Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari."

Transkripsi

1 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin dari adalah bilangan bulat tak negatif. Batasan dari kasus ini, di mana {} adalah suatu proses Markov dengan probabilitas transisi stasioner. Dengan demikian, fungsi probabilitas transisi untuk >0, Pr{+ }, i, j 0,, 2,.. adalah independen dari 0. Fungsi diatas digunakan dalam menyelidiki model stokastik untuk probabilitas yang sangat kecil yang berkaitan dengan proses kelahiran. Dengan menggunakan sifat Markov, fungsi h untuk h yang kecil akan diperoleh suatu persamaan diferensial dengan batas yang sesuai yaitu untuk semua >0. Untuk selanjutnya akan dikenalkan proses kelahiran murni yang ditinjau dari proses Poisson Dalil Dalil untuk Proses Poisson Dari bab 5 telah dijelaskan bahwa proses Poisson didefinisikan oleh dalil-dalil sederhana. Untuk menentukan proses-proses yang lebih umum dari jenis yang sama, akan ditunjukkan berbagai sifat lebih lanjut yang menunjukkan berjalannya proses Poisson. Secara khusus, proses Markov pada bilangan bulat tak negatif memiliki sifat sebagai berikut. (i) Pr{+h }h+h h 0 0,,2,. Dari persamaan (i) diperoleh interpretasi sebagai berikut Pr {+h } lim h Suatu fungsi dikatakan h apabila lim 0. Dapat dilihat bahwa besarnya probabilitas independen dari. (ii) Pr{+h 0 } h+h h 0. (iii) 00 Sifat (i), (ii), dan (iii) lebih mudah digunakan dengan perhitungan langsung, karena rumus eksplisit untuk semua probabilitas yang relevan telah tersedia.

2 6..2 Proses Kelahiran Murni Akan didefinisikan proses kelahiran murni sebagai dalil proses Markov dengan laju { } : Pr{+h } h+, h h 0+ Pr {+h 0 } h+, h (6.) Pr{+h <0 }0 0 Untuk memudahkan dalam menjelaskan definisi proses kelahiran murni sering ditambahkan dalil proses Markov yaitu, (iv) X(0)0 Dimana bukan merupakan ukuran populasi tetapi jumlah kelahiran dalam interval waktu 0,]. Sisi kiri dari persamaan (i) dan (ii) adalah, h dan, h, sehingga, h dan, h tidak tergantung pada. Ditetapkan Pr {} dengan asumsi 00. Dengan cara yang sama untuk proses Poison, dapat diambil persamaan diferensial yang didukung oleh untuk t 0, sehingga didapat (i) + (6.2) (ii) dengan syarat 0 00 >0 jika h >0,, maka dalil proses Markov (iii) diperoleh +h Pr{+h } Pr{+h } Pr{+h }

3 Selanjutnya untuk 0,,2,, 2, maka atau sehingga Pr{+h } Pr{+h 2 }, h+, h Pr{+h },, h 0,, 2 +h h+, h+ h+, h+,, h atau +h h+, h+ h+, h+ h (6.3) terlihat jelas bahwa lim h h0 seragam untuk karena h merupakan batas dari jumlahan berhingga,, h yang tidak tergantung pada. Dari (6.3) diketahui bahwa merupakan fungsi kontinu pada. Mengganti dengan h dalam (6.3), membaginya dengan h dan menuju lim h 0 sehingga dapat ditentukan masing-masing yang memiliki turunan dari sisi kiri yang hasilnya sama pada persamaan (6.2). Dari (6.2)(i), diperoleh { } untuk >0 (6.4) Dimana adalah waktu antara kelahiran ke- dan ke-+ sehingga < Variabel random merupakan waktu singgah antara kelahiran dan waktu dimana kelahiran ke terjadi. Dapat dilihat dari persamaan (6.4) bahwa ], sehingga { } {0} { } Dengan kata lain, berdistribusi eksponensial dengan parameter. Sehingga dapat ditarik kesimpulan dari dalil (i) hingga (iv) bahwa, >0, juga berdistribusi eksponensial dengan parameter dan adalah independen. Uraian diatas mendiskripsikan karakteristik proses kelahiran murni merupakan bagian dari waktu singgah, berbeda dengan karakteristik persamaan(6.).

4 Dengan untuk 0., maka + + ] Kedua sisi diintegralkan dengan syarat 00 atau e menggunakan 6.2] e e,,2, 6.5 Terbukti bahwa 0, tetapi masih ada kemungkinan < Untuk menjamin kebenaran proses untuk semua, kita harus membatasi menurut 6.6 Dari hasil diatas menyatakan bahwa waktu antara kelahiran berurutan adalah berdistribusi eksponensial dengan parameter. Meskipun kuantitas Σ / sama dengan perkiraan waktu sebelum populasi menjadi tak terhingga. Dengan perbandingan adalah probabilitas dari. Jika Σ < maka perkiraan waktu untuk populasi menjadi tak hingga adalah berhingga. Akan masuk akal bahwa untuk semua >0 probabilitas adalah positif. Saat tidak ada dua dari parameter kelahiran,, yang sama, persamaan turunan (6.5) memberikan rumus eksplisit e, e + e, 6.7 dan

5 Pr{ X00} dimana,,..., e + +, e untuk > (6.8), untuk 0<<,,, Dimana dengan asumsi, 6.9 Akan diuji bahwa yang diberikan oleh (6.7) memenuhi (6.5). Persamaan (6.4) memberikan e. Kemudian persamaan (6.5) diganti -nya dengan maka diperoleh e e e e e ] e + e, (Pembuktian dari (6.7)) Proses Yule Proses Yule menggambarkan pertumbuhan populasi di mana setiap anggota memiliki probabilitas h+h melahirkan anggota baru selama selang waktu h>0. Dengan asumsi independen dan tidak ada interaksi antar anggota populasi, maka teorema binomial memberikan {+h } h+h] h+h] h+ h; Untuk proses Yule parameternya sangat kecil yaitu. Dengan laju kelahiran total populasi sebanding dengan ukuran populasi, proporsionalitas konstanta laju kelahiran individu. Dengan demikian, proses Yule membentuk analog stokastik dari model pertumbuhan populasi deterministik diwakili oleh persamaan diferensial. Dalam model deterministik, laju dari pertumbuhan populasi sebanding dengan ukuran populasi y. Dalam model stokastik, peningkatan deterministik yang

6 kecil oleh kemungkinan peningkatan unit selama interval waktu dt sangat kecil. Hubungan yang sama antara parameter laju deterministik dan kelahiran (kematian) sering muncul dalam pemodelan stokastik. Persamaan (6.2) dalam kasus bahwa X (0) menjadi,2,. di syarat awal ,3,. solusinya adalah (6.0) Solusi umum analog dengan (6,8), tetapi proses kelahiran murni dimulai dari X (0) adalah, + +,, > (6.) Ketika, maka persamaan (6.) tereduksi menjadi solusi yang diberikan dalam (6.0) untuk proses Yule dengan parameter. Maka.. 2! 2 2! dan,!!

7 Jadi, menurut (6.)!, + +,!!!!!! Contoh Soal :. Sebuah proses kelahiran murni dimulai dari X(0)0 yang mempunyai parameter, 3, 2, 5. Tentukan untuk 0,,2,3. untuk 0, digunakan rumus persamaan (6.7) untuk 2,3 digunakan rumus persamaan (6.8) Untuk 0, maka + + Untuk 2,3 maka Dimana, Sehingga, +, +,,,,

8 + 2, +, +, +, Dimana,,,,, Sehingga Sebuah tproses kelahiran murni dimulai dari 00 yang mempunyai parameter kelahiran, 3, 2, 5. Diberikan W 3 sebagai waktu random dengan state 3. a. Tuliskan W 3 sebagai jumlahan dari waktu singgah dan buktikan bahwa waktu rata-rata E[W 3 ] + + ] (Terbukti) b. Tentukan mean W + W 2 + W ]

9 c. Berapakah variansi W 3? Var [ W 3 ] Var [ S 0 + S + S 3 ] Sebuah proses Yule dengan imigrasi yang mempunyai parameter kelahiran + untuk k0,, 2, dimana merupakan kelajuan imigrasi dalam populasi dan β sebagai kelajuan kelahiran individu. Dianggap bahwa X(0)0, tentukan P n (t) untuk n0,, 2,.. λ 0 α, λ α + β, λ 2 α + 2β, +, +, Dimana, Sehingga,,,

PROSES KEMATIAN MURNI (Pure Death Processes)

PROSES KEMATIAN MURNI (Pure Death Processes) PROSES KEMATIAN MURNI (Pure Death Processes) Komplemen dari bertambahnya proses kelahiran murni adalah dengan penurunan proses kematian murni. Hal itu ditunjukkan keberhasilan melewati state,,, 2, dan

Lebih terperinci

6.3 PROSES KELAHIRAN DAN KEMATIAN

6.3 PROSES KELAHIRAN DAN KEMATIAN 6.3 PROSES KELAHIRAN DAN KEMATIAN Penjelasan dari proses-proses kelahiran murni dan kematian murni telah diskusikan pada bagian 6.1 dan 6.2 bahwa X(t) memungkinkan untuk naik ataupun turun. Jadi, apabila

Lebih terperinci

6.6 Rantai Markov Kontinu pada State Berhingga

6.6 Rantai Markov Kontinu pada State Berhingga 6.6 Rantai Markov Kontinu pada State Berhingga Markov chain kontinu 0 adalah proses markov pada state 0, 1, 2,.... Diasumsikan bahwa probabilitas transisi adalah stasioner, pada persamaan, (6.53) Pada

Lebih terperinci

BAB III PROSES POISSON MAJEMUK

BAB III PROSES POISSON MAJEMUK BAB III PROSES POISSON MAJEMUK Pada bab ini membahas tentang proses stokastik, proses Poisson dan proses Poisson majemuk yang akan diaplikasikan pada bab selanjutnya. 3.1 Proses Stokastik Koleksi atau

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Rantai Markov Waktu Kontinu Pendahuluan Pada bab ini, kita akan belajar mengenai

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS KODE / SKS : KK-01333 / 3 SKS 1 Pengertian dan tujuan 1. Klasifikasi Model 1 Simulasi. Perbedaan penyelesaian problem Dapat menjelaskan klasifikasi model dari matematis secara analitis dan numeris suatu

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

Karakteristik Limit dari Proses Kelahiran dan Kematian

Karakteristik Limit dari Proses Kelahiran dan Kematian Karakteristik Limit dari Proses Kelahiran dan Kematian Disusun guna memenuhi tugas mata kuliah Pengantar Proses Stokastik Disusun oleh : Saidun Nariswari Setya Dewi Lisa Apriana Marvina Puspito Nita Eka

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

MINGGU KE-9 MACAM-MACAM KONVERGENSI

MINGGU KE-9 MACAM-MACAM KONVERGENSI MINGGU KE-9 MACAM-MACAM KONVERGENSI Kita telah mengetahui bahwa untuk n besar dan θ kecil sedemikian hingga nθ = λ, distribusi binomial bisa dihampiri oleh distribusi Poisson. Mencari hampiran distribusi

Lebih terperinci

KAJIAN MODEL MARKOV WAKTU DISKRIT UNTUK PENYEBARAN PENYAKIT MENULAR PADA MODEL EPIDEMIK SIR. Oleh: RAFIQATUL HASANAH NRP.

KAJIAN MODEL MARKOV WAKTU DISKRIT UNTUK PENYEBARAN PENYAKIT MENULAR PADA MODEL EPIDEMIK SIR. Oleh: RAFIQATUL HASANAH NRP. TUGAS AKHIR KAJIAN MODEL MARKOV WAKTU DISKRIT UNTUK PENYEBARAN PENYAKIT MENULAR PADA MODEL EPIDEMIK SIR Oleh: RAFIQATUL HASANAH NRP. 1208 100 021 Dosen Pembimbing: Dra. Laksmi Prita Wardhani, M.Si. Drs.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 18 BAB III METODE PENELITIAN Pada bab ini akan dikemukakan metode-metode yang akan digunakan pada bab selanjutnya. Metode-metode pada bab ini yaitu metode Value at Risk dengan pendekatan distribusi normal

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengantar Pada bab ini akan diuraikan beberapa landasan teori untuk menunjang penulisan skripsi ini. Uraian ini terdiri dari beberapa bagian yang akan dipaparkan secara terperinci

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan diketahui

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T } adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

PENDAHULUAN LANDASAN TEORI

PENDAHULUAN LANDASAN TEORI 1 PENDAHULUAN Latar Belakang Dalam kehidupan sehari-hari, banyak permasalahan yang dapat dimodelkan dengan proses stokastik. Proses stokastik dapat dibedakan menjadi dua yaitu proses stokastik dengan waktu

Lebih terperinci

BAB II LANDASAN TEORI. pembahasan model antrian dengan working vacation pada pola kedatangan

BAB II LANDASAN TEORI. pembahasan model antrian dengan working vacation pada pola kedatangan BAB II LANDASAN TEORI Pada bab ini diuraikan tentang dasar-dasar yang diperlukan dalam pembahasan model antrian dengan working vacation pada pola kedatangan berkelompok (batch arrival) satu server, mencakup

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teori Pemeliharaan Untuk menjamin kontinuitas kegiatan operasional suatu sistem, keandalan setiap komponen peralatan sangat dijaga agar peralatan tersebut tidak mengalami kegagalan

Lebih terperinci

MODEL STOKASTIK PERTUMBUHAN POPULASI (PURE BIRTH PROCESS)

MODEL STOKASTIK PERTUMBUHAN POPULASI (PURE BIRTH PROCESS) Jurnal Euclid, Vol. 4, No. 1, p.675 MODEL STOKASTIK PERTUMBUHAN POPULASI (PURE BIRTH PROCESS) Surya Amami Pramuditya 1, Tonah 2 1,2 Pendidikan Matematika FKIP Universitas Swadaya Gunung Jati Cirebon amamisurya@fkip-unswagati.ac.id

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ini terdiri dari 3 bagian. Pada bagian pertama diberikan tinjauan pustaka dari penelitian-penelitian sebelumnya. Pada bagian kedua diberikan teori penunjang untuk mencapai tujuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T} adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 3 BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu ruang state. Jika

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

Penelitian Operasional II Rantai Markov RANTAI MARKOV

Penelitian Operasional II Rantai Markov RANTAI MARKOV Penelitian Operasional II Rantai Markov 49 4. RANTAI MARKOV 4. PENDAHULUAN Dalam masalah pengambilan suatu keputusan, seringkali kita diperhadapkan dengan suatu ketidakpastian. Permasalahan ini dapat dimodelkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik, adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu ruang states. Jadi,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau BAB II TINJAUAN PUSTAKA 2.1 Proses Stokastik Menurut Gross (2008), proses stokastik adalah himpunan variabel acak Semua kemungkinan nilai yang dapat terjadi pada variabel acak X(t) disebut ruang keadaan

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Asap atau polutan yang dibuang melalui cerobong asap pabrik akan menyebar atau berdispersi di udara, kemudian bergerak terbawa angin sampai mengenai pemukiman penduduk yang berada

Lebih terperinci

II. TINJAUAN PUSTAKA. real. T dinamakan himpunan indeks dari proses atau ruang parameter yang

II. TINJAUAN PUSTAKA. real. T dinamakan himpunan indeks dari proses atau ruang parameter yang II. TINJAUAN PUSTAKA 2.1 Proses Stokastik Stokastik proses = { ( ), } adalah kumpulan dari variabel acak yang didefinisikan pada ruang peluang (Ω, ς, P) yang nilai-nilainya pada bilangan real. T dinamakan

Lebih terperinci

RANCANGAN PEMBELAJARAN

RANCANGAN PEMBELAJARAN RANCANGAN PEMBELAJARAN Mata Kuliah : dan Proses Stokastik Semester : Jurusan : Dosen : TIU : respon sistem linear dengan input menggunakan konsep probabilitas dan proses stokastik (C4) No.. Mahasiswa mampu

Lebih terperinci

PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK

PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK Ririn Dwi Utami, Respatiwulan, dan Siswanto Program Studi Matematika FMIPA UNS Abstrak.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA KOMPUTER JAKARTA STIK SATUAN ACARA PERKULIAHAN Mata : TEKNIK SIMULASI Kode Mata : MI - 15222 Jurusan / Jenjang : D3 TEKNIK KOMPUTER Tujuan Instruksional Umum : Agar mahasiswa

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR BAB IV PEMBAHASAN 4.1 Proses Pencabangan model DTMC SIR Proses pencabangan suatu individu terinfeksi berbentuk seperti diagram pohon dan diasumsikan bahwa semua individu terinfeksi adalah saling independent

Lebih terperinci

Arisma Yuni Hardiningsih. Dra. Laksmi Prita Wardhani, M.Si. Jurusan Matematika. Surabaya

Arisma Yuni Hardiningsih. Dra. Laksmi Prita Wardhani, M.Si. Jurusan Matematika. Surabaya ANALISIS KESTABILAN DAN MEAN DISTRIBUSI MODEL EPIDEMIK SIR PADA WAKTU DISKRIT Arisma Yuni Hardiningsih 1206 100 050 Dosen Pembimbing : Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Institut Teknologi

Lebih terperinci

Peubah Acak dan Distribusi

Peubah Acak dan Distribusi BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA. komoditas, model pergerakan harga komoditas, rantai Markov, simulasi Standard

BAB II TINJAUAN PUSTAKA. komoditas, model pergerakan harga komoditas, rantai Markov, simulasi Standard BAB II TINJAUAN PUSTAKA Pada bab ini akan dibahas beberapa tinjauan mengenai teori yang diperlukan dalam pembahasan bab-bab selanjutnya antara lain tentang kontrak berjangka komoditas, model pergerakan

Lebih terperinci

BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian

BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian BAB II KAJIAN TEORI A. Probabilitas Teorema 2.1 (Walpole, 1992) Probabilitas menunjukan suatu percobaan mempunyai hasil percobaan yang berbeda dan masing-masing mempunyai kemungkinan yang sama untuk terjadi,

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : SIMULASI DAN PERMODELAN Kode Mata : MI 1302 Jurusan / Jenjang : S1 SISTEM KOMPUTER Tujuan Instruksional Umum :

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peluang Peluang mempunyai banyak persamaan arti, seperti kemungkinan, kesempatan dan kecenderungan. Peluang menunjukkan kemungkinan terjadinya suatu kejadian yang bersifat acak.

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik

Lebih terperinci

PEMODELAN KELAHIRAN MURNI DAN KEMATIAN MURNI DENGAN DUA JENIS KELAMIN DENGAN PROSES STOKASTIK

PEMODELAN KELAHIRAN MURNI DAN KEMATIAN MURNI DENGAN DUA JENIS KELAMIN DENGAN PROSES STOKASTIK Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 72 79 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN KELAHIRAN MURNI DAN KEMATIAN MURNI DENGAN DUA JENIS KELAMIN DENGAN PROSES STOKASTIK FEBI OKTORA

Lebih terperinci

Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi

Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi ESTIMASI TITIK Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi sampel. Statistik merupakan bentuk dari

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya tidak dapat diprediksi dengan tepat tetapi kita

Lebih terperinci

Pemodelan Sistem Antrian Satu Server Dengan Vacation Queueing Model Pada Pola Kedatangan Berkelompok

Pemodelan Sistem Antrian Satu Server Dengan Vacation Queueing Model Pada Pola Kedatangan Berkelompok SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Pemodelan Sistem Antrian Satu Server Dengan Vacation Queueing Model Pada Pola Kedatangan Berkelompok Sucia Mentari, Retno Subekti, Nikenasih

Lebih terperinci

DISTRIBUSI PROBABILITAS TOTAL WAKTU BEKERJA SUATU SISTEM

DISTRIBUSI PROBABILITAS TOTAL WAKTU BEKERJA SUATU SISTEM DISTRIBUSI PROBABILITAS TOTAL WAKTU BEKERJA SUATU SISTEM Taryo, Suyono, Dian Handayani JURUSAN MATEMATIKA FAKULTAS MATEMATIKAN DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI JAKARTA 2 Agustus 27 Abstraksi

Lebih terperinci

Distribusi Probabilitas Diskrit: Poisson

Distribusi Probabilitas Diskrit: Poisson Distribusi Probabilitas Diskrit: Poisson 7.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Pendekatan Binomial Poisson Distribusi Poisson Kapan distribusi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini dibahas mengenai tinjauan pustaka yang digunakan dalam penelitian ini, khususnya yang diperlukan dalam Bab 3. Teori yang dibahas adalah teori yang mendukung pembentukan

Lebih terperinci

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus : BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

Penggabungan dan Pemecahan. Proses Poisson Independen

Penggabungan dan Pemecahan. Proses Poisson Independen Penggabungan dan Pemecahan Proses Poisson Independen Hanna Cahyaningtyas 1, Respatiwulan 2, Pangadi 3 1 Mahasiswa Program Studi Matematika/FMIPA, Universitas Sebelas Maret 2 Dosen Program Studi Statistika/FMIPA,

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Peluang terjadinya nilai variabel random X yang meliputi semua nilai ditentukan melalui distribusi peluang. Distribusi peluang suatu variabel random X adalah

Lebih terperinci

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

BAB 3 LANGKAH PEMECAHAN MASALAH

BAB 3 LANGKAH PEMECAHAN MASALAH BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Kriteria Optimasi Kriteria optimasi yang digunakan dalam menganalisis tingkat persediaan liner yang optimal dan ekspektasi keuntungan yang didapat PT Indonesia

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan selanjutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan II. TINJAUAN PUSTAKA 2.1 Percobaan dan Ruang Sampel Menurut Walpole (1995), istilah percobaan digunakan untuk sembarang proses yang dapat membangkitkan data. Himpunan semua hasil suatu percobaan disebut

Lebih terperinci

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Mathematics & Statistics Department, School of Computer Science, Binus

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

Persatuan Aktuaris Indonesia Probabilitas dan Statistik 27 November 2006 A. 5/32 B. ¼ C. 27/32 D. ¾ E. 1 A. 0,20 B. 0,34 C. 0,40 D. 0,60 E.

Persatuan Aktuaris Indonesia Probabilitas dan Statistik 27 November 2006 A. 5/32 B. ¼ C. 27/32 D. ¾ E. 1 A. 0,20 B. 0,34 C. 0,40 D. 0,60 E. Persatuan Aktuaris Indonesia Probabilitas dan Statistik 27 November 2006. Jika A, B, C dan D adalah kejadian (event) di mana: ' B = A, C D = {}, P[ A] = [ ] 4, P B = 4 P C A = 2, P C B = 4, P D A = 4,

Lebih terperinci

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT Oleh: Arisma Yuni Hardiningsih 126 1 5 Dosen Pembimbing: Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Fakultas Matematika

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 8-14) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 8:MOMEN VARIABEL RANDOM Mean dan Variansi Fungsi Pembangkit Momen (MGF) 2 Minggu

Lebih terperinci

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT (T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Universitas Bina Nusantara Jl. K.H. Syahdan No. 9 Palmerah Jakarta Barat 11480 rrachmawati@binus.edu

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

BAB I PENDAHULUAN. mengetahui fenomena yang akan terjadi pada periode mendatang akan

BAB I PENDAHULUAN. mengetahui fenomena yang akan terjadi pada periode mendatang akan 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada kehidupan sehari-hari, adanya ketidakmampuan manusia untuk mengetahui fenomena yang akan terjadi pada periode mendatang akan mengakibatkan kurang tepatnya

Lebih terperinci

KONSISTENSI ESTIMATOR

KONSISTENSI ESTIMATOR KONSISTENSI ESTIMATOR TUGAS STATISTIKA MATEMATIKA II Oleh 1. Wahyu Nikmatus S. (121810101010) 2. Vivie Aisyafi F. (121810101050) 3. Rere Figurani A. (121810101052) 4. Dwindah Setiari W. (121810101054)

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari distribusi generalized lambda

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

BAB IV MODEL HIDDEN MARKOV

BAB IV MODEL HIDDEN MARKOV BAB IV MODEL HIDDEN MARKOV 4.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang (Ω, F, P). Misalnya X = {X : k N} adalah rantai Markov dengan state berhingga yang bersifat homogen

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

BAB 3 PEMBAHASAN. Contoh 1:

BAB 3 PEMBAHASAN. Contoh 1: BAB 3 PEMBAHASAN 3.1 Pengolahan Data Seperti yang telah dijelaskan sebelumnya, rantai markov atau proses markov akan digunakan untuk menganalisa data yang diperoleh dalam penelitian ini. Contoh kasus yang

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I III. PEUBAH ACAK KONTINU III. Peubah Acak Kontinu 1 PEUBAH ACAK KONTINU Ingat definisi peubah acak! Definisi : Peubah acak Y adalah suatu fungsi yang memetakan seluruh anggota

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Poisson: Suatu Pengantar Orang Pintar Belajar Stokastik Tentang Kuliah Proses Stokastik Bab 1 : Tentang Peluang Bab 2 : Peluang dan Ekspektasi Bersyarat*

Lebih terperinci

POISSON PROSES NON-HOMOGEN. Abdurrahman Valid Fuady, Hasih Pratiwi, dan Supriyadi Wibowo Program Studi Matematika FMIPA UNS

POISSON PROSES NON-HOMOGEN. Abdurrahman Valid Fuady, Hasih Pratiwi, dan Supriyadi Wibowo Program Studi Matematika FMIPA UNS POISSON PROSES NON-HOMOGEN Abdurrahman Valid Fuady, Hasih Pratiwi, dan Supriyadi Wibowo Program Studi Matematika FMIPA UNS ABSTRAK. Proses Poisson merupakan proses stokastik sederhana dan dapat digunakan

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi

Lebih terperinci