BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S."

Transkripsi

1 BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut unsur atau anggota ruang sampel tersebut atau dengan istilah titik sampel. Definisi 2 Kejadian adalah himpunan bagian dari ruang sampel. Contoh Misalkan A = {t t<5} himpunan bagian ruang sampel S = {t t 0}, t menyatakan unsur (dalam tahun) suatu komponen mesin tertentu dan A menyatakan kejadian bahwa komponen akan rusak sebelum akhir tahun kelima. Definisi 3 Ruang nol atau ruang hampa adalah himpunan bagian ruang sampel yang tidak mengandung unsur. Himpunan seperti ini dinyatakan dengan lambang Ø. 2.2 Peluang Suatu Kejadian

2 Teori peluang mempelajari tentang peluang terjadinya suatu kejadian atau peristiwa. Peluang dinyatakan antara 0 dan 1. Bila peluang suatu kejadian bernilai 0, maka kejadian tersebut tidak akan terjadi. Sedangkan bila peluang suatu kejadian bernilai 1, maka kejadian tersebut pasti terjadi. Untuk menentukan peluang suatu kejadian A, semua bobot titik sampel dalam A dijumlahkan. Jumlah ini dinamakan ukuran A atau peluang A dan dinyatakan dengan P (A), jadi ukuran himpunan Ø adalah 0 dan ukuran S adalah 1. Definisi 4 Peluang suatu kejadian A adalah jumlah bobot semua titik sampel yang termasuk A. 0 P (A) 1, P (Ø) = 0, dan P (S) = 1 Teorema Bila suatu percobaan dapat menghasilkan N macam hasil yang berkemungkinan sama, dan bila tepat sebanyak n dari hasil berkaitan dengan kejadian A, maka peluang kejadian A adalah: 2.3 Peubah acak Suatu fungsi real yang harganya ditentukan oleh tiap anggota dalam ruang sampel disebut suatu peubah acak. Ada 2 (dua) macam peubah acak, yaitu peubah acak diskrit dan peubah acak kontinu. Definisi 5

3 Jika semua himpunan nilai yang mungkin dari suatu peubah acak X merupakan himpunan terbilang (contable set), yaitu {x 1, x 2,,x n } maka X disebut peubah acak diskrit. Definisi 6 Jika himpunan semua nilai yang mungkin dari suatu variabel random X merupakan selang bilangan real, maka X disebut peubah acak kontinu. 2.4 Distribusi Peluang Fungsi adalah suatu fungsi peluang atau distribusi peluang suatu peubah acak diskrit X, bila untuk setiap hasil x yang mungkin: 2. n i 1 f ( x) 1 3. P (X = x) = Definisi 7 Distribusi kumulatif F (x) suatu peubah acak diskrit X dengan distribusi peluang dinyatakan oleh: F x P X x f x t x Definisi 8 Jika fungsi adalah fungsi padat peluang peubah acak kontinu X, maka fungsi densitas probabilitasnya adalah sebagai berikut: f x dx 1 3. P ( a X b) f ( x) dx b a

4 Definisi 9 Distribusi kumulatif suatu peubah acak kontinu X dengan fungsi padat peluang diberikan oleh: x P X x F f ( x) dx Definisi 10 Misalkan X 1, X 2,.Xn, peubah acak diskrit maupun kontinu dengan distribusi peluang gabungan dan distribusi marginal masing masing. Peubah acak X 1, X 2,,X n dikatakan saling bebas statistik jika dan hanya jika: Jika sampel random yang berukuran n tersebut diurutkan dalam satu urutan naik maka disebut statistik terurut atau order statistik dari X 1, X 2,, X n dan dinyatakan dengan X 1.n X 2.n,, X n.n. Misalkan X 1, X 2,, X n adalah sampel random yang berukuran n dan fungsi distribusi probabilitasnya kontinu dan < adalah: maka fungsi densitas probabilitas dari statistik terurut ke-k 2.5 Pendekatan Bayes Untuk Menentukan Estimator Dalam pendekatan klasik estimator yang diperoleh hanya berdasarkan pada informasi sampel, sedangkan pendekatan Bayes disamping informasi sampel juga diperlukan informasi tentang parameter. Definisi 11

5 Suatu informasi pada ruang parameter disebut informasi prior. Informasi ini dipandang sebagai distribusi peluang pada ruang parameter yang disebut distribusi prior. Definisi 12 Distribusi bersyarat θ apabila diberikan observasi sampel X disebut distribusi posterior θ dan dinyatakan dengan. Dalam menentukan distribusi posterior, khususnya untuk kasus kontinu kadang diperlukan perhitungan integral yang tidak mudah, yaitu apabila fungsi matematikanya tidak sederhana, salah satu cara mengatasi kesulitan ini adalah dengan menggunakan distribusi prior sekawan. Definisi 13 Misalkan F adalah kelas dari distribusi peluang dengan fkp. Kelas P dari distribusi prior disebut distribusi keluarga sekawan untuk F jika distribusi posterior berada dalam P untuk semua f F, semua prior dalam P dan semua x X. Teorema 14 Misalkan, sampel random dari fungsi probabilitas Statistik dikatakan cukup untuk θ jika dan hanya jika fungsi probabilitas bersama, terurai menjadi hasil kali fungsi probabilitas W dan suatu fungsi lain yang hanya tergantung pada θ, yakni cukup jika dan hanya jika. Teorema Jika T adalah statistik cukup untuk θ dengan fungsi kepadatan peluang, maka =, dengan adalah distribusi prior untuk dan fungsi probabilitas marginal untuk t.

6 2.6 Konsep Dasar Distribusi Tahan Hidup Fungsi fungsi pada distribusi tahan hidup merupakan suatu fungsi yang menggunakan variabel random. Waktu hidup adalah interval waktu yang diamati dari suatu individu saat pertama kali masuk kedalam pengamatan hingga keluar dari pengamatan. Misalnya interval waktu sampai rusaknya suatu barang produksi, matinya suatu mahkluk hidup, kambuhnya suatu penyakit, dan lain lain. Variabel random nonnegatif waktu hidup biasanya dinotasikan dengan huruf T, dan akan membentuk suatu distribusi. Distribusi dari waktu hidup dapat disajikan oleh 3 (tiga) fungsi berikut: 1. Fungsi Kepadatan Peluang Fungsi kepadatan peluang adalah probabilitas kegagalan suatu individu dalam interval waktu dari t sampai t + t, dengan waktu T merupakan variabel random. Fungsi kepadatan peluang dinyatakan dengan: Waktu hidup merupakan variabel random nonnegatif, sehingga waktu hidup hanya diukur untuk nilai t yang positif. 2. Fungsi Tahan Hidup (Survival Function) Fungsi tahan hidup adalah peluang suatu individu bertahan hidup lebih dari waktu t dengan t > 0. Fungsi tahan hidup dinyatakan dengan S (t).

7 (2.2) Dalam beberapa hal, khususnya yang mencakup tahan hidup dari komponen-komponen industri, S (t) ditentukan sebagai fungsi reliabilitas. adalah: Jadi hubungan fungsi densitas probabilitas dengan fungsi tahan hidup (survival) Dalam hal ini fungsi tahan hidup S (t) merupakan fungsi kontinu menurun secara kontinu dengan S (0) = 1, artinya peluang individu bertahan lebih lama dari waktu nol adalah 1 dan S ( ) = 0, artinya peluang suatu individu bertahan hidup pada waktu yang tidak terhingga adalah Fungsi Kegagalan (Hazard Function) Fungsi hazard adalah probabilitas suatu individu gagal dalam interval waktu dari t sampai t + t, jika diketahui individu tersebut masih dapat bertahan hidup sampai dengan waktu t, maka fungsi hazard secara matematika dinyatakan sebagai: Misalkan persamaan (2.3) diperoleh: adalah fungsi densitas probabilitas pada waktu t, maka dari

8 Dari persamaan (2.3) dan (2.5) diperoleh sebagai berikut: Dari persamaan (2.6) diperoleh: Karena S(0) = 1, maka diperoleh: Dari uraian tersebut diperoleh hubungan antara dan sebagai berikut: i. ii. iii. (2.7)

9 Dengan demikian dapat dilihat bahwa ke tiga fungsi pada distribusi waktu hidup yaitu dan saling berhubungan satu dengan yang lainnya. 2.7 Sistem Keandalan Dalam konsep keandalan, juga terdapat beberapa sistem yang dinyatakan untuk membantu memutuskan apakah sistem gagal secara total atau tidak. Dalam satu proses, tidaklah selalu mudah untuk memutuskan kriteria kriteria kegagalan dalam sistem tersebut. Sebagai contoh perhatikan sistem kegagalan dalam sistem sebuah mobil. Jika tidak dapat bergerak dengan tenaganya sendiri, maka mobil tersebut dinyatakan telah rusak atau gagal sistemnya. Namun haruskah rusaknya lampu depan sebuah mobil dikatakan kegagalan sistem secara total, walaupun mobil dapat digunakan pada cuaca cerah tetapi tidak dapat digunakan secara total pada waktu gelap atau pada malam hari. Oleh karena itu kerusakan sistem sering diakibatkan oleh kegagalan atau kerusakan dari komponen-komponennya. Untuk itu diberikan 3 (tiga) sistem yang dapat dikatakan sebagai sistem dasar dari keandalan sistem, yaitu sistem seri, sistem paralel dan kombinasi dari seri dan paralel Sistem Keandalan Seri Suatu sistem dapat dimodelkan dengan susunan seri jika komponen komponen yang ada didalam sistem itu harus bekerja atau berfungsi seluruhnya agar sistem tersebut sukses dalam menjalankan fungsinya. Atau dengan kata lain bila ada satu komponen

10 saja yang tidak bekerja, maka akan mengakibatkan sistem itu gagal menjalankan fungsinya. Secara diagram, sistem keandalan seri dapat dilihat pada gambar berikut: 1 2 n Gambar 2.1 Sistem Keandalan Seri Diagram pada gambar di atas sering disebut Diagram Blok Keandalan atau Reliability Block Diagram (RDB). Perlu diperhatikan bahwa diagram ini tidak mewakili setiap komponen yang dihubungkan secara seri, tetapi menunjukkan bagaimana komponen komponen itu diperlakukan dari sudut pandang keandalan. Jika ada n buah komponen dalam susunan seri dan masing masing memiliki indeks keandalan, seperti terlihat pada Gambar 2.1, maka secara umum sistem keandalan seri dirumuskan sebagai berikut: Sedangkan ekspresi ketakandalan dari sistem dengan susunan seri dan n buah komponen adalah: Sistem Keandalan Paralel Pada sistem ini setiap komponen yang mungkin mengalami kerusakan tidak akan mengakibatkan kerusakan sistem secara keseluruhan, dan sering dinamakan failure tolerant (kerusakan yang dapat ditolerir).

11 Ada 2 (dua) jenis dari sistem keandalan paralel ini, yakni kelebihan redundant aktif dan kelebihan redundant pasif. Pada kelebihan aktif, dua atau lebih unit diletakkan dalam sistem keandalan pararel dimana secara normal pembagian fungsi dilakukan tetapi unit unit tersebut diatur sedemikian hingga jika satu atau mungkin lebih mengalami kerusakan, maka sisanya dapat menggantikan posisinya. Sebagai contoh adalah dua mesin pesawat terbang yang diaktifkan tetapi tidak menutup kemungkinan pesawat terbang dengan satu mesin, apabila mesin yang satunya mengalami kerusakan. Pada kelebihan pasif, satu unit secara normal memegang fungsi secara penuh tetapi jika unit tersebut mengalami kerusakan, maka unit yang lain akan diaktifkan untuk mengambil alih perannya Sistem Keandalan Paralel Kelebihan Aktif Misalkan ada dua unit (1) dan (2) dihubungkan dalam sistem paralel seperti gambar dibawah ini. 1 2 Gambar 2.2 Sistem Keandalan Paralel Kelebihan aktif Sistem akan rusak apabila (1) dan (2) ke dua duanya mengalami kerusakan. Keandalan sistem dikalkulasikan sebagai berikut, jika di defenisikan Q (ketakandalan sistem) maka

12 Dimana adalah kejadian komplemen bebas sehingga diperoleh: Jika peluang dari kegagalan adalah independen, maka fungsi sistem keandalannya adalah: Sistem Keandalan Paralel Kelebihan Pasif Pada sistem redundan pasif, unit utama (1) secara normal membawa fungsi secara penuh dan unit siaga (2) dibawa untuk digunakan ketika unit utama mengalami kegagalan. Secara sederhana, sistem redundan pasif dapat ditunjukkan dalam gambar berikut: 1 2

13 Gambar 2.3 Sistem Keandalan Paralel Kelebihan Pasif Cara untuk menganalisa sistem adalah harus mempertimbangkan bahwa sistem kegagalan waktu adalah variabel acak yang mengandung jumlah dari dua variabel acak, yakni kegagalan waktu (1) dan kegagalan waktu (2) Kombinasi Sistem Seri dan Paralel Kombinasi dari sistem seri dan paralel dapat diselesaikan dengan menggabungkan masing masing subsistem ke dalam komponen seri maupun paralel terlebih dahulu. Untuk lebih memahami sistem kombinasi seri dan paralel, akan diberikan contoh gambar seperti berikut: A C B D Gambar 2.4 Sistem Kombinasi Seri Paralel A C B D Gambar 2.5 Sistem Kombinasi Paralel Seri

14 Dari ke dua gambar tersebut, Gambar (2.4) menunjukkan sistem kombinasi seri paralel. Untuk menyelesaikan sistem gabungan ini pertama tama dengan menggabungkan subsistem paralel kedalam bentuk yang sama dengan komponen seri. Misalkan: Penyelesaiannya dapat dituliskan: = 1 (0.1)(0.2) = = 0.98 dan = 1 (0.3)(0.4) = = 0.88 Keandalan sistem secara keseluruhan adalah: = (0.98)(0.88) = Untuk Gambar (2.5) seperti yang ditunjukkan merupakan sistem kombinasi paralel seri. Untuk menyelesaikannya, pertama tama dengan menggabungkan subsistem ke dalam bentuk yang sama dengan komponen paralel. Untuk pemisalan yang sama dengan Gambar (2.4), diperoleh penyelesaiannya sebagai berikut: = 0.63 = (0.9)(0.7) dan = (0.8)(0.6) = 0.48

15 Sehingga keandalan sistem secara keseluruhan adalah: = 1 (1-0.63)(1 0.48) = 1 (0.37)(0.52) = = Sampel Lengkap Ada 3 (tiga) macam metode yang sering digunakan dalam eksperimen uji hidup, yaitu sebagai berikut: 1) Sampel Lengkap, jika semua komponen yang diuji telah mati atau gagal, maka eksperimen akan dihentikan. Cara seperti ini mempunyai keuntungan yaitu dapat dihasilkan observasi terurut dari semua komponen yang diuji. 2) Sensor tipe I, semua objek yang diteliti (n) masuk pengujian dalam waktu yang bersamaan, dan pengujian akan dihentikan setelah batas waktu yang ditentukan. Kelemahan dari sensor tipe I ini bisa terjadi sampai batas waktu yang ditentukan semua objek masih hidup sehingga tidak diperoleh data tahan hidup dari objek yang diuji. 3) Sensor tipe II, semua objek yang diteliti (n) masuk pengujian dalam waktu yang bersamaan, dan pengujian dihentikan setelah mendapatkan objek diantaranya gagal atau mati dengan Kelemahan dari sensor tipe II ini adalah waktu yang diperlukan untuk memperoleh objek yang mati bisa jadi sangat panjang, tetapi pasti diperoleh data tahan hidup dari tersebut. objek

16 2.9 Distribusi Weibull Distribusi Weibull merupakan salah satu jenis distribusi kontinu yang sering digunakan khususnya dalam bidang keandalan dan statistik karena kemampuannya untuk mendekati berbagai jenis sebaran data. Fungsi kepadatan peluang untuk waktu kegagalan t berdistribusi Weibull dengan parameter θ dinyatakan sebagai berikut: = exp, Adapun fungsi tahan hidup dari distribusi Weibull adalah: Sedangkan fungsi hazard dari distribusi Weibull adalah: Keterangan: t = waktu θ = parameter skala = parameter bentuk

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini diberikan beberapa konsep dasar seperti teorema dan beberapa definisi sebagai landasan dalam penelitian ini. Konsep dasar ini berkaitan dengan masalah yang dibahas dalam

Lebih terperinci

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi Garansi dapat diartikan sebagai jaminan yang diberikan secara tertulis oleh pabrik atau supplier kepada

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dalam pembicaraan statistik, jawaban yang diinginkan adalah jawaban untuk ruang lingkup yang lebih luas, yakni populasi. Tetapi objek dari studi ini menggunakan sampel

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 21 Beberapa Pengertian Definisi 1 [Ruang Contoh] Ruang contoh adalah himpunan semua hasil yang mungkin dari suatu percobaan acak, dan dinotasikan dengan (Grimmet dan Stirzaker,1992)

Lebih terperinci

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer BAB I PENDAHULUAN A. Latar Belakang Statistika merupakan salah satu ilmu matematika yang terus berkembang dari waktu ke waktu. Di dalamnya mencakup berbagai sub pokok-sub pokok materi yang sangat bermanfaat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Di dalam suatu kegiatan, seringkali dilakukan berbagai percobaan atau eksperimen. Hasil eksperimen akan memberikan informasi tentang masalah yang sedang

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

KONSEP DASAR TERKAIT METODE BAYES

KONSEP DASAR TERKAIT METODE BAYES KONSEP DASAR TERKAIT METODE BAYES 2.3. Peubah Acak dan Distribusi Peluang Pada statistika kita melakukan percobaan dimana percobaan tersebut akan menghasilkan suatu peluang. Ruang sampel pada percobaan

Lebih terperinci

BAB I PENDAHULUAN. Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang

BAB I PENDAHULUAN. Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang BAB I PENDAHULUAN 1.1 Latar Belakang Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang dimaksud di sini adalah peristiwa kegagalan yang dapat berupa tidak berfungsinya benda tersebut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Pengertian Distribusi Eksponensial Distribusi eksponensial adalah distribusi yang paling penting dan paling sederhana kegagalan mesin penghitung otomatis dan kegagalan komponen

Lebih terperinci

DISTRIBUSI SATU PEUBAH ACAK

DISTRIBUSI SATU PEUBAH ACAK 0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN digilib.uns.ac.id BAB III METODE PENELITIAN Metode yang digunakan dalam penelitian ini adalah kajian pustaka dari buku referensi karya ilmiah. Karya ilmiah yang digunakan adalah hasil penelitian serta

Lebih terperinci

ESTIMASI PARAMETER UNTUK DATA WAKTU HIDUP YANG BERDISTRIBUSI RAYLEIGH PADA DATA TERSENSOR TIPE II DENGAN METODE MAKSIMUM LIKELIHOOD SKRIPSI

ESTIMASI PARAMETER UNTUK DATA WAKTU HIDUP YANG BERDISTRIBUSI RAYLEIGH PADA DATA TERSENSOR TIPE II DENGAN METODE MAKSIMUM LIKELIHOOD SKRIPSI 0 ESTIMASI PARAMETER UNTUK DATA WAKTU HIDUP YANG BERDISTRIBUSI RAYLEIGH PADA DATA TERSENSOR TIPE II DENGAN METODE MAKSIMUM LIKELIHOOD SKRIPSI JULHAIDI 09083045 PROGRAM STUDI SARJANA MATEMATIKA DEPARTEMEN

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang BAB II KAJIAN TEORI BAB II KAJIAN TEORI A. Analisis Survival Analisis survival atau analisis ketahanan hidup adalah metode yang berhubungan dengan jangka waktu, dari awal pengamatan sampai suatu kejadian

Lebih terperinci

Modul 2: Metode Model Kombinatorik

Modul 2: Metode Model Kombinatorik Modul 2: Metode Model Kombinatorik Pendahuluan metode kombinatorik Metode validasi kombinatorik adalah semacam teknik analitik / numerik dan dapat digunakan untuk model keandalan dan ketersediaan dibawah

Lebih terperinci

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan II. TINJAUAN PUSTAKA 2.1 Percobaan dan Ruang Sampel Menurut Walpole (1995), istilah percobaan digunakan untuk sembarang proses yang dapat membangkitkan data. Himpunan semua hasil suatu percobaan disebut

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 3: Estimasi Titik dengan Metode Bayes Statistika FMIPA Universitas Islam Indonesia Dalam pendekatan klasik, parameter θ adalah besaran tetap yang tidak diketahui Sampel random X 1, X 2,..., X n diambil

Lebih terperinci

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X = 0. Perlu diketahui bahwa luas kurva normal adalah satu (sebagaimana

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis survival (survival analysis) atau analisis kelangsungan hidup bertujuan

II. TINJAUAN PUSTAKA. Analisis survival (survival analysis) atau analisis kelangsungan hidup bertujuan II. TINJAUAN PUSTAKA 2.1 Analisis Survival Analisis survival (survival analysis) atau analisis kelangsungan hidup bertujuan menduga probabilitas kelangsungan hidup, kekambuhan, kematian, dan peristiwaperistiwa

Lebih terperinci

BAB V PENGANTAR PROBABILITAS

BAB V PENGANTAR PROBABILITAS BAB V PENGANTAR PROBABILITAS Istilah probabilitas atau peluang merupakan ukuran untuk terjadi atau tidak terjadinya sesuatu peristiwa. Ukuran ini merupakan acuan dasar dalam teori statistika. 1. Beberapa

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

1 PROBABILITAS. Pengertian

1 PROBABILITAS. Pengertian PROBABILITAS Pengertian Pada awal perkuliahan, sebelum menjelaskan probabilitas, dibahas sepintas sebagai pengantar tentang eksperimen, titik sampel, ruang sampel, dan peristiwa, serta variabel random

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

BAB IV KESIMPULAN DAFTAR PUSTAKA LAMPIRAN... 64

BAB IV KESIMPULAN DAFTAR PUSTAKA LAMPIRAN... 64 DAFTAR ISI Halaman HALAMAN JUDUL... ii HALAMAN PENGESAHAN... iii KATA PENGANTAR... v ABSTRAK... vii ABSTACT... viii DAFTAR ISI... ix DAFTAR SIMBOL... xii DAFTAR TABEL... xiv DAFTAR GAMBAR... xv DAFTAR

Lebih terperinci

Disusun oleh: 1. Diah Sani Susilawati ( / 7B) 2. Farid Hidayat ( / 7B) 3. Rico Nurcahyo ( / 7B)

Disusun oleh: 1. Diah Sani Susilawati ( / 7B) 2. Farid Hidayat ( / 7B) 3. Rico Nurcahyo ( / 7B) DISTRIBUSI MARGINAL DAN DISTRIBUSI GABUNGAN Disusun guna memenuhi tugas mata kuliah Statistika Matematika Dosen Pengampu: Supandi, M.Si Disusun oleh:. Diah Sani Susilawati (8355/ 7B). Farid Hidaat (836/

Lebih terperinci

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA VARIABEL RANDOM Misalkan (Ω, A, P) ruang probabilitas dan R = {x < x < } dan B : Borel field pada R. Andaikan X : Ω R dan untuk setiap A R, kita definisikan

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT. Oleh : ADE CANDRA SISKA NIM: J2E SKRIPSI

INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT. Oleh : ADE CANDRA SISKA NIM: J2E SKRIPSI INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT Oleh : ADE CANDRA SISKA NIM: J2E 006 002 SKRIPSI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci

Dasar-dasar Statistika Pemodelan Sistem

Dasar-dasar Statistika Pemodelan Sistem Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016

Lebih terperinci

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah Variabel Random dan Nilai Harapan Oleh Azimmatul Ihwah Outcomes dari suatu eksperimen dapat dinyatakan dengan angka untuk mempermudah. Suatu variabel yang mengasosiakan outcomes dari suatu eksperimen dengan

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA. Pendahuluan Uji perbandingan dua distribusi merupakan suatu tekhnik analisis ang dilakukan untuk mencari nilai parameter ang baik diantara dua distribusi. Tekhnik uji perbandingan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. diharapkan, membutuhkan informasi serta pemilihan metode yang tepat. Oleh

BAB II TINJAUAN PUSTAKA. diharapkan, membutuhkan informasi serta pemilihan metode yang tepat. Oleh BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Pemecahan masalah untuk mencapai tujuan dan hasil penelitian yang diharapkan, membutuhkan informasi serta pemilihan metode yang tepat. Oleh karena itu, dalam Bab

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peluang Peluang mempunyai banyak persamaan arti, seperti kemungkinan, kesempatan dan kecenderungan. Peluang menunjukkan kemungkinan terjadinya suatu kejadian yang bersifat acak.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. diperhatikan adalah jangka waktu dari awal pengamatan sampai suatu event

BAB II TINJAUAN PUSTAKA. diperhatikan adalah jangka waktu dari awal pengamatan sampai suatu event BAB II TINJAUAN PUSTAKA A. Analisis Survival Analisis survival merupakan suatu analisis data dimana variabel yang diperhatikan adalah jangka waktu dari awal pengamatan sampai suatu event terjadi dengan

Lebih terperinci

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya

Lebih terperinci

Distribusi Peubah Acak

Distribusi Peubah Acak Chandra Novtiar 085794801125 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG 4 April 2017 Garis Besar Pembahasan FUNGSI

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

BAB I PENDAHULUAN. Globalisasi telah menjadi fenomena yang tidak dapat dihindari dalam

BAB I PENDAHULUAN. Globalisasi telah menjadi fenomena yang tidak dapat dihindari dalam 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Globalisasi telah menjadi fenomena yang tidak dapat dihindari dalam dunia bisnis. Perekonomian dunia semakin terbuka dan mengarah pada suatu kesatuan global

Lebih terperinci

BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU

BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU 3.1 Model Regresi Cox Proportional Hazard dengan Variabel Terikat oleh Waktu Model regresi Cox proportional hazard

Lebih terperinci

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu. Adam Hendra Brata

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu. Adam Hendra Brata Probabilitas dan Statistika Adam Hendra Brata Himpunan nilai-nilai yang mungkin dari peubah acak X merupakan himpunan tak terhitung yaitu tidak dapat dinyatakan sebagai {,, 3,., n } atau {,, 3,.} tetapi

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar Statistika Matematika II Estimasi Titik dengan Metode Atina Ahdika, S.Si., M.Si. Prodi Statistika FMIPA Universitas Islam Indonesia May 9, 2017 atinaahdika.com Dalam pendekatan klasik, parameter

Lebih terperinci

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang. MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial

Lebih terperinci

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 1-7) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 1:HIMPUNAN Operasi Himpunan Sifat-Sifat Operasi Himpunan 2 Minggu 2:COUNTING TECHNIQUE

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teori Pemeliharaan Untuk menjamin kontinuitas kegiatan operasional suatu sistem, keandalan setiap komponen peralatan sangat dijaga agar peralatan tersebut tidak mengalami kegagalan

Lebih terperinci

KAJIAN AVAILABILITAS PADA SISTEM PARALEL

KAJIAN AVAILABILITAS PADA SISTEM PARALEL KAJIAN AVAILABILITAS PADA SISTEM PARALEL Riana Ayu Andam P. 1, Sudarno 2, Suparti 3 1 Mahasiswa Jurusan Statistika FSM UNDIP 2,3 Staff Pengajar Jurusan Statistika FSM UNDIP Abstract Availabilitas merupakan

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 4 BAB II KAJIAN PUSTAKA Pada sub bab ini akan diberikan beberapa definisi dan teori yang mendukung rancangan Sequential Probability Ratio Test (SPRT) yaitu percobaan dan ruang sampel, peubah acak dan fungsi

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Analisis Survival

BAB 2 LANDASAN TEORI. 2.1 Analisis Survival BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan bab selanjutnya dan pembahasan utama dalam penelitian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

Probabilitas. Oleh Azimmatul Ihwah

Probabilitas. Oleh Azimmatul Ihwah Probabilitas Oleh Azimmatul Ihwah Teori Probabilitas Life is full of uncertainty Dimana terkadang kita tidak tahu apa yang akan terjadi semenit kemudian. Namun suatu kejadian dapat diperkirakan lebih sering

Lebih terperinci

APLIKASI METODE KAPLAN MEIER UNTUK MENDUGA SELANG WAKTU KETAHANAN HIDUP (Studi Kasus: Pasien Kanker Payudara di Rumah Sakit Panti Rapih Yogyakarta)

APLIKASI METODE KAPLAN MEIER UNTUK MENDUGA SELANG WAKTU KETAHANAN HIDUP (Studi Kasus: Pasien Kanker Payudara di Rumah Sakit Panti Rapih Yogyakarta) APLIKASI METODE KAPLAN MEIER UNTUK MENDUGA SELANG WAKTU KETAHANAN HIDUP (Studi Kasus: Pasien Kanker Payudara di Rumah Sakit Panti Rapih Yogyakarta) Tugas Akhir Diajukan untuk Memenuhi Salah Satu Syarat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data antar kejadian (time-to-event data) adalah data lama waktu sampai suatu peristiwa terjadi atau sering disebut data survival. Untuk memperoleh data antar

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

KONSISTENSI ESTIMATOR

KONSISTENSI ESTIMATOR KONSISTENSI ESTIMATOR TUGAS STATISTIKA MATEMATIKA II Oleh 1. Wahyu Nikmatus S. (121810101010) 2. Vivie Aisyafi F. (121810101050) 3. Rere Figurani A. (121810101052) 4. Dwindah Setiari W. (121810101054)

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum likelihood estimation, penyensoran, bias relatif, penduga parameter distribusi Weibull dan beberapa istilah

Lebih terperinci

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan diketahui

Lebih terperinci

I. PENDAHULUAN II. TINJAUAN PUSTAKA

I. PENDAHULUAN II. TINJAUAN PUSTAKA I. PENDAHULUAN 1.1 Latar Belakang Pada kehidupan sehari-hari, distribusi probabilitas dapat ditemukan dalam banyak hal yang dapat memberikan manfaat dalam penerapannya. Distribusi probabilitas merupakan

Lebih terperinci

Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III ISSN: X Yogyakarta, 3 November 2012

Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III ISSN: X Yogyakarta, 3 November 2012 PENENTUAN RELIABILITAS SISTEM DAN PELUANG SUKSES MESIN PADA JENIS SISTEM PRODUKSI FLOW SHOP Imam Sodikin 1 1 Teknik Industri Fakultas Teknologi Industri Institut Sains & Teknologi AKPRIND Yogyakarta Jl.

Lebih terperinci

ANALISIS RELIABILITAS PADA MESIN MEISA KHUSUSNYA KOMPONEN PISAU PAPER BAG UNTUK MEMPEROLEH JADUAL PERAWATAN PREVENTIF

ANALISIS RELIABILITAS PADA MESIN MEISA KHUSUSNYA KOMPONEN PISAU PAPER BAG UNTUK MEMPEROLEH JADUAL PERAWATAN PREVENTIF Prosiding Seminar Nasional Matematika dan Pendidikan Matematika (SESIOMADIKA) 2017 ISBN: 978-602-60550-1-9 Statistika, hal. 42-51 ANALISIS RELIABILITAS PADA MESIN MEISA KHUSUSNYA KOMPONEN PISAU PAPER BAG

Lebih terperinci

STATISTIK INDUSTRI 1. Agustina Eunike, ST., MT., MBA

STATISTIK INDUSTRI 1. Agustina Eunike, ST., MT., MBA STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Probabilitas PELUANG Eksperimen Aktivitas / pengukuran / observasi suatu fenomena yang bervariasi outputnya Ruang Sampel / Sample Space Semua output

Lebih terperinci

DISTRIBUSI PROBABILITAS DAN TERMINOLOGI KEANDALAN

DISTRIBUSI PROBABILITAS DAN TERMINOLOGI KEANDALAN #7 DISTRIBUSI PROBABILITAS DAN TERMINOLOGI KEANDALAN 7.1. Pendahuluan Pada pembahasan terdahulu, keandalan hanya dievaluasi sebagai suatu sistem rekayasa (engineering) dengan tidak menggunakan distribusi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan berjalannya waktu, ilmu pengetahuan dan teknologi (sains dan teknologi) telah berkembang dengan cepat. Salah satunya adalah ilmu matematika yang

Lebih terperinci

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu Lanjut. Adam Hendra Brata

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu Lanjut. Adam Hendra Brata Probabilitas dan Statistika Fungsi Lanjut Adam Hendra Brata Gabungan Gabungan Fungsi Acak Fungsi Rapat Kumulatif Gabungan Untuk variabel random kontinu, analog dengan kasus diskrit, fungsi rapat probabilitas

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

BAB III PROSES POISSON MAJEMUK

BAB III PROSES POISSON MAJEMUK BAB III PROSES POISSON MAJEMUK Pada bab ini membahas tentang proses stokastik, proses Poisson dan proses Poisson majemuk yang akan diaplikasikan pada bab selanjutnya. 3.1 Proses Stokastik Koleksi atau

Lebih terperinci

KARAKTERISTIK DISTRIBUSI KELUARGA TRANSFORMASI KHI-KUADRAT. Oleh : Entit Puspita. Dosen Jurusan pendidikan Matematika

KARAKTERISTIK DISTRIBUSI KELUARGA TRANSFORMASI KHI-KUADRAT. Oleh : Entit Puspita. Dosen Jurusan pendidikan Matematika KARAKTERISTIK DISTRIBUSI KELUARGA TRANSFORMASI KHI-KUADRAT Oleh : Entit Puspita Dosen Jurusan pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia Abstrak Dalam Keluarga eksponensial satu parameter

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

LOGO STATISTIKA MATEMATIKA I TEORI PELUANG HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA UNAND

LOGO STATISTIKA MATEMATIKA I TEORI PELUANG HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA UNAND LOGO STATISTIKA MATEMATIKA I TEORI PELUANG HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA UNAND Tujuan Instruksional Khusus 1 Menentukan ruang contoh sebuah percobaan dan kejadiankejadian 2 Mencacah

Lebih terperinci

Situasi 1: a. Buatlah pernyataan-pernyataan yang sesuai dengan situasi di atas!

Situasi 1: a. Buatlah pernyataan-pernyataan yang sesuai dengan situasi di atas! BAHAN AJAR 3 DISTRIBUSI PEUBAH ACAK GABUNGAN DAN FUNGSI PELUANG MARGINAL Situasi 1: Sebuah kotak berisi tiga ballpoint berwarna merah, dua berwarna biru dan tiga berwarna hitam. Kemudian dua buah ballpoint

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi

Lebih terperinci

Hubungan antara kejadian dengan ruang contohnya Representasi secara grafis untuk mengilustrasikan logical relations di antara kejadian kejadian

Hubungan antara kejadian dengan ruang contohnya Representasi secara grafis untuk mengilustrasikan logical relations di antara kejadian kejadian Diagram Venn. Hubungan antara kejadian dengan ruang contohnya Representasi secara grafis untuk mengilustrasikan logical relations di antara kejadian kejadian S = Himpunan bilangan asli A = Himpunan bilangan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA 516 3 SKS MINGGU 1 Pendahuluan dan - Pengertian Dasar soal-soal 2 Konsep-Konsep Dasar untuk Hidup Model Kontinu 1.

Lebih terperinci

BAB 3 Teori Probabilitas

BAB 3 Teori Probabilitas BAB 3 Teori Probabilitas A. HIMPUNAN a. Penulisan Hipunan Cara Pendaftaran Cara Pencirian 1) A = {a,i,u,e,o} 1) A = {X: x huruf vokal } 2) B = {1,2,3,4,5} menghasilkan data diskrit 2) B = {X: 1 x 2} menghasilkan

Lebih terperinci

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA Jurnal Matematika UNAND Vol. No. 4 Hal. 9 ISSN : 33 9 c Jurusan Matematika FMIPA UNAND KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA MARNISYAH ANAS Program Studi Magister Matematika, Fakultas

Lebih terperinci

PROBABILITAS BERSYARAT. Dr. Julan Hernadi

PROBABILITAS BERSYARAT. Dr. Julan Hernadi 1 PROBABILITAS BERSYARAT Dr. Julan Hernadi 1 Pendahuluan Tujuan utama dari pemodelan probabilitas adalah untuk menentukan bagaimana kecenderungan suatu kejadian A muncul bila kita melakukan percobaan.

Lebih terperinci

INFERENSI PARAMETER MEAN POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF

INFERENSI PARAMETER MEAN POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF INFERENSI PARAMETER MEAN POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF Adi Setiawan Program Studi Matematika Industri dan Statistika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl

Lebih terperinci

Learning Outcomes Ilustrasi Lingkup Kuliah Gugus. Pendahuluan. Julio Adisantoso. 10 Pebruari 2014

Learning Outcomes Ilustrasi Lingkup Kuliah Gugus. Pendahuluan. Julio Adisantoso. 10 Pebruari 2014 10 Pebruari 2014 Learning Outcome Mahasiswa dapat mengetahui alasan mempelajari Ilmu Peluang di bidang Ilmu Komputer Mahasiswa dapat memahami makna peluang dalam kehidupan sehari-hari Mahasiswa mengetahui

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci