Pada bagian ini akan dikemukakan beberapa definisi yang menyangkut pengertian dan konsep dasar analisis runtun waktu. Definisi Runtun waktu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Model Markov Dalam teori probabilitas, model Markov adalah model stokastik yang digunakan untuk memodelkan sistem yang berubah-ubah secara random di mana diasumsikan bahwa kondisi

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2. Pengertian Pemeliharaan Menurut Agus Ahyari (99) pemeliharaan merupakan suatu kegiatan mutlak yang diperlukan dalam perusahaan yang saling berkaitan dengan proses produksi, sehingga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fungsi Densitas Definisi 2.1 (Walpole & Myers, 1989) Fungsi adalah fungsi kepadatan peluang peubah acak kontinu, yang biasanya disebut fungsi densitas,yang didefinisikan di atas

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

PENDEKATAN PERSAMAAN CHAPMAN-KOLMOGOROV UNTUK MENGUKUR RISIKO KREDIT. Chairunisah

PENDEKATAN PERSAMAAN CHAPMAN-KOLMOGOROV UNTUK MENGUKUR RISIKO KREDIT. Chairunisah PENDEKATAN PERSAMAAN CHAPMAN-KOLMOGOROV UNTUK MENGUKUR RISIKO KREDIT Chairunisah denisa0105@yahoo.com Abstrak Banyak permasalahan yang dapat dimodelkan dengan menggunakan program matematika yang bertujuan

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA KOMPUTER JAKARTA STIK SATUAN ACARA PERKULIAHAN Mata : TEKNIK SIMULASI Kode Mata : MI - 15222 Jurusan / Jenjang : D3 TEKNIK KOMPUTER Tujuan Instruksional Umum : Agar mahasiswa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 14 BAB 2 LANDASAN TEORI 2.1. Pendahuluan Antrian adalah kejadian yang sering dijumpai dalam kehidupan seharihari. Menunggu di depan loket untuk mendapatakan tiket kereta api, menunggu pengisian bahan bakar,

Lebih terperinci

AK6083 Manajemen Risiko Kuantitatif. Referensi: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools.

AK6083 Manajemen Risiko Kuantitatif. Referensi: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools. AK6083 Manajemen Risiko Kuantitatif Referensi: Silabus: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools Seputar risiko dan volatilitas Peubah acak dan fungsi

Lebih terperinci

Estimasi Titik. (Point Estimation) Minggu ke 1-3. Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada

Estimasi Titik. (Point Estimation) Minggu ke 1-3. Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada Estimasi Titik (Point Estimation) Minggu ke 1-3 Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada 2014 Prof. Dr. Sri Haryatmi, M. Sc. (UGM) Daftar Isi 2014 1 / 33 DAFTAR ISI 1 Minggu 1 Pertemuan 1

Lebih terperinci

Disusun oleh: 1. Diah Sani Susilawati ( / 7B) 2. Farid Hidayat ( / 7B) 3. Rico Nurcahyo ( / 7B)

Disusun oleh: 1. Diah Sani Susilawati ( / 7B) 2. Farid Hidayat ( / 7B) 3. Rico Nurcahyo ( / 7B) DISTRIBUSI MARGINAL DAN DISTRIBUSI GABUNGAN Disusun guna memenuhi tugas mata kuliah Statistika Matematika Dosen Pengampu: Supandi, M.Si Disusun oleh:. Diah Sani Susilawati (8355/ 7B). Farid Hidaat (836/

Lebih terperinci

BAB III THRESHOLD AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICTY (TARCH) Proses TARCH merupakan modifikasi dari model ARCH dan GARCH.

BAB III THRESHOLD AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICTY (TARCH) Proses TARCH merupakan modifikasi dari model ARCH dan GARCH. BAB III THRESHOLD AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICTY (TARCH) 3.1. Model TARCH Proses TARCH merupakan modifikasi dari model ARCH dan GARCH. Pada proses ini nilai residu yang lebih kecil dari nol

Lebih terperinci

PENERAPAN MODEL REGRESI LINIER BAYESIAN UNTUK MENGESTIMASI PARAMETER DAN INTERVAL KREDIBEL

PENERAPAN MODEL REGRESI LINIER BAYESIAN UNTUK MENGESTIMASI PARAMETER DAN INTERVAL KREDIBEL PENERAPAN MODEL REGRESI LINIER BAYESIAN UNTUK MENGESTIMASI PARAMETER DAN INTERVAL KREDIBEL Vania Mutiarani 1, Adi Setiawan, Hanna Arini Parhusip 3 1 Mahasiswa Program Studi Matematika FSM UKSW, 3 Dosen

Lebih terperinci

Pemodelan Sistem Antrian Satu Server Dengan Vacation Queueing Model Pada Pola Kedatangan Berkelompok

Pemodelan Sistem Antrian Satu Server Dengan Vacation Queueing Model Pada Pola Kedatangan Berkelompok SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Pemodelan Sistem Antrian Satu Server Dengan Vacation Queueing Model Pada Pola Kedatangan Berkelompok Sucia Mentari, Retno Subekti, Nikenasih

Lebih terperinci

BAB II LANDASAN TEORI. pembahasan model antrian dengan working vacation pada pola kedatangan

BAB II LANDASAN TEORI. pembahasan model antrian dengan working vacation pada pola kedatangan BAB II LANDASAN TEORI Pada bab ini diuraikan tentang dasar-dasar yang diperlukan dalam pembahasan model antrian dengan working vacation pada pola kedatangan berkelompok (batch arrival) satu server, mencakup

Lebih terperinci

BAB I PENDAHULUAN. sumber yang dapat dipercaya, petunjuk atau reputasi yang telah dibuat.

BAB I PENDAHULUAN. sumber yang dapat dipercaya, petunjuk atau reputasi yang telah dibuat. 1 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Pengambilan keputusan adalah pemilihan di antara alternatifalternatif mengenai sesuatu cara bertindak serta inti dari perencanaan. Suatu rencana dapat dikatakan tidak

Lebih terperinci

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY 3.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang Ω,,. Misalkan ; adalah rantai Markov dengan state berhingga

Lebih terperinci