Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Ukuran: px
Mulai penontonan dengan halaman:

Download "Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD."

Transkripsi

1 Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung

2 Tentang AK5161 Matematika Keuangan Aktuaria Jadwal kuliah: Selasa, 13-; Kamis; 11- Ujian: ; ; %) Buku teks: Sheldon Ross, Introduction to Mathematical Finance 2

3 Bab 1 - Kejadian, Peubah Acak, Peluang Kegiatan asuransi berkaitan dengan keinginan untuk mengatur dan memindahkan risiko kepada pihak lain. Dalam praktiknya, perhitungan yang cermat tentang besar premi dan total jumlah biaya serta klaim yang kembali sangat diperlukan. Saat ini praktik asuransi mulai digabungkan dengan investasi. Hal ini dimaksudkan untuk menumbuhkan iklim asuransi dengan keuntungan dari investasi. Kuliah Matematika Keuangan Aktuaria mengajak kita untuk memahami konsep dan menghitung nilai uang, opsi dan, secara umum, bermain peluang (memahami kejadian dan peubah acak serta menghitung peluang atas keduanya menjadi sangat krusial). Ruang sampel dan kejadian Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Ruang sampel S adalah himpunan dari semua hasil yang mungkin dari suatu percobaan. Anggota dari S disebut kejadian elementer. Kejadian adalah himpunan bagian dari ruang sampel atau koleksi dari kejadian-kejadian elementer. Peluang kejadian A sesungguhnya adalah P (A) = lim n n(a) n Misalkan S adalah ruang sampel, A adalah kejadian. Peluang kejadian A adalah P (A) = n(a) n(s) Secara formal, peluang atau ukuran peluang P pada lap-σ A adalah suatu pemetaan dari A terhadap selang [0, 1] yang memenuhi tiga aksioma berikut: (i) 0 P (A) 1, untuk setiap A A (ii) P (S) = 1 (iii) Untuk himpunan terhitung kejadian-kejadian saling asing A 1, A 2,..., ( P i=1 A i ) = P (A i ) i=1 Teorema: 1. P (A c ) = 1 P (A) 2. Jika A B maka P (A) P (B) 3. P (A B) = P (A) + P (B) P (A B) 3

4 Latihan: 1. Seorang agen asuransi menawarkan asuransi kesehatan kepada calon nasabah. Nasabah dapat memilih tepat 2 jenis asuransi dari pilihan A, B, C atau tidak memilih sama sekali. Proporsi nasabah memilih jenis asuransi A, B dan C, berturut-turut, adalah 1/4, 1/3 dan 5/12. Hitung peluang seorang nasabah memilih untuk tidak memilih jenis asuransi. 2. Catatan dalam perusahaan asuransi otomotif memberikan informasi bahwa (i) setiap pelanggan mengasuransikan setidaknya satu mobil (ii) 70% pelanggan mengasuransikan lebih dari satu mobil, dan (iii) 20% mengasuransikan jenis sports car. Dari pelanggan yang mengasuransikan lebih dari satu mobil, 15% mengasuransikan sports car. Hitung peluang bahwa seorang pelanggan yang terpilih secara acak mengasuransikan tepat satu mobil dan ini bukan sports car. Peubah acak Peubah acak tidaklah acak dan bukanlah peubah. Peubah acak adalah fungsi yang memetakan anggota S ke bilangan real R. Peubah acak X dikatakan diskrit jika terdapat barisan terhitung dari bilangan {a i, i = 1, 2,... } sedemikian hingga P ( {X = a i } ) = P (X = a i ) = 1. i i Catatan: Sebuah peubah acak diskrit tidak selalu berasal ruang sampel diskrit. F X disebut fungsi distribusi (diskrit) dari X jika terdapat barisan terhitung {a i, i = 1, 2,... } dari bilangan real dan barisan {f i, i = 1, 2,... } dari bilangan positif yang bersesuaian sehingga f i = 1 dan F X (x) = f i. i a i x Jika diberikan himpunan terhitung {a i, i = 1, 2,... } dan bilangan positif {f i, i = 1, 2,... } sehingga i f i = 1, fungsi peluang f X (x) adalah f X (x) = f i = P (X = a i ), dengan x = a i. Sementara itu, fungsi distribusi (kumulatif) nya F (x) = P (X x). Sifat-sifat fungsi distribusi sebagai berikut: (a) F fungsi tidak turun (b) lim x F (x) = 1 (c) lim x F (x) = 0 (d) F fungsi kontinu kanan 4

5 Jika X adalah peubah acak sehingga fungsi peluangnya ada (turunan dari fungsi distribusi) maka X dikatakan sebagai peubah acak kontinu. Perhatikan: 1 = F X ( ) = P (a X b) = F X (b) F X (a) = P (X = a) = a a f X (t) dt = 0 f X (t) dt b a f X (t) dt Latihan: 1. Tentukan fungsi peluang dari fungsi distribusi berikut: 0, x < 3.1 3/5, 3.1 x < 0 F (x) = 7/10, 0 x < 1 1, 1 x 2. Diketahui, untuk peubah acak X, fungsi distribusi berikut: 0, x < 0 x 4, 0 x < 1 F (x) = x 1 4, 1 x < , 2 x < 3 1, x 3 Hitung (i) P (1 X < 5/2), (ii) E(X) Ekspektasi Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit dan kontinu X, berturut-turut, adalah E(X) = x x f X (x) dan E(X) = x f X (x) dx, dengan f X adalah fungsi peluang dari X. Catatan: 1. Ekspektasi adalah rata-rata tertimbang (weighted average) dari nilai yang mungkin dari X 2. Ekspektasi = mean = momen pertama 3. Ekspektasi suatu peubah acak adalah nilai rata-rata (long-run average value) 5

6 dari percobaan bebas yang berulang 3. Apakah ekspektasi harus berhingga? (Diskusi!) Sifat-sifat ekspektasi: 1. E(g(X)) = g(x) f X(x) dx 2. E(a X + b Y ) = a E(X) + b E(Y ) 3. E(XY ) = E(X) E(Y ), jika X dan Y saling bebas. 4. E(X) = 0 P (X > x) dx, untuk X > 0 (*) 5. E(X r ) = xr f X (x) dx (momen ke-r) 6. E((X µ X ) r ) = (x µ X) r f X (x) dx (momen pusat ke-r) 7. E((X µ X ) 2 ) = V ar(x) = E(X 2 ) (E(X)) 2 Deviasi standar dari X adalah akar kuadrat Variansi dari X. 8. E(e tx ) = etx f X (x) dx = M X (t) (fungsi pembangkit momen) 9. M X (0) = E(X), M X (0) = E(X2 ) Fungsi peluang bersama Misalkan kita punyai dua peubah acak, X dan Y. Kita dapat mengkaji peluang dan ekspektasi bersyarat suatu peubah acak, diberikan peubah acak yang lain. Fungsi peluang (distribusi) atas dua peubah acak dikatakan sebagai fungsi peluang (distribusi) bivariat. Secara umum, sering disebut sebagai fungsi peluang (distribusi) bersama. Misalkan X dan Y ada peubah acak-peubah acak diskrit yang terdefinisi di ruang sampel yang sama. Fungsi peluang bersama dari X dan Y adalah f X,Y (x, y) = P (X = x, Y = y). Kondisi bahwa X dan Y terdefinisi pada ruang sampel yang sama berarti dua peubah acak tsb memberikan informasi secara bersamaan terhadap keluaran (outcome) dari percobaan yang sama. Kejadian X bernilai x dan Y bernilai y, {X = x, Y = y}, adalah irisan kejadian {X = x} dan {Y = y}. Fungsi peluang bersama f X,Y memenuhi sifat-sifat berikut: (i) f X,Y (x, y) 0, (x, y), (ii) (x, y) R 2 : f X,Y (x, y) 0 terhitung, (iii) x,y f X,Y (x, y) = 1. Misalkan X dan Y peubah acak-peubah acak diskrit yang didefinisikan pada ruang sampel yang sama. Maka, f X (x) = y f X,Y (x, y), x R dan f Y (y) = x f X,Y (x, y), y R adalah, berturut-turut, fungsi peluang marginal dari X dan fungsi peluang marginal dari Y. Untuk dua peubah acak kontinu, fungsi peluang dan fungsi distribusi bersama didefinisikan sebagai... ; fungsi peluang marginalnya adalah... 6

7 Latihan: 1. Misalkan X dan Y memiliki fungsi peluang bersama f(x, y) = c (y 2 x 2 ) e y, y x y, 0 < y < a. Tentukan c b. Tentukan fungsi peluang marginal X dan Y c. Hitung P (Y > 2X) d. Apakah X dan Y saling bebas? 2. Ketika kebakaran terjadi dan dilaporkan ke perusahaan asuransi, perusahaan asuransi tersebut segera membuat perkiraan awal X yaitu besar nilai klaim yang akan diberikan. Setelah klaim dihitung secara lengkap, perusahaan harus melunasi pembayaran klaim sebesar Y. Perusahaan menentukan bahwa X dan Y memiliki fungsi peluang bersama f X,Y (x, y) = 2 x 2 (x 1) y (2x 1)/(x 1), x > 1, y > 1 a. Tentukan f X (x) b. Jika besar klaim awal yang diberikan adalah 2, tentukan peluang bahwa klaim yang diterima berikutnya adalah antara 1 dan 3. Misalkan X dan Y adalah peubah acak-peubah acak, dengan f X (x) > 0. Fungsi peluang bersyarat dari Y diberikan X = x adalah f Y X (y x) = f X,Y (x, y), y R f X (x) Jika f X (x) = 0, kita definiskan f Y X (y x) = 0 namun tidak dikatakan sebagai fungsi peluang bersyarat. Fungsi peluang bersyarat adalah fungsi peluang! Dua peubah acak dikatakan saling bebas jika... Ekspektasi bersyarat Misalkan X dan Y adalah peubah acak-peubah acak kontinu dengan fungsi peluang bersama f X,Y (x, y). Jika f X (x) > 0 maka ekspektasi bersyarat dari Y diberikan X = x adalah ekspektasi dari Y relatif terhadap distribusi bersyarat Y diberikan X = x, E(Y X = x) = y f X,Y (x, y) f X (x) dy = y f Y X (y x) dy Misalkan X dan Y adalah peubah acak-peubah acak kontinu dengan fungsi peluang bersama f X,Y (x, y). Misalkan ekspektasi dari Y hingga. Maka E(Y ) = E(Y X = x) f X (x) dx 7

8 atau E(Y ) = E(E(Y X = x)) Latihan: Misalkan X dan Y peubah acak kontinu dengan fungsi peluang bersama f(x, y) = e x(y+1), 0 x, 0 y e 1 a. Tentukan f Y (y) b. Hitung P (X > 1 Y = 1 2 ) c. Hitung E(X Y = 1 2 ) Kovariansi Kita ketahui bahwa jika X dan Y saling bebas maka f X,Y (x, y) = f X (x) g Y (y). Akibatnya, E(XY ) = E(X) E(Y ). Konsekuensi ini juga berlaku untuk setiap fungsi g dan h, E ( g(x)h(y ) ) = E ( g(x) ) E ( h(y ) ). Kovariansi antara peubah acak X dan Y, dinotasikan Cov(X, Y ), adalah ( (X ) ( ) ) Cov(X, Y ) = E E(X) Y E(Y ) Catatan: Jika X dan Y saling bebas maka Cov(X, Y ) = 0 (implikasi). Sifat-sifat kovariansi 1. Cov(X, Y ) = Cov(Y, X) 2. Cov(X, X) = V ar(x) 3. Cov(a X, Y ) = a Cov(X, Y ) ( n 4. Cov i=1 X i, ) m j=1 Y j = n m i=1 j=1 Cov(X i, Y j ) Perhatikan bahwa: ( n ) n n V ar X i = Cov X i, i=1 i=1 j=1 X j n n = Cov(X i, X j ) = i=1 i=1 j=1 n V ar(x i ) + Cov(X i, X j ). i j 8

9 Korelasi antara peubah acak X dan Y, dinotasikan ρ(x, Y ), didefinisikan sebagai ρ(x, Y ) = Cov(X, Y V ar(x) V ar(y ), asalkan V ar(x) dan V ar(y ) bernilai positif. Dapat ditunjukkan pula bahwa 1 ρ(x, Y ) 1. Koefisien korelasi adalah ukuran dari derajat kelinieran antara X dan Y. Nilai ρ(x, Y ) yang dekat dengan +1 atau 1 menunjukkan derajat kelinieran yang tinggi. Nilai positif korelasi mengindikasikan nilai Y yang cenderung membesar apabila X membesar. Jika ρ(x, Y ) = 0 maka dikatakan X dan Y tidak berkorelasi. Latihan: 1. Tunjukkan: Cov(X, E(Y X)) = Cov(X, Y ) 2. Misalkan X peubah acak normal standar dan I (bebas dari X) peubah acak dengan sifat P (I = 1) = P (I = 0) = 1/2. Didefinisikan Y = X, jika I = 1; Y = X, jika I = 0. Tunjukkan: Cov(X, Y ) = 0 9

10 Bab 2 - Peubah acak normal Peubah acak normal merupakan salah satu kajian menarik dalam berbagai bidang, termasuk keuangan, karena pola yang dikenal dan dianggap dapat dipahami dengan mudah. Suatu peubah acak X dikatakan normal apabila memiliki fungsi peluang f(x) = Apa yang dapat kita lakukan terhadap X atau f(x) tersebut? (i) membuat plot f untuk berbagai nilai µ dan σ 2 (ii) menentukan sifat-sifat statistik peubah acak normal (iii) menghitung peluang; termasuk dengan akurasi yang lebih tinggi (hal 25-26) (iv) mengkaji hubungan dengan peubah acak lognormal: Y = exp(x) Contoh 2.3d Misalkan X 1, X 2,..., X n sampel acak normal dengan parameter (µ, σ 2 ). Misalkan S n = n X i. i=1 Apakah yang kita dapat dapatkan untuk n besar? S n akan mendekati peubah acak normal dengan mean nµ dan variansi nσ 2? (Jelaskan!) Latihan 2.9,

11 Bab 3 - Gerak Brown and GB Geometrik Sebelum kita membahas Gerak Brown (GB) lebih jauh, perhatikan kembali definisi koleksi peubah acak {X t } atau lebih dikenal dengan proses stokastik. Proses atau model stokastik melibatkan beberapa peubah acak dengan indeks waktu. Kalau kita mempunyai satu peubah acak, maka nilai yang mungkin dari peubah acak tersebut akan mengikuti distribusi peluang yang bersesuaian. Kini, kita akan melihat peubah acak setiap waktu. Akibatnya, tingkat kesulitan akan menjadi lebih tinggi (rumit namun menarik kok). Misalkan kita punyai proses stokastik {X t, t 0}. Proses stokastik atau deret waktu (sederhana) yang bergantung pada observasi sebelumnya adalah: X t = α X t 1 + ε t, dengan asumsi-asumsi yang ditentukan. Catatan: Proses ini dikenal dengan nama Autoregressive (AR) Pada Bab ini, proses stokastik diatas kita sederhanakan sebagai berikut: X t i.i.d. N(0, 1) Jelaskan! Kita dapat menuliskan proses ini sebagai X t = ε t, dengan {ε t } barisan peubah acak saling bebas dan berdistribusi identik (normal/gauss) dengan mean nol dan variansi satu; atau dikenal dengan proses Gaussian WN (white noise) X t N(0, σ 2 t ). Apa perbedaan dengan model sebelumnya? Jika X 1, X 2,... dari proses ini saling (tidak) bebas, dapatkah kita menentukan fungsi peluang bersamanya? Mungkinkah X t dan X t+s X s yang bersifat saling bebas? Pandang koleksi peubah acak {X t, t 0} dengan sifat-sifat: (i) X 0 = 0 (atau konstanta tidak nol ) (ii) t > 0, X t berdistribusi normal dengan mean µt dan variansi σ 2 t (iii) X tn X tn 1, X tn 1 X tn 2,..., X t2 X t1, X t1 saling bebas (memiliki kenaikan bebas atau independent increments) (iv) X t+s X t tidak bergantung pada t (memiliki kenaikan stasioner atau stationary increments). Proses stokastik tersebut dikatakan sebagai Gerak Brown atau GB dengan parameter drift µ dan parameter variansi σ 2. 11

12 Misalkan dipunyai proses stokastik GB dengan µ = 0, σ 2 = 1 atau dikenal dengan GB standar. Perhatikan kasus t = 1, 2. Fungsi peluang X t adalah f Xt (x t ) = 1 ( exp 1 ) 2πt 2t x2 t, < x t <. Fungsi peluang bersama dari X 1 dan X 2 adalah... Fungsi peluang bersama dari X 1 X 0 dan X 2 X 1 adalah f X1 0,X 2 X 1 (x 1 0, x 2 x 1 ) = f(x 1 )f(x 2 x 1 ), (1) karena sifat kenaikan saling bebas. Persamaan (1) tersebut sama dengan ( 1 (2π) 2/2 exp 1 ( x 2 1 ((1 0)(2 1)) 1/ (x 2 x 1 ) 2 )), 2 1 dengan t 1 = 1, t 2 = 2 dan sifat kenaikan stasioner X 2 X 1 N(0, 2 1). Kita dapat menentukan fungsi peluang bersyarat dengan memanfaatkan fungsi peluang bersama diatas. Untuk t 1 = 1 < t 2 = 2 diatas, fungsi peluang bersyarat X t1, diberikan X t2 = x t2 adalah... f X1 X 2 (x 1 x 2 ) = f X 1,X 2 X 1 (x 1, x 2 x 1 ) f X2 (x 2 ) = f X 1 (x 1 ) f X2 X 1 (x 2 x 1 ) f X2 (x 2 ) = Dengan kata lain, distribusi dari X 1 X 2 variansi = x 2 adalah normal dengan mean dan E(X 1 X 2 = x 2 ) = ; V ar(x 1 X 2 = x 2 ) = Latihan: 1. Dapatkah kita menentukan distribusi dari X 2 X 1 = x 1? Jelaskan! 2. Tentukan E(X t X u, 0 u s) 3. Pandang {X t, 0 t 1} sebagai proses stokastik yang mengikuti GB dengan parameter variansi σ 2. Misalkan X t menyatakan lama (detik) kompetitor 1 memimpin saat 100t persen dari suatu kompetisi telah diselesaikan. Jika kompetitor 1 memimpin σ detik di tengah kompetisi, berapa peluang dia adalah pemenang? Jika kompetitor 1 memenangkan kompetisi dengan margin σ detik, berapa peluang dia memimpin di tengah kompetisi? 12

13 Proses stokastik GB dapat bernilai negatif yang dianggap tidak tepat untuk memodelkan harga saham. Untuk itu, diusulkan model stokastik S t = S 0 e X t, dengan nilai awal S 0 ; S t berdistribusi lognormal. Tentu saja ln S t ln S 0 = X t berdistribusi normal dengan mean µt dan variansi σ 2 t. Model ini dikenal sebagai GB geometrik. Sifat mean dan variansi dari S t dapat diturunkan dengan memanfaatkan sifat distribusi lognormal. Kita dapatkan E(S t ) = V ar(s t ) = Latihan: 1. Pandang GB dengan µ = 3, σ 2 = 9. Diketahui X 0 = 10. Hitung E(X 2 ), V ar(x 2 ), P (X 2 > 20), P (X 0.5 > 10) 2. Pandang GB geometrik {S t, t 0} dengan µ = 0.1, σ 2 = 0.4. Hitung P (S 1 > S 0 ), P (S 3 < S 1 > S 0 ) 3. Pandang GB geometrik {S t, t 0}; µ = 0.1, σ 2 = 0.16, S 0 = 2. Tentukan E(S 3 ) dan V ar(s 3 ) Solusi: Misalkan S t = e Xt. Diketahui µ = 0.1, σ = 0.4. Hitung P (S 1 > S 0 ), P (S 3 < S 1 > S 0 ). ( ) S1 P (S 1 > S 0 ) = P > 1 S 0 = P (ln S 1 ln S 0 > 0) = P (X 1 X 0 > 0) ( = P Z > 0 (0.1)(1) ) (0.4)(1) = P (Z > 0.25) = Φ(0.25) dengan X 1 X 0 N(0.1 1, ). Catatan: P (S 1 > S 0 ) dapat dinarasikan sebagai peluang harga aset pada akhir waktu pertama lebih besar daripada harga awal (asumsikan bahwa S t menyatakan harga aset). 13

14 Selanjutnya, untuk menentukan P (S 3 < S 1 > S 0 ), kita dapat lebih dahulu menjabarkan P (S 3 < S 1 > S 0 ) = P (S 3 < S 1, S 1 > S 0 ) = P (S 3 < S 1 )P (S 1 > S 0 ). Kemudian, kita gunakan cara yang sama dengan sebelumnya untuk menentukan kedua peluang tersebut. Solusi: Misalkan proses GB geometrik {S t, t 0}, µ = 0.1, σ 2 = 0.16, S 0 = 2. Tentukan E(S 3 ) dan V ar(s 3 ). E(S 3 ) = 2 e (0.1)(3)+0.5 (0.16)(3), dengan E(S t ) = S 0 e µt+0.5σ2t. Sementara itu, V ar(s 3 ) = 2 2 e (2)(0.1)(3)+0.5 (0.16)(3) (e (0.16)(3) 1). 14

15 Bab 4 - PVA PVA atau Present Value Analysis 15

16 Bab 5 - Lebih Jauh Tentang Gerak Brown Kajian tentang GB, termasuk GB standar dan GB geometrik, menarik untuk dibahas, baik sebagai peubak acak maupun model harga aset. Secara khusus, masalahmasalah yang muncul (dalam Ujian misalnya) antara lain: - menentukan peluang bersyarat Contoh-1: Pandang GB dengan parameter drift µ = 2 dan parameter variansi σ 2 = 16. Diketahui X 0 = 8. Hitung P (X 3 > 10). Solusi: P (X 3 > 10 X 0 = 8) = P (X 3 X 0 > 10 8) ( ) (10 8) (2)(3) = P Z > (4)( 3) ( = P Z > 1 ) 3 3 ( ) 1 = Φ 3, 3 dengan X 3 X 0 N(2 3, 16 3). Contoh-2: Harga suatu komoditas bergerak mengikuti GB, X t = µt + σb t ; dengan µ = 5, σ 2 = 4 dan B t adalah GB standar. Diberikan harga bernilai 4 saat t = 8, hitung peluang harga komoditas bernilai kurang dari 1 saat t = 9. Solusi: E(X t ) = µt + σ 0; V ar(x t ) = σ 2 t Jadi, P (X 9 < 1 X 8 = 4) = P (X 9 X 8 < 3) = P ( Z < 3 µ ) = P (Z < 1), σ karena X 9 X 8 N(9µ 8µ, σ 2 (9 8)). Contoh-3: Misalkan S t menyatakan harga saham pada waktu t: S t = S 0 exp(µt + σb t ), dengan B t adalah GB standar; µ dan σ diberikan. Hitung peluang S 10 lebih besar dari 15, diberikan S 5 = 10. Solusi: Pandang X t = µt + σb t ; X t N(µt, σ 2 t); {X t } suatu GB; S t = S 0 e X t, {S t } GB geometrik. Jadi, ( ) ( S10 P (S 10 > 15 S 5 = 10) = P > 1.5 = P ln S ) 10 > ln 1.5 S 5 S 5 16

17 atau P (X 10 X 5 > ln 1.5) = P ( Z > ) ln 1.5 5µ σ 5 karena X 10 X 5 N(5µ, 5σ 2 ). - menentukan ekspektasi bersyarat dan ekspektasi hasil kali Contoh-1: Pandang pergerakan harga suatu aset yang mengikuti proses stokastik GB standar, B t. Jika harga berada di posisi 1.7 saat t = 2, tentukan nilai yang diharapkan (ekspektasi) saat t = 4. Solusi: E(B 4 B 2 = 1.7) = E(B 4 B 2 + B 2 B 2 = 1.7) = E(B 4 B 2 B 2 = 1.7) + E(B 2 B 2 = 1.7) = E(B 4 B 2 ) = = 1.7 karena B 4 B 2 N(0 (4 2), 1 (4 2)). Contoh-2: Tentukan E(X 1 X 2 ), untuk {X t } suatu proses GB. Solusi: ( ) E(X 1 X 2 ) = E X 1 (X 2 X 1 ) + X1 2 ( ) = E X 1 (X 2 X 1 ) + E(X1) 2 = E(X 1 )E(X 2 X 1 ) + E(X 2 1) Contoh-3: Tentukan E(X 1 X 2 X 4 ) pada GB dengan parameter drift µ dan parameter variansi σ 2. Solusi: ) (X 1 (X 2 X 1 )(X 4 X 2 ) + X 1 X 2 (X 2 X 1 ) + X1X 2 3 dengan E(X 1 X 2 X 4 ) = E E = E ( ) ( ) X 1 (X 2 X 1 )(X 4 X 2 ) + E X 1 X 2 (X 2 X 1 ) + E(X1X 2 3 ), ( ) ( ) X 1 X 2 (X 2 X 1 ) = E X 1 (X 2 X 1 ) 2 + X1(X 2 2 X 1 ) E(X 2 1X 3 ) = E(X 2 1)E(X 3 X 1 ) + E(X 3 ) 17

18 GB Sebagai Proses Gaussian, Markov dan Martingale Pandang proses stokastik GB, {X t }. Misalkan n = 2. Vektor peubah acak (X 1, X 2 ) berdistribusi normal bivariat dalam versi yang lain karena kejadian {X 1 = x 1, X 2 = x 2 } dapat dinyatakan dalam kejadian-kejadian kenaikan saling bebas {X 1 = x 1, X 2 X 1 = x 2 x 1 }, sehingga kita peroleh fungsi distribusi bersama f(x 1, x 2 ) = f 1 (x 1 )f 2 1 (x 2 x 1 ). Untuk proses berukuran n, kita dapat memperoleh distribusi multivariat. Dengan demikian, GB adalah proses Gaussian, proses yang memiliki realisasi kontinu dengan distribusi hingganya adalah normal multivariat. Distribusi normal multivariat ditentukan pula melalui mean dan kovariansinya. Jadi, suatu proses Gaussian juga ditentukan melalui mean dan kovariansinya. Sebagai contoh, untuk proses GB standar, B t, meannya adalah E(B t ) = 0 dan kovariansinya, untuk s < t, Cov(B s, B t ) = Cov(B s, B s + B t B s ) = Cov(B s, B s ) + Cov(B s, B t B s ) = V ar(b s ) + 0 = s = min{s, t} Apakah GB atau GB geometrik merupakan proses Markov? Misalkan S t+h, yang saling bebas dengan proses {S u, 0 u < t}, diberikan S t, S t+h = S 0 e X t+h = S 0 e X t+x t+h X t = S 0 e X t e X t+h X t = S t e X t+h X t Jadi, S t+h, diberikan S t, hanya bergantung pada kenaikan X t+h X t. Kita ketahui bahwa GB memiliki kenaikan saling bebas, jadi saling bebas dengan data lampau. Proses {X t+h X t, h 0} merupakan GB dengan parameter drift dan variansi yang sama. Jadi, proses {S t e X t+h X t, h 0} mendefinisikan proses GB geometrik dengan nilai awal S t yang baru. Apakah GB atau GB geometrik merupakan martingale? 18

19 GB Sebagai Model Harga Saham Pandang model stokastik GB geometrik: S t = S 0 e X t. Definisikan: L i = S t i S ti 1, 1 i n, 0 = t 0 < t 1 < < t n = t, barisan peubah acak lognormal yang saling bebas. Sebagai contoh, L 1 = S t 1 S t0 = e X t 1, L2 = S t 1 S t0 = e X t 2 X t1, saling bebas karena sifat kenaikan saling bebas dari X t1 dan X t2 X t1. Kita dapat menuliskan S t = L n L n 1 L 2 L 1 S 0 sebagai perkalian (product) saling bebas dari n peubah acak lognormal. Kita ingat kembali model binomial : S n = Y n Y n 1 Y 2 Y 1 S 0, dengan Y i peubah acak bersifat saling bebas dan berdistribusi identik (i.i.d): P (Y = u) = p dan P (Y = d) = 1 p, dengan 0 < d < 1 + r < u, 0 < p < 1. Bagaimana kita dapat mengaitkan ln L i dengan Y i? Dapatkah kita menentukan u, d, p sehingga E(Y ) = E(L) dan E(Y 2 ) = E(L 2 )? Perhatikan bahwa: dan E(Y ) = up + d(1 p); E(Y 2 ) = u 2 p + d 2 (1 p), E(L) = ( ); E(L 2 ) = ( ) Kita ingin menyelesaikan kedua persamaan up + d(1 p) = ; u 2 p + d 2 (1 p) = yang solusinya tidak tunggal. Misalkan ud = 1, maka kita peroleh p = u = d = 19

20 Catatan: Untuk n besar, ln(y n Y 2 Y 1 ) = n ln(y i ) X t N(µt, σ 2 t), i=1 karena Teorema Limit Pusat (TLP). Jadi, S n = Y n Y n 1 Y 2 Y 1 S 0 S 0 e X t = S t, 20

21 Model Binomial untuk Harga Saham Pandang bentuk rekursif untuk harga saham S n+1 = S n Y n+1, n 0 dengan Y i saling bebas dan memiliki distribusi peluang P (Y = u) = p, P (Y = d) = 1 p. Asumsikan 0 < d < 1 + r < u konstan, r suku bunga bebas risiko (risk-free interest rate). Catatan: (1 + r)x adalah payoff yang kita terima satu waktu mendatang jika kita memiliki aset seharga x pada waktu sekarang. Untuk nilai S n yang diberikan, { usn, dengan peluang p; S n+1 = ds n, dengan peluang 1 p. untuk n 0, bebas dengan sebelumnya. Jadi, harga saham akan naik ( u ) atau turun ( d ) setiap waktu. Sifat acak disebabkan nilai peluang naik atau turun tersebut. Bentuk rekursif diatas dapat ditulis S n = Y n Y 1 S 0, n 1 dengan S 0 harga awal, S n harga saat n. Untuk n yang diberikan, S n = u i d n i S 0 untuk suatu i {0,..., n}; artinya harga saham naik sebanyak i kali dan turun n i kali selama periode n. Peluang yang bersesuaian adalah P (S n = u i d n i S 0 ) = C n i p i (1 p) n i, 0 i n. Perhatikan diagram berikut: - 21

22 Pandang portofolio aset berisiko (saham) dan tidak berisiko, yaitu suatu pasangan (α, β), dengan α menyatakan koefisien banyaknya saham, dan β untuk aset tidak berisiko. Nilai α dan β tidak harus integer dan dapat bernilai negatif. Contoh: (2.3, 7.4), artinya membeli 2.3 unit (shares) saham dan 7.4 (shorted) unit aset tidak berisiko (pinjam 7.4 dengan bunga r). Perhatikan bahwa suatu portofolio selalu memiliki harga yang terdefinisi dengan baik: harga portofolio pada saat t = 0 adalah αs 0 + β, pada saat t = n, n 0 adalah αs n + β(1 + r) n. Pandang opsi call (untuk membeli) Eropa dengan harga eksekusi K waktu habis berlaku t = 1. Payoff untuk pemilik opsi ini, pada saat t = 1, adalah peubah acak C 1 = (S 1 K) +, dimana pembeli berharap harga akan lebih besar dari K. Payoff acak ini memiliki dua kemungkinan C 1 = C u = (us 0 K) + atau C 1 = C d = (ds 0 K) +, jika harga saham, berturut-turut, naik atau turun. Kita ingin menentukan harga yang pantas (fair) untuk opsi ini, notasikan C 0, dengan C 0 S 0 karena C 1 = (S 1 K) + S 1. Catatan: Orang membeli opsi karena harganya lebih murah dari saham, namun memiliki potensi untuk untung atau mendapatkan payoff lebih tinggi. Analog dengan portofolio diatas, kita konstruksikan portofolio dengan payoff C 1, pada saat t = 1, adalah C u (jika harga saham naik) atau C d (jika harga turun). Payoff portofolio adalah αs 1 + β(1 + r). Kita ingin menentukan α dan β sehingga αs 1 + β(1 + r) = C 1 atau, dengan kata lain, menentukan α dan β sehingga αus o + β(1 + r) = C u dan αds o + β(1 + r) = C d. Kita peroleh: α = β = C 0 = αs 0 + β = 22

23 Penghargaan Opsi (Option Pricing) untuk GB geometrik: Black-Scholes Misalkan pada opsi call Eropa, t = T ada waktu habis berlaku (expiration date), K harga eksekusi (strike price), C T = (S T K) + payoff. Kita ingin menentukan harga opsi jika harga saham mengikuti model GB geometrik. Perhatikan harga opsi dengan model binomial, dengan waktu habis berlaku t = n, yang diberikan sebagai nilai harapan C 0 = 1 (1 + r) n E (S n K) +, dengan E adalah nilai harapan dibawah peluang tidak berisiko (risk-neutral probability) p untuk gerakan harga saham naik dan turun. Dibawah p, rate of return yang diharapkan dari saham sama dengan suku bunga tidak berisiko r, untuk n = 1: E(S 1 ) = (1 + r)s 0 atau up + d(1 p) = (1 + r). Kita peroleh p = p = 1 + r d u d. Faktanya, dibawah p, harga saham discounted {(1 + r) n S n, n 0} adalah fair (membentuk martingale). Jika harga saham mengikuti GB geometrik maka kita mengharapkan C 0 = e rt E (S n K) + Misalkan S t = S 0 e X t dengan X t adalah GB dengan parameter drift dan variansi. Kita tentukan nilai µ dan σ yang baru, sebut µ dan σ, yang mana harga fair yaitu discounted price {e rt S t : t 0} membentuk martingale atau E(S t ) = e rt S 0, t 0 Jadi, kita ingin µ + σ 2 /2 = r Ketika menghargai opsi, kita harus menggantikan S t dengan S t = S 0 e X t, dengan Jadi, X t = µ t + σb t = (r σ 2 /2)t + σb t C 0 = e rt E (S T K) + = e rt E(S T K) + = Catatan: Perhatikan bahwa C 0 tidak bergantung pada µ, namun bergantung pada volatilitas σ 2. 23

24 Formula Black-Scholes Misalkan harga saham mengikuti GB geometrik: S t = S 0 e µt+σb t, t 0, maka harga opsi call Eropa dengan waktu habis berlaku (expiration date) t = T dan harga eksekusi (strike price) K adalah dengan C 0 = S 0 Φ(c + σ T ) e rt KΦ(c), c = ln(s 0/K) + (r σ 2 /2)T σ T dan r suku bunga tidak berisiko (risk-free interest rate). 24

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah BAB 1 Peluang dan Ekspektasi Bersyarat 1.1 EKSPEKTASI Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah E(X) x x p X (x) dan E(X)

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 017 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat MA38 Teori Peluang - Khreshna Syuhada Bab 9 Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat Ilustrasi 9. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean MA38 Teori Peluang - Khreshna Syuhada Bab 7 Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean Ilustrasi 7. Seorang peserta kuis diberi dua buah pertanyaan (P-, P-2), yang harus dijawab dengan

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik A. Jadwal kuliah:

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Salah satu instrumen derivatif yang mempunyai potensi untuk dikembangkan adalah opsi. Opsi adalah suatu kontrak antara dua pihak, salah satu pihak (sebagai pembeli) mempunyai hak

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)

Lebih terperinci

Peubah Acak dan Distribusi Kontinu

Peubah Acak dan Distribusi Kontinu BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Fungsi Convex

Bab 2. Landasan Teori. 2.1 Fungsi Convex Bab 2 Landasan Teori Salah satu hal yang menarik dari topik tugas akhir ini adalah penggunaan sebuah ilmu dari dunia insurance (teori comonotonic) ke dunia matematika keuangan. Oleh karena itu untuk memahaminya

Lebih terperinci

Minggu 1 Review Peubah Acak; Karakteristik Time Series. Minggu 4-6 Model Moving Average (MA), Autoregressive (AR)

Minggu 1 Review Peubah Acak; Karakteristik Time Series. Minggu 4-6 Model Moving Average (MA), Autoregressive (AR) CNH4S3 Analisis Time Series [Dosen] Aniq A Rohmawati, M.Si [Jadwal] Need to reschedule? [About] The purpose of time series analysis is generally twofold: to understand or model the stochastic mechanism

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik

Lebih terperinci

BAB III PENILAIAN OPSI PUT AMERIKA

BAB III PENILAIAN OPSI PUT AMERIKA BAB III PENILAIAN OPSI PUT AMERIKA Pada bab ini akan disajikan rumusan mengenai penilaian opsi put Amerika. Pada bagian pertama diberikan beberapa asumsi untuk penilaian opsi Amerika. Bentuk nilai intrinsik

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

MA4181 MODEL RISIKO Enjoy the Risks

MA4181 MODEL RISIKO Enjoy the Risks Catatan Kuliah MA48 MODEL RISIKO Enjoy the Risks disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2 Tentang MA48 Model Risiko A. Jadwal kuliah:

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kuis Selamat Datang MA5181 Proses Stokastik Precise. Prospective. Tanggal 23 Agustus 2016, Waktu: suka-suka menit 1. Mahasiswa yang datang ke ruang kuliah mengikuti suatu proses dengan laju kedatangan

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

Peubah Acak dan Distribusi

Peubah Acak dan Distribusi BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari

Lebih terperinci

/ /16 =

/ /16 = Kuis Selamat Datang MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Tanggal 22 Agustus 2017, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD. 1. Widya (akan) memenangkan

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik

Lebih terperinci

MA4181 MODEL RISIKO Enjoy the Risks

MA4181 MODEL RISIKO Enjoy the Risks Catatan Kuliah MA4181 MODEL RISIKO Enjoy the Risks disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4181 Model Risiko A. Jadwal

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

II. LANDASAN TEORI. Pada bagian ini akan diuraikan beberapa definisi dan teori penunjang yang akan digunakan di dalam pembahasan.

II. LANDASAN TEORI. Pada bagian ini akan diuraikan beberapa definisi dan teori penunjang yang akan digunakan di dalam pembahasan. II. LANDASAN TEORI Pada bagian ini akan diuraikan beberapa definisi dan teori penunjang yang akan digunakan di dalam pembahasan. 2.1 Istilah Ekonomi dan Keuangan Definisi 1 (Investasi) Dalam keuangan,

Lebih terperinci

TEORI DASAR DERET WAKTU M A T O P I K D A L A M S T A T I S T I K A II 22 J A N U A R I 2015 U T R I W E N I M U K H A I Y A R

TEORI DASAR DERET WAKTU M A T O P I K D A L A M S T A T I S T I K A II 22 J A N U A R I 2015 U T R I W E N I M U K H A I Y A R TEORI DASAR DERET WAKTU M A 5 2 8 3 T O P I K D A L A M S T A T I S T I K A II 22 J A N U A R I 2015 U T R I W E N I M U K H A I Y A R DERET WAKTU Deret waktu sendiri tidak lain adalah himpunan pengamatan

Lebih terperinci

PENENTUAN HARGA OPSI TIPE EROPA DENGAN METODE BINOMIAL

PENENTUAN HARGA OPSI TIPE EROPA DENGAN METODE BINOMIAL Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 07, No. 2 (2018), hal 127 134. PENENTUAN HARGA OPSI TIPE EROPA DENGAN METODE BINOMIAL Syarifah Nadia, Evy Sulistianingsih, Nurfitri Imro ah INTISARI

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting

MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting Catatan Kuliah MA6281 PREDIKSI DERET WAKTU DAN COPULA Forger The Past(?), Do Forecasting disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR ISI LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK... i KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR TABEL... vii DAFTAR GAMBAR... viii DAFTAR LAMPIRAN... x BAB I PENDAHULUAN...

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Rantai Markov Waktu Kontinu Pendahuluan Pada bab ini, kita akan belajar mengenai

Lebih terperinci

Bab 7. Minggu 12 Formula Black Scholes untuk Opsi Call

Bab 7. Minggu 12 Formula Black Scholes untuk Opsi Call Bab 7. Minggu Formula Black Scholes untuk Opsi Call ujuan Pembelajaran Setelah menyelesaikan perkuliahan minggu ini, mahasiswa bisa : Menjelaskan valuasi opsi call tipe Eropa model Black Scholes Menurunkan

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

PENERAPAN KALKULUS STOKASTIK PADA MODEL OPSI

PENERAPAN KALKULUS STOKASTIK PADA MODEL OPSI PENERAPAN KALKULUS STOKASTIK PADA MODEL OPSI Nizaruddin Program Studi Pendidikan Matematika FPMIPA IKIP PGRI Semarang Jl. Sidodadi Timur 24 Semarang Abstrak Opsi merupakan salah satu pilihan investasi

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR ISI LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK... i KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR TABEL... vii DAFTAR GAMBAR... viii DAFTAR LAMPIRAN... xi BAB I PENDAHULUAN...

Lebih terperinci

Bab 6 Minggu ke 10 Lemma Ito & Simulasi Monte Carlo

Bab 6 Minggu ke 10 Lemma Ito & Simulasi Monte Carlo Bab 6 Minggu ke 10 Lemma Ito & Simulasi Monte Carlo Tujuan Pembelajaran Setelah menyelesaikan perkuliahan minggu ini, mahasiswa bisa : Menjelaskan tentang Model matematis harga Saham Membuat simulasi harga

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

AK6083 Manajemen Risiko Kuantitatif. Referensi: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools.

AK6083 Manajemen Risiko Kuantitatif. Referensi: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools. AK6083 Manajemen Risiko Kuantitatif Referensi: Silabus: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools Seputar risiko dan volatilitas Peubah acak dan fungsi

Lebih terperinci

BAB III PROSES POISSON MAJEMUK

BAB III PROSES POISSON MAJEMUK BAB III PROSES POISSON MAJEMUK Pada bab ini membahas tentang proses stokastik, proses Poisson dan proses Poisson majemuk yang akan diaplikasikan pada bab selanjutnya. 3.1 Proses Stokastik Koleksi atau

Lebih terperinci

BAB III METODE MONTE CARLO

BAB III METODE MONTE CARLO BAB III ETODE ONTE CARLO 3.1 etode onte Carlo etode onte Carlo pertama kali ditemukan oleh Enrico Fermi pada tahun 1930-an. etode ini diawali dengan adanya penelitian mengenai pemeriksaan radiasi dan jarak

Lebih terperinci

BAB II TINJAUAN PUSTAKA. return, mean, standard deviation, skewness, kurtosis, ACF, korelasi, GPD, copula,

BAB II TINJAUAN PUSTAKA. return, mean, standard deviation, skewness, kurtosis, ACF, korelasi, GPD, copula, BAB II TINJAUAN PUSTAKA Pada bab ini akan dibahas semua konsep yang mendasari penelitian ini yaitu return, mean, standard deviation, skewness, kurtosis, ACF, korelasi, GPD, copula, VaR, estimasi VaR dengan

Lebih terperinci

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2018

Lebih terperinci

PENGGUNAAN MODEL BLACK SCHOLES UNTUK PENENTUAN HARGA OPSI JUAL TIPE EROPA

PENGGUNAAN MODEL BLACK SCHOLES UNTUK PENENTUAN HARGA OPSI JUAL TIPE EROPA Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster) Volume 02 no. 1 (2013), hal 13 20 PENGGUNAAN MODEL BLACK SCHOLES UNTUK PENENTUAN HARGA OPSI JUAL TIPE EROPA Widyawati, Neva Satyahadewi, Evy Sulistianingsih

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Daftar

Lebih terperinci

MA2081 Statistika Dasar

MA2081 Statistika Dasar Catatan Kuliah MA2081 Statistika Dasar Orang Cerdas Belajar Statistika Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA2081 Statistika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 15 BAB II LANDASAN TEORI Pada bab ini diberikan tinjauan pustaka, teori penunjang dan kerangka pemikiran. Tinjauan pustaka terdiri dari penelitian-penelitian sebelumnya yang mendasari skripsi ini, teori

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar 1 EKSPEKTASI (HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 0 September 01 Utriweni Mukhaiyar Ekspektasi Suatu Peubah Acak Misalkan X peubah acak Ekspektasi dari X EX [ ] xp( X x), jika X peubah acak

Lebih terperinci

Perhitungan Harga Opsi Eropa Menggunakan Metode Gerak Brown Geometri

Perhitungan Harga Opsi Eropa Menggunakan Metode Gerak Brown Geometri Perhitungan Harga Opsi Eropa Menggunakan Metode Gerak Brown Geometri Kristoforus Ardha Sandhy Pradhitya 1), Bambang Susanto 2), dan Hanna Arini Parhusip 3) 1) Mahasiswa Program Studi Matematika email:

Lebih terperinci

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah MA3181 Teori Peluang - Khreshna Syuhada Bab 8 1 Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah Ilustrasi 8.1 Sebuah perusahaan asuransi menduga bahwa setiap orang akan mengalami dan memiliki parameter

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN Dalam pembahasan ini dikaji mengenai nilai ekspektasi saham pada jatuh tempo, persamaan nilai portofolio, penentuan model Black-Scholes harga opsi beli tipe Eropa,

Lebih terperinci

MA6281 Topik Lanjut dalam Statistika ANALISIS DATA DENGAN COPULA Dependency is not necessarily bad

MA6281 Topik Lanjut dalam Statistika ANALISIS DATA DENGAN COPULA Dependency is not necessarily bad Catatan Kuliah MA6281 Topik Lanjut dalam Statistika ANALISIS DATA DENGAN COPULA Dependency is not necessarily bad disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut

Lebih terperinci

ABSTRAK SIMULASI MONTE CARLO DALAM PENENTUAN HARGA OPSI BARRIER

ABSTRAK SIMULASI MONTE CARLO DALAM PENENTUAN HARGA OPSI BARRIER ABSTRAK SIMULASI MONTE CARLO DALAM PENENTUAN HARGA OPSI BARRIER Djaffar Lessy, Dosen Pendidikan Matematika Fakultas Tarbiyah dan Keguruan, IAIN Ambon 081343357498, E-mail: Djefles79@yahoo.com Opsi yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Opsi adalah suatu hak (bukan kewajiban) untuk pembeli opsi untuk membeli

BAB II TINJAUAN PUSTAKA. Opsi adalah suatu hak (bukan kewajiban) untuk pembeli opsi untuk membeli BAB II TINJAUAN PUSTAKA 2.1 Opsi Opsi adalah suatu hak (bukan kewajiban) untuk pembeli opsi untuk membeli atau menjual aset kepada penjual opsi pada harga tertentu dan dalam jangka waktu yang telah ditentukan

Lebih terperinci

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab Peubah Acak. Konsep Dasar Peubah Acak Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh peubah acak: Jika X adalah peubah acak banyaknya sisi muka yang muncul pada

Lebih terperinci

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2018

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci