BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR"

Transkripsi

1 BAB IV PEMBAHASAN 4.1 Proses Pencabangan model DTMC SIR Proses pencabangan suatu individu terinfeksi berbentuk seperti diagram pohon dan diasumsikan bahwa semua individu terinfeksi adalah saling independent satu sama lain dan masing- masing individu terinfeksi (I) pada saat t dapat menginfeksi individu lain (S) secara random pada saat t + 1 dengan probabilitas sama. Proses I t adalah bentuk khusus Markov chain yang disebut dengan Proses Pencabangan, dimana I t adalah banyaknya individu terinfeksi pada waktu t. Proses pencabangan terjadi apabila pada selang waktu t terjadi kontak antara individu terinfeksi (I) dengan individu yang rentan terinfeksi (S), sehingga mengakibatkan adanya individu baru yang terinfeksi. Banyaknya individu terinfeksi pada saat t hanya bergantung pada banyaknya individu terinfeksi pada waktu t 1. Jika I adalah variabel random diskrit dari banyaknya individu terinfeksi, maka probabilitas banyaknya infeksi baru per individu terinfeksi pada proses pencabangan adalah {P (I = k)} = p k, k = 0, 1, 2,... (4.1) dengan k merupakan nilai dari variabel random I. Misalkan p 0, p 1,..., p n,... merupakan barisan bilangan dengan indeks n. Fungsi pembangkit probabilitas (pgf ) didefinisikan sebagai f(x) = p 0 + p 1 x + p 2 x 2 + p 3 x = p k x k (4.2) Probability generating function (pgf) suatu variabel random diskrit digunakan untuk merepresentasi barisan secara efisien dengan mengkodekan unsur barisan sebagai koefisien dalam deret pangkat suatu variabel random. 12

2 Probability generating function (pgf) merupakan suatu fungsi pembangkit yang dapat digunakan untuk membangkitkan probabilitas p k. P gf untuk jumlah individu baru yang terinfeksi dapat dituliskan sebagai f(x) = E(x I ) = p k x k (4.3) dengan 0 x 1. Proses pencabangan dapat digunakan untuk menghitung probabilitas berakhirnya epidemi yaitu ketika lim t P {I t = 0}. Dalam kasus ini, Dengan mengetahui pgf maka dapat dihitung probabilitas berakhirnya epidemi. Menurut Trapman [8], pgf tersebut mempunyai sifat f (1) = E[I], (4.4) f (1) = E[I 2 ] E[I], (4.5) f k (0) = k!p (I = k). (4.6) Selanjutnya akan dibuktikan sifat pgf (4.6), Hubungan antara fungsi probabilitas p k dengan probability generating function (pgf) f(x) sebagai berikut: f(x) = p k x k = p 0 + p 1 x + p 2 x (4.7) Turunan pertama dari persamaan (4.7) dengan subtitusi x = 0 didapat f (x) = p k (k)(x k 1 ) = p 1 + 2p 2 x + 3p 3 x 2 + 4p 4 x f (0) = p 1 Turunan kedua dari persamaan (4.7) dengan subtitusi x = 0 didapat f (x) = p k (k)(k 1)(x k 2 ) = 2p 2 + 6p 3 x + 12p 4 x f (0) = 2p 2 Terlihat bahwa f k (0) adalah turunan ke-k dari f(x) dengan f k (0) = k!p (I = k), jika pgf tidak didefinisikan untuk x > 1 (Trapman [8]). 13

3 Moment suatu variabel random I dapat diperoleh dengan menurunkan (pgf) (4.7) dengan mensubtitusikan x = 1 (bukti sifat pgf (4.4) dan (4.5)) f (1) = p 1 + 2p 2 + 3p = kp k (4.8) E[I] = kp {I = k} = p 1 + 2p 2 + 3p = kp k (4.9) k=1 k=1 k=1 Berdasarkan persamaan (4.8) dan (4.9) terbukti bahwa sifat pgf (4.4) yaitu f (1) = E[I]. f (1) = 2p 2 + 6p p = k(k 1)p k = E[I 2 ] E[I] (4.10) k=2 Selanjutnya untuk V ar(i) = E[I 2 ] E[I] 2, maka V ar(i) = f (1) + f (1) (f (1) 2 ) (4.11) Terbukti bahwa sifat pgf (4.5) yaitu f (1) = E[I 2 ] E[I]. Pada kasus epidemi, tingkat penyebaran suatu penyakit menular dapat diukur dengan Basic Reproduction Number (R 0 ). R 0 didefinisikan sebagai jumlah rata-rata individu infeksi baru yang disebabkan oleh satu individu terinfeksi (Allen [1]). Jika I adalah variabel random diskrit dari banyaknya individu baru yang terinfeksi dan E[I] merupakan nilai harapan atau mean dari I, sehingga dapat dikatakan bahwa E[I] = R 0. Sebagaimana yang ditulis oleh Allen [1], R 0 yaitu rasio dari laju penularan terhadap laju kesembuhan. R 0 = β γ dengan β adalah laju penularan dan γ adalah laju kesembuhan. Terlihat bahwa nilai R 0 dan β berbanding lurus ketika R 0 1 maka β γ, hal ini menunjukkan bahwa laju penularan kurang dari atau sama dengan laju kesembuhan. Sedangkan ketika R 0 > 1 maka β > γ, hal ini menunjukkan bahwa laju penularan lebih besar dari laju kesembuhan. Berdasarkan sifat pgf f(x) (4.4) yaitu f (1) = E[I] sehingga dapat dinyatakan bahwa f (1) = E[I] = R 0. Berdasarkan asumsi bahwa pada awalnya ada satu individu terinfeksi dan proses penularan individu terinfeksi dapat menularkan lebih dari satu individu. 14

4 Pada model SIR, individu yang sembuh akan masuk dalam kelompok recovered (R), jika nilai laju penularan kurang dari atau sama dengan laju kesembuhan maka banyaknya individu yang masuk ke dalam kelompok recovered (R) akan lebih besar dari individu yang masuk ke dalam kelompok infected (I ). Selain itu, semakin lama dimungkinkan individu terinfeksi akan masuk ke dalam kelompok recovered (R) sehingga tidak ada lagi individu yang terinfeksi, dengan demikian kondisi tersebut menunjukkan bahwa tidak ada lagi proses penularan dan epidemi pasti berakhir. Berdasarkan Teorema (1), yaitu jika R 0 1 maka probabilitas berakhirnya epidemi akan sama dengan satu atau lim t P {I t = 0} = 1 yang berarti bahwa suatu epidemi pasti akan berakhir jika laju penularan kurang dari atau sama dengan laju kesembuhan. Berdasarkan Teorema (2), yaitu jika R 0 > 1 maka probabilitas berakhirnya epidemi kurang dari satu atau lim t P {I t = 0} < 1, yang berarti bahwa laju penularan lebih besar dari laju kesembuhan. Hal ini mengakibatkan banyaknya individu terinfeksi bertambah besar, sehingga probabilitas berakhirnya epidemi semakin kecil. Diberikan p 0 adalah probabilitas banyaknya individu yang terinfeksi sebanyak k = 0, p 1 adalah probabilitas banyaknya individu yang terinfeksi sebanyak k = 1. Dengan memperhatikan Teorema (2) yaitu jika 0 p 0 +p 1 < 1 dan R 0 > 1 maka terdapat titik tetap tunggal q [0, 1) sedemikian sehingga f(q) = q, maka probabilitas berakhirnya epidemi apabila diberikan i 0 = 1 adalah lim t P {I t = 0} = p k q k = f(q) = q i 0 = q 1 = q Jadi, secara umum probabilitas berakhirnya epidemi untuk R 0 > 1, dengan i 0 > 0 dapat dituliskan sebagai lim t P {I t = 0} = q i 0. (4.12) Pada proses penyebaran penyakit, diasumsikan tidak terdapat dua kejadian yang terjadi bersamaan, Selain itu, proses penyebaran penyakit bersifat random karena setiap individu memiliki peluang yang sama untuk terinfeksi dan besarnya 15

5 probabilitas tepat satu kejadian adalah konstan pada interval waktu yang sangat kecil. Oleh karena itu, penyebaran penyakit yang menyebabkan epidemi merupakan proses poisson dengan waktu antar kedatangan berdistribusi eksponensial. Menurut Allen [1], banyaknya individu terinfeksi diasumsikan berdistribusi Poisson. Sehingga, pgf dari distribusi probabilitas Poisson dengan mean (R 0 ) adalah f(x) = p k x k = = e R 0 e R 0x ( e x k R 0 k ) R 0 = e R 0 k! (R 0 x) k e R0x R 0 x k = exp( R 0 + R 0 x) = exp( R 0 (1 x)). k! Berdasarkan Teorema ketentuan ke (2) k! f(q) = exp( R 0 (1 q)). Sehingga berlaku f(q) = q, d(lnq) dq q = exp( R 0 (1 q)) lnq = R 0 + R 0.q = d( R 0 + R 0 q) dq 1 q = R 0 q = 1 R 0. Jadi, persamaan (4.12) dapat ditulis sebagai ( ) i0 lim t P {I t = 0} = q i 0 1 =, i 0 > 0. Dengan demikian, dapat disimpulkan bahwa probabilitas berakhirnya epidemi adalah dari atau sama dengan laju kesembuhan. R 0 1, β γ lim t P {I t = 0} = ( ) i0 (4.13) 1 R 0, β > γ. Probabilitas berakhirnya epidemi bernilai satu saat β γ. Hal ini berarti bahwa suatu epidemi pasti akan berakhir jika besarnya laju penularan kurang 16

6 4.2 Probabilitas Puncak Epidemi Penularan penyakit yang terjadi terus menerus dan banyaknya individu terinfeksi semakin besar dapat mengakibatkan puncak epidemi. Penyebaran penyakit dikatakan mencapai puncak epidemi ketika banyaknya individu yang terinfeksi mencapai jumlah yang maksimum. Menurut Allen [1], probabilitas puncak epidemi merupakan komplemen dari probabilitas berakhirnya epidemi. Epidemi dikatakan berakhir jika tidak ada lagi individu yang terinfeksi atau banyaknya individu yang terinfeksi sama dengan nol. Pada saat I(t) = 0, proses epidemi berhenti dan banyaknya individu terinfeksi tidak dapat berubah lagi. Menurut Trapman [8], probabilitas berakhirnya epidemi dapat ditentukan dengan menggunakan proses pencabangan. Berdasarkan proses pencabangan yang telah dibahas sebelumnya, diperoleh hasil untuk probabilitas berakhirnya epidemi pada persamaan (4.13), sehingga probabilitas puncak epidemi (P (z)) dapat dituliskan sebagai berikut 0, β γ P (z) = ( ) i0 1 1 R 0, β > γ P (z) bernilai 0 saat β γ. Hal ini berarti bahwa suatu puncak epidemi tidak akan terjadi jika besarnya laju penularan kurang dari atau sama dengan laju kesembuhan. 4.3 Penerapan dan Simulasi Penerapan dalam penelitian ini menggunakan kasus penyebaran penyakit cacar air di suatu daerah. Cacar air merupakan penyakit akut dengan daya penularan tinggi yang disebabkan karena virus. Penyakit ini menyebar melalui udara, makanan dan bersentuhan langsung dengan luka yang diakibatkan oleh penyakit ini. Menurut Johnson [4], tingkat rata-rata penularan penyakit cacar air yaitu 0.65 β 0.85 per hari, sedangkan tingkat kesembuhan penyakit sebesar γ = 0.3. Pada pembahasan ini ingin commit diketahui to user perilaku penyebaran penyakit cacar air dengan laju penularan minimal, untuk itu digunakan laju penularan 17

7 minimum yaitu β = 0.65 dan laju kesembuhan γ = 0.3 dengan total populasi N = 100. Berdasarkan persamaan (2.4), model penyebaran penyakit cacar air dengan nilai parameter β = 0.65, γ = 0.3 dan N = 100 dapat dituliskan sebagai 0.65 is t, (k, j) = ( 1, 1) i t, (k, j) = (0, 1) p (s,i),(s+k,i+j) ( t) = ( is + 0.3i (4.14) ) t, (k, j) = (0, 0) 100 0, yang lain. Penyebaran suatu penyakit dapat dilihat dari banyaknya individu terinfeksi. Pola perubahan banyaknya individu terinfeksi pada penyakit cacar air dalam selang waktu t = 0 sampai t = 60 dapat dilihat pada Gambar 4.1. Gambar 4.1. Pola perubahan banyaknya individu terinfeksi pada penyakit cacar air dalam selang waktu 0 t 60 Berdasarkan Gambar 4.1, dari waktu t = 0 sampai t = 8, banyaknya individu terinfeksi meningkat dari 1 sampai mencapai jumlah maksimal (mencapai puncak epidemi) yaitu 38. Saat t = 8 sampai t = 28, banyaknya individu terinfeksi menurun dari 38 sampai 0 dan kemudian tidak mengalami perubahan sepanjang waktu. Hal ini berarti bahwa penyakit sudah tidak menyebar. Probabilitas puncak epidemi untuk penyakit cacar air = 1 ( ) = Artinya probabilitas terjadinya puncak commit epidemi to user dengan banyaknya individu terinfeksi maksimum sebanyak 38 adalah

8 Selanjutnya, untuk melihat pengaruh β, γ, dan individu awal yang terinfeksi i 0 terhadap puncak epidemi, model DTMC SIR pada persamaan (4.14) disimulasikan dengan mengambil β, γ, dan individu awal yang terinfeksi i 0 yang bervariasi. Dari hasil simulasi dapat dilihat perubahan banyaknya individu pada waktu ke-t. Hasil simulasi model epidemi penyakit cacar air ditunjukkan pada Gambar 4.2, Gambar 4.3, Gambar 4.4. Gambar 4.2. Pola perubahan banyaknya individu terinfeksi dengan β berbeda Gambar 4.2 Menunjukkan perubahan banyaknya individu pada waktu ke-t dengan β yang berbeda. Garis berwarna biru menggambarkan pola penyebaran dengan β = 0.25, garis berwarna merah menggambarkan pola penyebaran dengan β = 0.65, dan garis berwarna hijau menggambarkan pola penyebaran dengan β = Garis berwarna biru menggambarkan banyaknya individu terinfeksi mencapai nol pada hari ke-20 dengan jumlah individu terinfeksi maksimum sebanyak 5. Garis berwarna merah menunjukkan banyaknya individu terinfeksi mencapai nol pada hari ke-28 dengan jumlah individu terinfeksi maksimum sebesar 26. Garis berwarna hijau menunjukkan banyaknya individu terinfeksi mencapai nol pada hari ke-32 dengan jumlah individu terinfeksi maksimum sebanyak 32. Berdasarkan hasil simulasi pada Gambar 4.2, terlihat bahwa semakin besar nilai β maka semakin lama penyebaran penyakit yang terjadi dan semakin banyak juga jumlah individu maksimum yang terinfeksi. Probabilitas puncak epidemi untuk penyakit cacar air dengan β = 0.25, β = 19

9 0.65, dan β = 0.85 masing-masing yaitu 0, 0.54 dan Artinya semakin besar nilai β mengakibatkan semakin besar probabilitas terjadinya puncak epidemi. Gambar 4.3. Pola perubahan banyaknya individu terinfeksi dengan γ berbeda Gambar 4.3 Menunjukkan perubahan banyaknya individu pada waktu ke-t dengan γ yang berbeda. Garis berwarna biru menggambarkan pola penyebaran dengan γ = 0.1, garis berwarna merah menggambarkan pola penyebaran dengan γ = 0.3, dan garis berwarna hijau menggambarkan pola penyebaran dengan γ = 0.5. Garis berwarna biru menggambarkan banyaknya individu terinfeksi mencapai nol pada hari ke-55 dengan jumlah individu terinfeksi maksimum sebanyak 57. Garis berwarna merah menunjukkan banyaknya individu terinfeksi mencapai nol pada hari ke-25 dengan jumlah individu terinfeksi maksimum sebesar 23. Garis berwarna hijau menunjukkan banyaknya individu terinfeksi mencapai nol pada hari ke-12 dengan jumlah individu terinfeksi maksimum sebanyak 6. Berdasarkan hasil simulasi pada Gambar 4.3, terlihat bahwa semakin besar nilai γ maka semakin cepat penyebaran penyakit yang terjadi dan semakin sedikit juga jumlah individu maksimum yang terinfeksi. Probabilitas puncak epidemi untuk penyakit cacar air dengan γ = 0.1, γ = 0.3, dan γ = 0.5 masing-masing yaitu 0.85, 0.54 dan Artinya semakin besar nilai γ mengakibatkan semakin kecil probabilitas terjadinya puncak epidemi. Gambar 4.4 Menunjukkan perubahan banyaknya individu pada waktu ke-t dengan i 0 yang berbeda. Garis berwarna commit biru to user menggambarkan pola penyebaran dengan jumlah awal individu terinfeksi i 0 = 1, garis berwarna merah menggam- 20

10 Gambar 4.4. Pola perubahan banyaknya individu terinfeksi dengan i 0 berbeda barkan pola penyebaran dengan jumlah awal individu terinfeksi i 0 = 3, dan garis berwarna hijau menggambarkan pola penyebaran dengan jumlah awal individu terinfeksi i 0 = 8. Garis berwarna biru menggambarkan banyaknya individu terinfeksi mencapai nol pada hari ke-5 dengan jumlah individu terinfeksi maksimum sebanyak 2. Garis berwarna merah menunjukkan banyaknya individu terinfeksi mencapai nol pada hari ke-2 dengan jumlah individu terinfeksi maksimum sebesar 5. Garis berwarna hijau menunjukkan banyaknya individu terinfeksi mencapai nol pada hari ke-29 dengan jumlah individu terinfeksi maksimum sebanyak 21. Berdasarkan hasil simulasi pada Gambar 4.4, terlihat bahwa semakin banyak jumlah awal individu terinfeksi i 0 maka semakin lama penyebaran penyakit yang terjadi dan semakin banyak juga jumlah individu maksimum yang terinfeksi. Probabilitas puncak epidemi untuk penyakit cacar air dengan i 0 = 1, i 0 = 3, dan i 0 = 8 masing-masing yaitu 0.54, 0.9 dan Artinya semakin besar nilai i 0 mengakibatkan semakin besar probabilitas terjadinya puncak epidemi. Selanjutnya untuk melihat pengaruh R 0 terhadap puncak epidemi, maka persamaan (4.14) disimulasikan dengan mengambil jumlah individu awal yang terinfeksi I 0 = 1, γ = 0.3 dan β yang berbeda dan dalam selang waktu 0 t 60. Berdasarkan Gambar 4.5 terlihat bahwa ketika β = 0.65 mengakibatkan 21

11 Gambar 4.5. Perubahan banyaknya individu terinfeksi dengan β = 0.25 untuk R 0 1 (merah) dan β = 0.65 untuk R 0 > 1 (biru). R 0 > 1 sehingga pola penyebaran penyakit terjadi semakin lama dengan banyaknya individu terinfeksi mencapai nol pada hari ke-41 dan jumlah individu terinfeksi maksimum sebanyak 22. Ketika nilai β diubah menjadi 0.25 mengakibatkan R 0 1 sehingga pola penyebaran penyakit terjadi semakin cepat dengan banyaknya individu terinfeksi mencapai nol pada hari ke-26 dan jumlah individu terinfeksi maksimum sebanyak 13. Berdasarkan hasil simulasi terlihat bahwa semakin besar nilai β mengakibatkan semakin besar pula nilai R 0 sehingga semakin lama penyebaran penyakit terjadi dan puncak epidemi semakin tinggi. 22

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ini terdiri dari 3 bagian. Pada bagian pertama diberikan tinjauan pustaka dari penelitian-penelitian sebelumnya. Pada bagian kedua diberikan teori penunjang untuk mencapai tujuan

Lebih terperinci

T - 11 MODEL STOKASTIK SUSCEPTIBLE INFECTED RECOVERED (SIR)

T - 11 MODEL STOKASTIK SUSCEPTIBLE INFECTED RECOVERED (SIR) T - 11 MODEL STOKASTIK SUSCEPTIBLE INFECTED RECOVERED (SIR) Felin Yunita 1, Purnami Widyaningsih 2, Respatiwulan 3 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas

Lebih terperinci

MODEL EPIDEMI RANTAI MARKOV WAKTU DISKRIT SUSCEPTIBLE INFECTED RECOVERED DENGAN DUA PENYAKIT

MODEL EPIDEMI RANTAI MARKOV WAKTU DISKRIT SUSCEPTIBLE INFECTED RECOVERED DENGAN DUA PENYAKIT MODEL EPIDEMI RANTAI MARKOV WAKTU DISKRIT SUSCEPTIBLE INFECTED RECOVERED DENGAN DUA PENYAKIT Wisnu Wardana, Respatiwulan, dan Hasih Pratiwi Program Studi Matematika FMIPA UNS ABSTRAK. Pola penyebaran penyakit

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dijelaskan mengenai model matematika penyakit campak dengan pengaruh vaksinasi, diantaranya formulasi model penyakit campak, titik ekuilibrium bebas penyakit

Lebih terperinci

PROBABILITAS PUNCAK EPIDEMI MODEL RANTAI MARKOV DENGAN WAKTU DISKRIT SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS)

PROBABILITAS PUNCAK EPIDEMI MODEL RANTAI MARKOV DENGAN WAKTU DISKRIT SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) PROBABILITAS PUNCAK EPIDEMI MODEL RANTAI MARKOV DENGAN WAKTU DISKRIT SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) oleh IQROK HENING WICAKSANI M0109038 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT Oleh: Arisma Yuni Hardiningsih 126 1 5 Dosen Pembimbing: Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Fakultas Matematika

Lebih terperinci

MODEL EPIDEMI CONTINUOUS TIME MARKOV CHAIN (CTMC) SUSCEPTIBLE INFECTED RECOVERED (SIR)

MODEL EPIDEMI CONTINUOUS TIME MARKOV CHAIN (CTMC) SUSCEPTIBLE INFECTED RECOVERED (SIR) MODEL EPIDEMI COTIUOUS TIME MARKOV CHAI (CTMC) SUSCEPTIBLE IFECTED RECOVERED (SIR) oleh DETA URVITASARI M1836 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains

Lebih terperinci

III. MODEL MATEMATIK PENYEBARAN PENYAKIT DBD

III. MODEL MATEMATIK PENYEBARAN PENYAKIT DBD III. MODEL MATEMATIK PENYEBARAN PENYAKIT DBD 8 3.1 Model SIR Model SIR pada uraian berikut mengacu pada kajian Derouich et al. (2003). Asumsi yang digunakan adalah: 1. Total populasi nyamuk dan total populasi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Kesehatan merupakan bagian yang penting dalam kehidupan manusia karena kesehatan memengaruhi aktifitas hidup manusia. Dengan tubuh yang sehat manusia dapat menjalankan

Lebih terperinci

PROSES PERCABANGAN PADA DISTRIBUSI POISSON

PROSES PERCABANGAN PADA DISTRIBUSI POISSON PROSES PERCABANGAN PADA DISTRIBUSI POISSON Nur Alfiani Santoso, Respatiwulan, dan Nughthoh Arfawi Kurdhi Program Studi Matematika FMIPA UNS Abstrak. Proses percabangan merupakan suatu proses stokastik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini dibahas mengenai tinjauan pustaka yang digunakan dalam penelitian ini, khususnya yang diperlukan dalam Bab 3. Teori yang dibahas adalah teori yang mendukung pembentukan

Lebih terperinci

Analisis Model SIR dengan Imigrasi dan Sanitasi pada Penyakit Hepatitis A di Kabupaten Jember

Analisis Model SIR dengan Imigrasi dan Sanitasi pada Penyakit Hepatitis A di Kabupaten Jember Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 346 Analisis Model SIR dengan Imigrasi dan Sanitasi pada Penyakit Hepatitis A di Kabupaten Jember (Analysis of SIR Model with

Lebih terperinci

BAB I PENDAHULUAN. penyebabnya adalah gaya hidup dan lingkungan yang tidak sehat. Murwanti dkk,

BAB I PENDAHULUAN. penyebabnya adalah gaya hidup dan lingkungan yang tidak sehat. Murwanti dkk, BAB I PENDAHULUAN A. Latar Belakang Berbagai jenis penyakit semakin banyak yang muncul salah satu penyebabnya adalah gaya hidup dan lingkungan yang tidak sehat. Murwanti dkk, (2013: 64) menyebutkan bahwa

Lebih terperinci

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol BAB II TINJAUAN PUSTAKA A. Regresi Regresi adalah suatu studi statistik untuk menjelaskan hubungan dua variabel atau lebih yang dinyatakan dalam bentuk persamaan. Salah satu variabel merupakan variabel

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Penyakit infeksi (infectious disease), yang juga dikenal sebagai communicable disease atau transmissible disease adalah penyakit yang nyata secara klinik (yaitu, tanda-tanda

Lebih terperinci

KAJIAN MODEL MARKOV WAKTU DISKRIT UNTUK PENYEBARAN PENYAKIT MENULAR PADA MODEL EPIDEMIK SIR. Oleh: RAFIQATUL HASANAH NRP.

KAJIAN MODEL MARKOV WAKTU DISKRIT UNTUK PENYEBARAN PENYAKIT MENULAR PADA MODEL EPIDEMIK SIR. Oleh: RAFIQATUL HASANAH NRP. TUGAS AKHIR KAJIAN MODEL MARKOV WAKTU DISKRIT UNTUK PENYEBARAN PENYAKIT MENULAR PADA MODEL EPIDEMIK SIR Oleh: RAFIQATUL HASANAH NRP. 1208 100 021 Dosen Pembimbing: Dra. Laksmi Prita Wardhani, M.Si. Drs.

Lebih terperinci

BAB III PROSES POISSON MAJEMUK

BAB III PROSES POISSON MAJEMUK BAB III PROSES POISSON MAJEMUK Pada bab ini membahas tentang proses stokastik, proses Poisson dan proses Poisson majemuk yang akan diaplikasikan pada bab selanjutnya. 3.1 Proses Stokastik Koleksi atau

Lebih terperinci

MODEL EPIDEMI SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN PROSES POISSON. oleh LUCIANA ELYSABET M

MODEL EPIDEMI SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN PROSES POISSON. oleh LUCIANA ELYSABET M MODEL EPIDEMI SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN PROSES POISSON oleh LUCIANA ELYSABET M0111051 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

Arisma Yuni Hardiningsih. Dra. Laksmi Prita Wardhani, M.Si. Jurusan Matematika. Surabaya

Arisma Yuni Hardiningsih. Dra. Laksmi Prita Wardhani, M.Si. Jurusan Matematika. Surabaya ANALISIS KESTABILAN DAN MEAN DISTRIBUSI MODEL EPIDEMIK SIR PADA WAKTU DISKRIT Arisma Yuni Hardiningsih 1206 100 050 Dosen Pembimbing : Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Institut Teknologi

Lebih terperinci

MODEL EPIDEMI DISCRETE TIME MARKOV CHAIN (DTMC ) SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) SATU PENYAKIT PADA DUA DAERAH

MODEL EPIDEMI DISCRETE TIME MARKOV CHAIN (DTMC ) SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) SATU PENYAKIT PADA DUA DAERAH MODEL EPIDEMI DISCRETE TIME MARKOV CHAIN (DTMC ) SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) SATU PENYAKIT PADA DUA DAERAH oleh FIRDAUS FAJAR SAPUTRA M0112034 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

Oleh : Dinita Rahmalia NRP Dosen Pembimbing : Drs. M. Setijo Winarko, M.Si.

Oleh : Dinita Rahmalia NRP Dosen Pembimbing : Drs. M. Setijo Winarko, M.Si. PERMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG (MATHEMATICAL MODEL AND STABILITY ANALYSIS THE SPREAD OF AVIAN INFLUENZA) Oleh : Dinita Rahmalia NRP 1206100011 Dosen Pembimbing

Lebih terperinci

Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si

Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si Oleh Nara Riatul Kasanah 1209100079 Dosen Pembimbing Drs. Sri Suprapti H., M.Si JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 PENDAHULUAN

Lebih terperinci

KESTABILAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PADA PENYEBARAN PENYAKIT CAMPAK (MEASLES) (Studi Kasus di Kota Semarang)

KESTABILAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PADA PENYEBARAN PENYAKIT CAMPAK (MEASLES) (Studi Kasus di Kota Semarang) KESTABILAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PADA PENYEBARAN PENYAKIT CAMPAK (MEASLES) (Studi Kasus di Kota Semarang) Melita Haryati 1, Kartono 2, Sunarsih 3 1,2,3 Jurusan Matematika

Lebih terperinci

MODEL EPIDEMI STOKASTIK SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS)

MODEL EPIDEMI STOKASTIK SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) MODEL EPIDEMI STOKASTIK SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) oleh SILVIA KRISTANTI M0109060 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

MODEL EPIDEMI SIRS STOKASTIK DENGAN STUDI KASUS INFLUENZA

MODEL EPIDEMI SIRS STOKASTIK DENGAN STUDI KASUS INFLUENZA MODEL EPIDEMI SIRS STOKASTIK DENGAN STUDI KASUS INFLUENZA Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Novia Nilam Nurlazuardini 4111411024

Lebih terperinci

PENYEBARAN PENYAKIT CAMPAK DI INDONESIA DENGAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR)

PENYEBARAN PENYAKIT CAMPAK DI INDONESIA DENGAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PEYEBARA PEYAKIT CAMPAK DI IDOESIA DEGA MODEL SUSCEPTIBLE VACCIATED IFECTED RECOVERED (SVIR) Septiawan Adi Saputro, Purnami Widyaningsih, Dewi Retno Sari Saputro Program Studi Matematika FMIPA US Abstrak.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR 9 IV PEMBAHASAN 4.1 Model SIR 4.1.1 Titik Tetap Untuk mendapatkan titik tetap diperoleh dari dua persamaan singular an ) sehingga dari persamaan 2) diperoleh : - si + s = 0 9) si + )i = 0 didapat titik

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Penyakit merupakan sesuatu yang sangat berhubungan dengan makhluk hidup, baik itu manusia, hewan, maupun tumbuhan. Penyakit dapat mempengaruhi kehidupan makhluk

Lebih terperinci

ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER)

ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER) Jurnal Euclid, Vol.4, No.1, pp.646 ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER) Herri Sulaiman Program Studi Pendidikan Matematika

Lebih terperinci

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION Oleh: Desi Nur Faizah 1209 1000 17 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Lebih terperinci

BAB I PENDAHULUAN. ibu kepada anaknya melalui plasenta pada saat usia kandungan 1 2 bulan di

BAB I PENDAHULUAN. ibu kepada anaknya melalui plasenta pada saat usia kandungan 1 2 bulan di BAB I PENDAHULUAN A. Latar Belakang Masalah Maternal antibody merupakan kekebalan tubuh pasif yang ditransfer oleh ibu kepada anaknya melalui plasenta pada saat usia kandungan 1 2 bulan di akhir masa kehamilan.

Lebih terperinci

Oleh: Isna Kamalia Al Hamzany Dosen Pembimbing : Dra. Laksmi Prita W, M.Si. Dra. Nur Asiyah, M.Si

Oleh: Isna Kamalia Al Hamzany Dosen Pembimbing : Dra. Laksmi Prita W, M.Si. Dra. Nur Asiyah, M.Si Oleh: Isna Kamalia Al Hamzany 1207 100 055 Dosen Pembimbing : Dra. Laksmi Prita W, M.Si. Dra. Nur Asiyah, M.Si Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh

Lebih terperinci

ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA

ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 163-172 ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA Auliah Arfani, Nilamsari Kusumastuti, Shantika

Lebih terperinci

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada BAB III PEMBAHASAN Pada bab ini akan dibentuk model matematika dari penyebaran penyakit virus Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada parameter laju transmisi. A.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,

Lebih terperinci

BAB I PENDAHULUAN. penyakit menular. Salah satu contohnya adalah virus flu burung (Avian Influenza),

BAB I PENDAHULUAN. penyakit menular. Salah satu contohnya adalah virus flu burung (Avian Influenza), BAB I A. Latar Belakang PENDAHULUAN Masalah lingkungan adalah masalah dasar dalam kehidupan manusia dan menjadi tanggung jawab bersama. Banyak permasalahan lingkungan yang bermunculan terkait lingkungan

Lebih terperinci

BAB III PEMBAHASAN. tenggorokan, batuk, dan kesulitan bernafas. Pada kasus Avian Influenza, gejala

BAB III PEMBAHASAN. tenggorokan, batuk, dan kesulitan bernafas. Pada kasus Avian Influenza, gejala BAB III PEMBAHASAN A. Permasalahan Nyata Flu Burung (Avian Influenza) Avian Influenza atau yang lebih dikenal dengan flu burung adalah suatu penyakit menular yang disebabkan oleh virus influenza tipe A.

Lebih terperinci

BAB II LANDASAN TEORI. pembahasan model antrian dengan working vacation pada pola kedatangan

BAB II LANDASAN TEORI. pembahasan model antrian dengan working vacation pada pola kedatangan BAB II LANDASAN TEORI Pada bab ini diuraikan tentang dasar-dasar yang diperlukan dalam pembahasan model antrian dengan working vacation pada pola kedatangan berkelompok (batch arrival) satu server, mencakup

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Metode statistika adalah prosedur-prosedur yang digunakan dalam pengumpulan, penyajian, analisis, dan penafsiran data. Metode statistika dibagi ke dalam dua kelompok

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini banyak sekali penyakit menular yang cukup membahayakan, penyakit menular biasanya disebabkan oleh faktor lingkungan yang cukup baik untuk perkembangbiakan

Lebih terperinci

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN BAB I PENDAHULUAN (kata pengantar) 1.1 Latar Belakang 1.2 Tujuan Penulisan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

MODEL SIR UNTUK PENYEBARAN PENYAKIT FLU BURUNG

MODEL SIR UNTUK PENYEBARAN PENYAKIT FLU BURUNG MODEL SIR UNTUK PENYEBARAN PENYAKIT FLU BURUNG MANSYUR A. R.1 TOAHA S.2 KHAERUDDIN3 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin Jln. Perintis Kemerdekaan Km.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Rantai Markov Waktu Kontinu Pendahuluan Pada bab ini, kita akan belajar mengenai

Lebih terperinci

REKAYASA TRAFIK ARRIVAL PROCESS.

REKAYASA TRAFIK ARRIVAL PROCESS. REKAYASA TRAFIK ARRIVAL PROCESS ekofajarcahyadi@st3telkom.ac.id OVERVIEW Point Process Fungsi Distribusi Point Process Karakteristik Point Process Teorema Little Distribusi Point Process PREVIEW Proses

Lebih terperinci

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2014) 2337-3520 (2301-928X Print) 1 ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION Desi Nur Faizah, Laksmi Prita Wardhani. Jurusan Matematika, Fakultas

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut

Lebih terperinci

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan BAB II KAJIAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

Lebih terperinci

MODEL EPIDEMI DISCRETE TIME MARKOV CHAINS SUSCEPTIBLE EXPOSED INFECTED RECOVERED (DTMC SEIR)

MODEL EPIDEMI DISCRETE TIME MARKOV CHAINS SUSCEPTIBLE EXPOSED INFECTED RECOVERED (DTMC SEIR) MODEL EPIDEMI DISCRETE TIME MARKOV CHAINS SUSCEPTIBLE EXPOSED INFECTED RECOVERED (DTMC SEIR) oleh AISYAH AL AZIZAH M0111004 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

MODEL SIR (SUSCEPTIBLE, INFECTIOUS, RECOVERED) UNTUK PENYEBARAN PENYAKIT TUBERKULOSIS

MODEL SIR (SUSCEPTIBLE, INFECTIOUS, RECOVERED) UNTUK PENYEBARAN PENYAKIT TUBERKULOSIS e-jurnal Matematika Vol 1 No 1 Agustus 2012, 52-58 MODEL SIR (SUSCEPTIBLE, INFECTIOUS, RECOVERED) UNTUK PENYEBARAN PENYAKIT TUBERKULOSIS K QUEENA FREDLINA 1, TJOKORDA BAGUS OKA 2, I MADE EKA DWIPAYANA

Lebih terperinci

ANALISIS STABILITAS PENYEBARAN VIRUS EBOLA PADA MANUSIA

ANALISIS STABILITAS PENYEBARAN VIRUS EBOLA PADA MANUSIA ANALISIS STABILITAS PENYEBARAN VIRUS EBOLA PADA MANUSIA Mutholafatul Alim 1), Ari Kusumastuti 2) 1) Mahasiswa Jurusan Matematika, Universitas Islam Negeri Maulana Malik Ibrahim Malang 1) mutholafatul@rocketmail.com

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG

PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG Dinita Rahmalia Universitas Islam Darul Ulum Lamongan, Abstrak. Di Indonesia terdapat banyak peternak unggas sebagai matapencaharian

Lebih terperinci

II. TINJAUAN PUSTAKA. dengan kendala menjadi model penuh tanpa kendala,

II. TINJAUAN PUSTAKA. dengan kendala menjadi model penuh tanpa kendala, 4 II. TINJAUAN PUSTAKA Dalam penelitian ini akan didiskusikan tentang transformasi model tak penuh dengan kendala menjadi model penuh tanpa kendala, pendugaan parameter, pengujian hipotesis dan selang

Lebih terperinci

ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG

ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 235-244 ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Hidayu Sulisti, Evi Noviani, Nilamsari Kusumastuti

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

Persatuan Aktuaris Indonesia Probabilitas dan Statistik 27 November 2006 A. 5/32 B. ¼ C. 27/32 D. ¾ E. 1 A. 0,20 B. 0,34 C. 0,40 D. 0,60 E.

Persatuan Aktuaris Indonesia Probabilitas dan Statistik 27 November 2006 A. 5/32 B. ¼ C. 27/32 D. ¾ E. 1 A. 0,20 B. 0,34 C. 0,40 D. 0,60 E. Persatuan Aktuaris Indonesia Probabilitas dan Statistik 27 November 2006. Jika A, B, C dan D adalah kejadian (event) di mana: ' B = A, C D = {}, P[ A] = [ ] 4, P B = 4 P C A = 2, P C B = 4, P D A = 4,

Lebih terperinci

ANALISIS KESTABILAN DARI SISTEM DINAMIK MODEL SEIR PADA PENYEBARAN PENYAKIT CACAR AIR (VARICELLA) DENGAN PENGARUH VAKSINASI SKRIPSI

ANALISIS KESTABILAN DARI SISTEM DINAMIK MODEL SEIR PADA PENYEBARAN PENYAKIT CACAR AIR (VARICELLA) DENGAN PENGARUH VAKSINASI SKRIPSI ANALISIS KESTABILAN DARI SISTEM DINAMIK MODEL SEIR PADA PENYEBARAN PENYAKIT CACAR AIR (VARICELLA) DENGAN PENGARUH VAKSINASI SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

III PEMODELAN. (Giesecke 1994)

III PEMODELAN. (Giesecke 1994) 4 2.2 Bilangan Reproduksi Dasar Bilangan reproduksi dasar adalah potensi penularan penyakit pada populasi rentan, merupakan rata-rata jumlah individu yang terinfeksi secara langsung oleh seorang penderita

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam

Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Jurnal Matematika Integratif ISSN 1412-6184 Volume 10 No 1, April 2014, hal 1-7 Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Ni matur Rohmah, Wuryansari Muharini Kusumawinahyu Jurusan Matematika,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi adalah suatu metode yang digunakan untuk menganalisa hubungan antara variabel respon dan variabel prediktor. Pada umumnya analisis regresi

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS KODE / SKS : KK-01333 / 3 SKS 1 Pengertian dan tujuan 1. Klasifikasi Model 1 Simulasi. Perbedaan penyelesaian problem Dapat menjelaskan klasifikasi model dari matematis secara analitis dan numeris suatu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Influenza atau lebih dikenal dengan flu, merupakan salah satu penyakit yang menyerang pernafasan manusia. Penyakit ini disebabkan oleh virus influenza yang

Lebih terperinci

BAB I PENDAHULUAN. Model matematika merupakan sekumpulan persamaan atau pertidaksamaan yang

BAB I PENDAHULUAN. Model matematika merupakan sekumpulan persamaan atau pertidaksamaan yang BAB I PENDAHULUAN A. Latar Belakang Model matematika merupakan sekumpulan persamaan atau pertidaksamaan yang mengungkap perilaku suatu permasalahan yang nyata. Model matematika dibuat berdasarkan asumsi-asumsi.

Lebih terperinci

PENGARUH PARAMETER PENGONTROL DALAM MENEKAN PENYEBARAN PENYAKIT FLU BURUNG. Rina Reorita, Niken Larasati, dan Renny

PENGARUH PARAMETER PENGONTROL DALAM MENEKAN PENYEBARAN PENYAKIT FLU BURUNG. Rina Reorita, Niken Larasati, dan Renny JMP : Volume 3 Nomor 1, Juni 11 PENGARUH PARAMETER PENGONTROL DALAM MENEKAN PENYEBARAN PENYAKIT FLU BURUNG Rina Reorita, Niken Larasati, dan Renny Program Studi Matematika, Jurusan MIPA, Fakultas Sains

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

Abstrak: Makalah ini bertujuan untuk mengkaji model SIR dari penyebaran

Abstrak: Makalah ini bertujuan untuk mengkaji model SIR dari penyebaran ANALISIS KESTABILAN PENYEBARAN PENYAKIT CAMPAK (MEASLES) DENGAN VAKSINASI MENGGUNAKAN MODEL ENDEMI SIR Marhendra Ali Kurniawan Fitriana Yuli S, M.Si Jurdik Matematika FMIPA UNY Abstrak: Makalah ini bertujuan

Lebih terperinci

SOLUSI POSITIF MODEL SIR

SOLUSI POSITIF MODEL SIR Jurnal UJMC, Volume 3, omor 1, Hal. 21-28 piss : 2460-3333 eiss : 2579-907X SOLUSI POSITIF MODEL SIR Awawin Mustana Rohmah 1 1 Universitas Islam Darul Ulum Lamongan, awawin.emer@gmail.com Abstract Model

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

BAB III BASIC REPRODUCTION NUMBER

BAB III BASIC REPRODUCTION NUMBER BAB III BASIC REPRODUCTIO UMBER Dalam kaitannya dengan kejadian luar biasa, dalam epidemiologi matematika dikenal suatu besaran ambang batas (threshold) yang menjadi indikasi apakah dalam suatu populasi

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN MODEL PADA PENYEBARAN HIV-AIDS

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN MODEL PADA PENYEBARAN HIV-AIDS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 2 (2015), hal 101 110 PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN MODEL PADA PENYEBARAN HIV-AIDS Dwi Haryanto, Nilamsari Kusumastuti,

Lebih terperinci

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus : BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada bab III nanti, di antaranya model matematika penyebaran penyakit,

Lebih terperinci

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY PENGANTAR PROBABILITAS GANGGA ANURAGA POKOK BAHASAN Konsep dasar probabilitas Teori himpunan Permutasi Kombinasi Koefisien binomial Koefisien multinomial Probabilitas Aksioma probabilitas Probabilitas

Lebih terperinci

Pemodelan Sistem Antrian Satu Server Dengan Vacation Queueing Model Pada Pola Kedatangan Berkelompok

Pemodelan Sistem Antrian Satu Server Dengan Vacation Queueing Model Pada Pola Kedatangan Berkelompok SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Pemodelan Sistem Antrian Satu Server Dengan Vacation Queueing Model Pada Pola Kedatangan Berkelompok Sucia Mentari, Retno Subekti, Nikenasih

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Matematika bersifat universal dan banyak kaitannya dengan kehidupan nyata. Matematika berperan sebagai ratu ilmu sekaligus sebagai pelayan ilmu-ilmu yang lain. Kajian

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

Penggabungan dan Pemecahan. Proses Poisson Independen

Penggabungan dan Pemecahan. Proses Poisson Independen Penggabungan dan Pemecahan Proses Poisson Independen Hanna Cahyaningtyas 1, Respatiwulan 2, Pangadi 3 1 Mahasiswa Program Studi Matematika/FMIPA, Universitas Sebelas Maret 2 Dosen Program Studi Statistika/FMIPA,

Lebih terperinci

Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS Dengan Pemberian Vaksinasi Unggas. Jalan Sukarno-Hatta Palu,

Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS Dengan Pemberian Vaksinasi Unggas. Jalan Sukarno-Hatta Palu, Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS I. Murwanti 1, R. Ratianingsih 1 dan A.I. Jaya 1 1 Jurusan Matematika FMIPA Universitas Tadulako, Jalan Sukarno-Hatta

Lebih terperinci

Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov

Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov Yuni Yulida 1, Faisal 2, Muhammad Ahsar K. 3 1,2,3 Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend.

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION

SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION Novita Eka Chandra 1, Supriyanto 2, dan Renny 3 1 Universitas Islam Darul Ulum Lamongan, novitaekachandra@gmail.com 2 Universitas Jenderal Soedirman, supriyanto

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

ELSA HERLINA AGUSTIN:

ELSA HERLINA AGUSTIN: SIMULASI NUMERIK ESTIMASI PARAMETER MODEL DTMC SIS MENGGUNAKAN METODE MAXIMUM LIKELIHOOD ESTIMATION (MLE) DENGAN PENDEKATAN NEWTON-RAPHSON Oleh ELSA HERLINA AGUSTIN 12321577 Skripsi Ini Ditulis untuk Memenuhi

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci