Bab 2 TEORI DASAR. 2.1 Graf

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab 2 TEORI DASAR. 2.1 Graf"

Transkripsi

1 Bab 2 TEORI DASAR Pada bab ini akan dipaparkan beberapa definisi dasar dalam Teori Graf yang kemudian dilanjutkan dengan definisi bilangan kromatik lokasi, serta menyertakan beberapa hasil penelitian sebelumnya. 2.1 Graf Definisi-definisi berikut merujuk pada [1]. Sebuah graf G(V(G), E(G), G) didefinisikan sebagai pasangan himpunan titik tak hampa V, himpunan sisi E, dan sebuah fungsi insidensi G yang merelasikan setiap sisi di G dengan pasangan tak terurut titik di G. Jika e adalah sisi dan u dan v adalah titik sedemikian sehingga G (e)= uv, maka sisi e dikatakan menghubungkan titik u dan v di G; titik u dan v disebut ujung dari sisi e. Banyaknya titik pada suatu graf G disebut orde (order) dinotasikan dengan V, sedangkan banyaknya sisi disebut ukuran (size) dari G dinotasikan dengan E. Sebagai contoh, pada Gambar 2.1 V(G) = {v1, v2, v3, v4, v5}, E(G) = {e1, e2, e3, e4, e5, e6, e7} dan G didefinisikan dengan G (e1) = v1v2, G (e2) = v2v4, G (e3) = v4v5, G (e4) = v3v5, G (e5) = v1v3, G (e6) = v3v4, G (e7) = v2v3 Sehingga orde G adalah 5 dan ukuran G adalah 6. Gambar 2.1: Graf G dengan orde 5 dan ukuran 7 4

2 Jika e = uv merupakan sebuah sisi dari G, maka u dan v merupakan titik-titik bertetangga (adjacent) di G. Dalam hal ini, titik u dan sisi e, begitu pula dengan titik v dan sisi e, disebut terkait (incident) satu sama lain. Sisi-sisi yang berbeda dan terkait pada satu titik yang sama disebut sisi-sisi yang bertetangga. Pada gambar 2.1 titik v1 dikatakan bertetangga dengan titik v2, sisi e1 bertetangga dengan e5, dan titik v1 dan v3 terkait dengan sisi e5 = v1v3. Derajat (degree), dg(v), dari sebuah titik v pada G adalah banyaknya sisi pada G yang terkait atau berinsidensi dengan v. Derajat maksimum pada G dinotasikan dengan (G) dan derajat minimum dinotasikan dengan (G). Himpunan ketetanggaan dari u V(G) yang dinotasikan dengan N(u) adalah {v V(G) uv E(G)}. Dengan demikian. N(u) = dg(u). Pada gambar 2.1, dg(v2) = 3, (G) = 4, (G) = 2. Sebuah graf H dikatakan subgraf dari graf G, ditulis H G, jika V(H) V(G), E(H) E(G). Misalkan G G. Jika E(G ) = {xy E(G) x,y V(G )} maka G adalah sebuah subgraf terinduksi (induced subgraph) oleh V(G ) dari G. Jika sebuah subgrafdari graf G mempunyai himpunan titik yang sama dengan himpunan titik dari graf itu sendiri, maka subgraf itu disebut subgraf pembangun (spanning subgraf). G disebut terhubung (connected) jika untuk setiap pasang titik u,v V(G) terdapat suatu lintasan yang memuat u dan v. Lintasan di G adalah suatu barisan tak nol dan berhinngga P = v1e1v2e2v3e3... ekvk yang beranggotakan titik dan sisi yang saling berselang. P disebut lintasan dari v1 ke vk. Banyaknya sisi pada suatu lintasan disebut panjang. Titik v1 Dikenal sebagai titik awal dan vk sebagai titik akhir dari P. Panjang lintasan terpendek dari x ke y, untuk x, y V(G), disebut jarak dari x ke y. Hal ini dinotasikan dengan dg(x,y) = d(x,y). Diameter dari G, dinotasikan dengan d, didefinisikan sebagai d = max{ d(x,y) x,y V(G)}. Sebagai contoh, pada gambar 2.2 dg(v1,v4) = 2 dan d(g) = 3. 5

3 G: H1 : H2 : H3 : H4 : H5 : Gambar 2.2 Graf dan subgraf Pada gambar 2.2 di atas memperlihatkan enam graf, dengan H1, H3, H4, dan H5 merupakan subgraf dari G. H2 bukan merupakan subgraf dari G karena H2 memuat v3 v1 yang tidak ada di G. H1 dan H3 adalah subgraf teriduksi dari G. H4 bukan subgraf terinduksi dari G, karena v2v5 E(G) tetapi v2v5 E(H4). H5 merupakan subgraf pembangun dari G karena V(H5) = V(G). Suatu graf dikatakan graf trivial jika graf tersebut hanya terdiri dari sebuah titik. Graf lengkap (complete graf) dengan n titik, dinotasikan dengan Kn, adalah suatu graf yang setiap pasang titiknya bertetangga. Graf G disebut graf regular jika derajat setiap titiknya sama. Graf G(V(G),E(G)) disebut graf k-reguler jika dg(v) = k, untuk setiap v V. 6

4 Gambar 2.3 Graf lengkap K6 dan Graf 3-reguler Lingkaran berorde n, untuk n 3, dinotasikan dengan Cn, adalah graf terhubung 2reguler. Gambar 2.4 Graf lingkaran C6 Graf bintang, dinotasikan dengan K1,n, adalah graf dengan himpunan titiknya dikelompokkan atas dua himpunan partit, salah satu himpunan partit berangggotakan satu titik, sehingga tidak ada sisi yang menghubungkan setiap pasang tiitk yang berada dalam satu himpunan partit yang sama. Titik pusat pada graf bintang adalah titik berderajat n. 7

5 Gambar 2.5 Graf bintang K1,4 dengan titik pusat v Misalkan G adalah b suatu graf yang dibentuk dari dua buah graf bintak K1,a dan K1,b, dengan member sisi yang menghubungkan titik-titik pusat dari kedua graf tersebut, maka G disebut graf bintang ganda, dinotasikan dengan Sa,b. Pohon adalah graf terhubung yang tidak memuat lingkaran. Gambar 2.6 Graf bintang ganda S3,4, dengan titik pusat u dan v Gambar 2.7 Graf Pohon T 8

6 2.2 Bilangan Kromatik Lokasi Sebelum memaparkan bilangan kromatik lokasi, akan dipaparkan terlebih dulu definisi dari pewarnaan titik sejati, kode warna, himpunan pembeda, dan pewarnaan lokasi. Misalkan diberikan suatu graf G(V(G), E(G)). Pelabelan pada graf G didefinisikan sebagai suatu pemetaan unsur-unsur G pada himpunan bilangan bulat. Berdasarkan unsur yang dilabeli, pelabelan dibagi menjadi tiga jenis. Pelabelan sisi, pelabelan titik, dan pelabelan total. Pelabelan yang hanya melabeli titik, pelabelan ini disebut pelabelan titik. Begitu pula untuk pelabelan sisi yang hanya melabeli sisi. Pelabelan total adalah pelabelan baik sisi dan titik pada suatu graf. Pewarnaan titik sejati (vertex colouring) pada suatu graf adalah salah satu pelabelan titik dimana titik yang bertetangga tidak boleh dilabeli dengan label yang sama. Pada hakektanya secara matematis pewarnaan pada suatu graf G adalah suatu pemetaan c : V (G) {1,2,..., k}, sehingga ab E(G) c(a) c(b) Bilangan k terkecil sehingga G memiliki pewarnaan titik sejati disebut sebagai bilangan kromatik (chromatic number) dari G, dinotasikan dengan (G). Misalkan c suatu pewarnaan titik sejati dari suatu graf terhubung G, dengan menggunakan warna 1, 2,..., k untuk suatu bilangan asli k, maka c(u) c(v) untuk titik u dan v yang bertetangga di G. Dalam hal ini, c tidak lain merupakan suatu partisi terurut dari V(G) ke dalam kelas warna yang saling bebas C1, C2,..., Ck, dimana titik-titik di Ci adalah titik-titik yang diberi warna I, untuk 1 i k. Kode warna (color code), dinotasikan dengan C (v) dari suatu titik v di G didefinisikan sebagai k-vektor C (v) = (d(v, C1), d(v, C2),..., d(v, Ck)), dimana d(v, Ci) = min{ d(v, x) x Ci} untuk 1 i k. Jika setiap dua titik yang berbeda di G memiliki kode warna yang berbeda, maka c dikatakan sebagai suatu 9

7 pewarnaan lokasi (locating coloring) dari G. Secara ekivalen, = { C1, C2,..., Ck} disebut himpunan pembeda (locating set) bagi G. Oleh karena itu suatu pewarnaan lokasi bagi G adalah pewarnaan yang membedakan setiap titik di G berdasarkan jaraknya terhadap kelas warna yang dihasilkan. Pewarnaan lokasi dengan banyaknya warna minimum disebut sebgaai pewarnaan lokasi minimum dan banyaknya warna disebut bilangan kromatik lokasi (locating chromatic number) dari G yang dinotasikan dengan L(G). Oleh karena setiap pewarnaan lokasi merupakan suatu pewarnaan, maka (G) L(G) untuk setiap graf terhubung G. Sebagai contoh, misalkan graf G seperti pada Gambar 2.7. Gambar 2.8 Graf G Gambar 2.9 Pewarnaan c = {1, 2, 3, 4} pada graf G (4 warna) Misalkan c = {1, 2, 3, 4} suatu pewarnaan pada graf G seperti terlihat pada gambar 2.8. Kode warna dari titik-titik G terhadap = {C1, C2, C3, C4} adalah sebagai berikut: C (v1) = (d(v1, C1), d(v1, C2),..., d(v1, Ck)) = (0, 1, 2, 3) C (v2) = (d(v2, C1), d(v2, C2),..., d(v2, Ck)) = (1, 0, 1, 2) C (v3) = (d(v3, C1), d(v3, C2),..., d(v3, Ck)) = (1, 0, 1, 2) C (v4) = (d(v4, C1), d(v4, C2),..., d(v4, Ck)) = (2, 1, 0, 1) C (v5) = (d(v5, C1), d(v5, C2),..., d(v5, Ck)) = (2, 1, 0, 1) C (v6) = (d(v6, C1), d(v6, C2),..., d(v6, Ck)) = (3, 2, 1, 0) 10

8 Oleh karena C (v2) = C (v3) dan C (v4) = C (v5) maka c bukan merupakan pewarnaan lokasi. Di sisi lain, pewarnaan c = {1, 2, 3, 4, 5} seperti terlihat pada gambar 2.9, merupakan pewarnaan lokasi pada graf G, karena setiap titik pada G memiliki kode warna yang berbeda terhadap = { C1, C2, C3, C4, C5}, yaitu : C (v1) = (0, 1, 1, 2, 2) C (v2) = (1, 0, 2, 1, 3) C (v3) = (1, 2, 0, 1, 1) C (v4) = (2, 1, 1, 0, 2) C (v5) = (2, 1, 1, 2, 0) C (v6) = (3, 0, 2, 1, 1) Gambar 2.10 Pewarnaan c = {1, 2, 3, 4, 5} pada graf G (5 warna) Walaupun demikian, c bukanlah pewarnaan lokasi yang minimum karena terdapat pewarnaan c = {1, 2, 3, 4} seperti pada Gambar 2.10 yang juga merupakan pewarnaan lokasi bagi graf G dengan kardinalitas lebih sedikit dibandingkan kardinalitas c. Kode warna dari titik-titik G terhadap = { C1, C2, C3, C4} adalah sebagai berikut: C (v1) = (0, 1, 1, 2) C (v2) = (1, 0, 2, 1) C (v3) = (1, 2, 0, 1) C (v4) = (2, 1, 1, 0) C (v5) = (2, 3, 1, 0) C (v6) = (3, 2, 0, 1) 11

9 Gambar 2.11 Pewarnaan c = {1, 2, 3, 4} pada graf G (4 warna) Lebih lanjut, tidak ada pewarnaan pada G dengan kardinalitas lebih kecil daripada c yang menjadikannya pewarnaan lokasi, oleh karena itu bilangan kromatik lokasi dari G, L(G) = Hasil Penelitian Sebelumnya Beberapa graf yang cukup terkenal seperti graf lintasan, graf lingkaran, dan graf multipartit lengkap telah diketahui dari beberapa penelitian sebelumnya. Beberapa dari teorema berikut, dari Chartand dkk (tahun 2002) [2] dan [3], digunakan untuk membuktikan beberapa hasil pada tugas akhir ini. Teorema 1. [2] Misalkan c sebuah pewarnaan lokasi pada graf terhubung G. Jika u dan v adalah titik-titik yang berbeda pada G sehingga d(u,w) = d(v,w) untuk setiap w V(G) {u,v}, maka c(u) c(v). Dalam hal khusus, jika u dan v adalah titik-titik yang tidak bertetangga pada G sehingga N(u) = N(v), maka c(u) c(v). Teorema 2. [2] Jika Pn adalah graf lintasan berorde n 3, maka L(Pn) = 3. Teorema 3. [2] Untuk suatu graf lingkaran (Cn) berorde n 3 L(Cn) = 3 jika n ganjil, dan L(Cn) = 4 jika n genap. Teorema 4. [2] Untuk suatu bilangan asli a dan b, dengan 1 a b dan b 2, L(Sa, b) =b+1 Teorema 5. [2] Misalkan G suatu graf terhubung dengan orde n 3, maka L(G) = n jika dan hanya jika G adalah graf multipartit lengkap. 12

10 Selain menentukan L dari suatu graf G, G Chartrand dkk [2] dan [3] juga telah melakukan penelitian untuk menentukan batas bawah dan /atau batas atas L dari suatu graf secara umum. Hasil yang diperoleh diantaranya adalah sebagai berikut. Teorema 6. [2] Untuk setiap graf terhubung G, (G) L(G) dimm(g). Teorema 7. [2] Untuk setiap graf terhubung G dengan orde n 3, 3 L(G) n. Teorema 8. [2] Jika G adalah suatu graf dengan orde n 3, dan diameter d 2, maka logd+1n L(G) n d + 2. Teorema 9. [2] Misalkan G suatu graf terhubung dengan orde n 3, diameter d 2, dan L(G) = k, maka n kd k Teorema 10. [2] Misalkan k 3. Jika T adalah suatu pohon dengan (T) > (k - 1)2 k 2, maka L(T) > k. 13

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini. BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori dari penelitian ini. 2.1 Konsep Dasar Graf Beberapa konsep dasar

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini. 6 II. LANDASAN TEORI Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada sub bab ini akan diberikan

Lebih terperinci

BILANGAN KROMATIK LOKASI DARI GRAF ULAT

BILANGAN KROMATIK LOKASI DARI GRAF ULAT Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 1 6 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI DARI GRAF ULAT AIDILLA DARMAWAHYUNI, NARWEN Program Studi Matematika, Fakultas Matematika

Lebih terperinci

v 3 e 2 e 4 e 6 e 3 v 4

v 3 e 2 e 4 e 6 e 3 v 4 5 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan dimensi partisi graf sebagai landasan teori dari penelitian ini... Konsep Dasar Graf Pada bagian ini akan diberikan

Lebih terperinci

II. TINJAUAN PUSTAKA. kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini

II. TINJAUAN PUSTAKA. kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini 5 II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf, graf pohon dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini 2.1 KONSEP DASAR GRAF Konsep

Lebih terperinci

BILANGAN KROMATIK LOKASI UNTUK JOIN DARI DUA GRAF

BILANGAN KROMATIK LOKASI UNTUK JOIN DARI DUA GRAF Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 23 31 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK JOIN DARI DUA GRAF YULI ERITA Program Studi Matematika, Pascasarjana Fakultas

Lebih terperinci

Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik

Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik BAB II DASAR TEORI 2.1 Teori Dasar Graf 2.1.1 Graf dan Graf Sederhana Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik yang tak kosong dan E adalah himpunan sisi. Untuk selanjutnya,

Lebih terperinci

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. III BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk 00) Konsep ini merupakan pengembangan dari konsep dimensi partisi pewarnaan graf Pewarnaan titik pada

Lebih terperinci

KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3

KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3 Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 71 77 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3 FAIZAH, NARWEN Program Studi Matematika, Fakultas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN. Latar Belakang Masalah Seiring perkembangan zaman, maka perkembangan ilmu pengetahuan berkembang pesat, begitu pula dengan ilmu matematika. Salah satu cabang ilmu matematika yang memiliki

Lebih terperinci

BILANGAN KROMATIK LOKASI UNTUK GRAF AMALGAMASI BINTANG

BILANGAN KROMATIK LOKASI UNTUK GRAF AMALGAMASI BINTANG Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 6 13 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK GRAF AMALGAMASI BINTANG FADHILAH SYAMSI Program Studi Matematika, Pascasarjana

Lebih terperinci

BILANGAN KROMATIK LOKASI UNTUK GRAF C n K m, DENGAN n 3 DAN m 1

BILANGAN KROMATIK LOKASI UNTUK GRAF C n K m, DENGAN n 3 DAN m 1 Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 37 41 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK GRAF C n K m, DENGAN n 3 DAN m 1 MERY ANGGRAINI, NARWEN Program Studi Matematika,

Lebih terperinci

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin hasma_ba@yahoo.com Abstract Graf yang memuat semua siklus dari yang terkecil sampai

Lebih terperinci

MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun

MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun MA3051 Pengantar Teori Graf Semester 1 2013/2014 Pengajar: Hilda Assiyatun Bab 1: Graf dan subgraf Graf G : tripel terurut VG, E G, ψ G ) V G himpunan titik (vertex) E G himpunan sisi (edge) ψ G fungsi

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat III. BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.00). Konsep ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. Pewarnaan

Lebih terperinci

BILANGAN KROMATIK LOKASI UNTUK GRAF POHON n-ary LENGKAP

BILANGAN KROMATIK LOKASI UNTUK GRAF POHON n-ary LENGKAP Jurnal Matematika UNAND Vol. VI No. 1 Hal. 90 96 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK GRAF POHON n-ary LENGKAP AFIFAH DWI PUTRI, NARWEN Program Studi Matematika,

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi II. TINJAUAN PUSTAKA Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi pada suatu graf sebagai landasan teori pada penelitian ini.. Konsep Dasar Graf Pada bagian ini akan

Lebih terperinci

BAB 2. Konsep Dasar. 2.1 Definisi graf

BAB 2. Konsep Dasar. 2.1 Definisi graf BAB 2 Konsep Dasar 21 Definisi graf Suatu graf G = (V(G), E(G)) didefinisikan sebagai pasangan himpunan 2 titik V(G) dan himpunan sisi E(G) dengan V(G) dan E(G) [ VG ( )] Sebagai contoh, graf G 1 = (V(G

Lebih terperinci

GRAF-GRAF BERORDE n DENGANN BILANGAN KROMATIK LOKASI n - 1 SKRIPSI SARJANA MATEMATIKA OLEH YOGI DARVIN AGUNG BP:

GRAF-GRAF BERORDE n DENGANN BILANGAN KROMATIK LOKASI n - 1 SKRIPSI SARJANA MATEMATIKA OLEH YOGI DARVIN AGUNG BP: GRAF-GRAF BERORDE n DENGANN BILANGAN KROMATIK LOKASI n - 1 SKRIPSI SARJANA MATEMATIKA OLEH YOGI DARVIN AGUNG BP: 06 134 042 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUANN ALAM UNIVERSITAS

Lebih terperinci

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik 2. TINJAUAN PUSTAKA 2.1 Konsep Dasar Graf Pada bagian ini akan diberikan konsep dasar graf yang diambil dari buku Chartrand dan Zhang (2005) yaitu sebagai berikut: Suatu Graf G adalah suatu pasangan himpunan

Lebih terperinci

KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf

KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf II. KONSEP DASAR GRAF DAN GRAF POHON Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada bagian ini

Lebih terperinci

Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda

Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda Vol. 9, No.2, 114-122, Januari 2013 Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda Hasmawati 1 Abstrak Graf yang memuat semua siklus dari yang terkecil sampai ke

Lebih terperinci

BILANGAN KROMATIK LOKASI DARI GRAF P m P n, K m P n, DAN K m K n

BILANGAN KROMATIK LOKASI DARI GRAF P m P n, K m P n, DAN K m K n Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 14 22 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI DARI GRAF P m P n, K m P n, DAN K m K n MARIZA WENNI Program Studi Matematika,

Lebih terperinci

Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah

Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah BAB II KAJIAN TEORI II.1 Teori-teori Dasar Graf II.1.1 Definisi Graf Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah himpunan tak kosong dari titik graf G, dan E, himpunan sisi

Lebih terperinci

Konsep Dasar dan Tinjauan Pustaka

Konsep Dasar dan Tinjauan Pustaka Bab II Konsep Dasar dan Tinjauan Pustaka Pembahasan bilangan Ramsey pada bab-bab berikutnya menggunakan definisi, notasi, dan konsep dasar teori graf yang sesuai dengan rujukan Chartrand dan Lesniak (1996),

Lebih terperinci

Graf dan Operasi graf

Graf dan Operasi graf 6 Bab II Graf dan Operasi graf Dalam subbab ini akan diberikan konsep dasar, definisi dan notasi pada teori graf yang dipergunakan dalam penulisan disertasi ini. Konsep dasar tersebut ditulis sesuai dengan

Lebih terperinci

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang BAB III KONSEP DASAR TEORI GRAF Teori graf adalah salah satu cabang matematika yang terus berkembang dengan pesat. Teori ini sangat berguna untuk mengembangkan model-model terstruktur dalam berbagai keadaan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong

Lebih terperinci

PENGERTIAN GRAPH. G 1 adalah graph dengan V(G) = { 1, 2, 3, 4 } E(G) = { (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) } Graph 2

PENGERTIAN GRAPH. G 1 adalah graph dengan V(G) = { 1, 2, 3, 4 } E(G) = { (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) } Graph 2 PENGERTIAN GRAPH 1. DEFINISI GRAPH Graph G adalah pasangan terurut dua himpunan (V(G), E(G)), V(G) himpunan berhingga dan tak kosong dari obyek-obyek yang disebut himpunan titik (vertex) dan E(G) himpunan

Lebih terperinci

Bab 2. Teori Dasar. 2.1 Definisi Graf

Bab 2. Teori Dasar. 2.1 Definisi Graf Bab 2 Teori Dasar Pada bagian ini diberikan definisi-definisi dasar dalam teori graf berikut penjabaran mengenai kompleksitas algoritma beserta contohnya yang akan digunakan dalam tugas akhir ini. Berikut

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Matematika adalah salah satu ilmu yang banyak memberikan dasar bagi berkembangnya ilmu pengetahuan dan teknologi. Seiring dengan kemajuan dan perkembangan teknologi,

Lebih terperinci

3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf. Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya

3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf. Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya BAB III DIMENSI PARTISI n 1 3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya cukup mudah atau sederhana. Kelas graf

Lebih terperinci

II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan

II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan II. KONSEP DASAR GRAF DAN GRAF POHON 2.1 Konsep Dasar Graf Teori dasar mengenai graf yang akan digunakan dalam penelitian ini diambil dari Deo (1989). Graf G adalah himpunan terurut ( V(G), E(G)), dengan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan konsep dasar dalam teori graf dan pelabelan graf yang akan digunakan pada bab selanjutnya. 2.1 Definisi dan Istilah Dalam Teori Graf

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada Bagian ini akan dijelaskan beberapa definisi dan teorema terkait graf, matriks adjency, terhubung, primitifitas, dan scrambling index sebagai landasan teori yang menjadi acuan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Untuk menjelaskan pelabelan analytic mean pada graf bayangan dari graf bintang K 1,n dan graf bayangan dari graf bistar B n,n perlu adanya beberapa teori dasar yang akan menunjang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dipaparkan beberapa hasil penelitian yang dilakukan para peneliti sebelumnya, pengertian dasar graf, operasi-operasi pada graf, kelas-kelas graf dan dimensi partisi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Suatu graf G adalah suatu himpunan berhingga tak kosong dari objek-objek yang disebut verteks (titik/simpul) dengan suatu himpunan yang anggotanya

Lebih terperinci

BILANGAN KROMATIK LOKASI DARI GRAF HUTAN LINIER H t

BILANGAN KROMATIK LOKASI DARI GRAF HUTAN LINIER H t Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 18 22 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI DARI GRAF HUTAN LINIER H t SHERLY AFRI ASTUTI, ZULAKMAL Program Studi Matematika,

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi graf,

Lebih terperinci

I. PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus

I. PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus 1 I. PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus mengalami kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini mengalami perkembangan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Konsep Dasar

Bab 2. Landasan Teori. 2.1 Konsep Dasar Bab 2 Landasan Teori Pada bab ini akan diuraikan konsep dasar dan teori graf yang berhubungan dengan topik penelitian ini, termasuk didalamnya mengenai pelabelan total tak teratur titik dan total vertex

Lebih terperinci

`BAB II LANDASAN TEORI

`BAB II LANDASAN TEORI `BAB II LANDASAN TEORI Landasan teori yang digunakan sebagai materi pendukung untuk menyelesaikan permasalahan yang dibahas dalam Bab IV adalah teori graf, subgraf, subgraf komplit, graf terhubung, graf

Lebih terperinci

KLASIFIKASI GRAF PETERSEN BERBILANGAN KROMATIK LOKASI EMPAT ATAU LIMA

KLASIFIKASI GRAF PETERSEN BERBILANGAN KROMATIK LOKASI EMPAT ATAU LIMA KLASIFIKASI GRAF PETERSEN BERBILANGAN KROMATIK LOKASI EMPAT ATAU LIMA (Tesis) Oleh : Devriyadi Saputra S NPM. 1427031001 MAGISTER MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG

Lebih terperinci

BAB II TEORI GRAF DAN PELABELAN GRAF. Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari

BAB II TEORI GRAF DAN PELABELAN GRAF. Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari BAB II TEORI GRAF DAN PELABELAN GRAF Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari teori graf, serta akan dijelaskan beberapa jenis pelabelan graf yang akan digunakan pada bab-bab

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dipaparkan beberapa hasil penelitian yang dilakukan para peneliti sebelumnya, pengertian dasar graf, operasi-operasi pada graf, kelas-kelas graf dan dimensi partisi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan 5 BAB II TINJAUAN PUSTAKA A. Teori Graf 1. Dasar-dasar Graf Graf G didefinisikan sebagai pasangan himpunan (V, E) ditulis dengan notasi G = (V, E), dimana V adalah himpunan titik yang tidak kosong (vertex)

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan beberapa konsep dasar yang berkaitan dengan permasalahan, seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. 2.1 Graf Graf

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Logika Fuzzy Logika fuzzy pertama kali dikembangkan oleh Prof. Lotfi A. Zadeh, seorang peneliti dari Universitas California, pada tahun 1960-an. Logika fuzzy dikembangkan dari

Lebih terperinci

BAB III PELABELAN KOMBINASI

BAB III PELABELAN KOMBINASI 1 BAB III PELABELAN KOMBINASI 3.1 Konsep Pelabelan Kombinasi Pelabelan kombinasi dari suatu graf dengan titik dan sisi,, graf G, disebut graf kombinasi jika terdapat fungsi bijektif dari ( himpunan titik

Lebih terperinci

ALTERNATIF PEMBUKTIAN PENGEMBANGAN TEOREMA DIRAC UNTUK GRAF BERORDE KURANG ATAU SAMA DENGAN SEPULUH

ALTERNATIF PEMBUKTIAN PENGEMBANGAN TEOREMA DIRAC UNTUK GRAF BERORDE KURANG ATAU SAMA DENGAN SEPULUH ALTERNATIF PEMBUKTIAN PENGEMBANGAN TEOREMA DIRAC UNTUK GRAF BERORDE KURANG ATAU SAMA DENGAN SEPULUH Hasmawati, Jusmawati Massalesse, Hendra, Muhamad Hasbi Jurusan Matematika FMIPA Universitas Hasanudin

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dipaparkan beberapa hasil penelitian yang dilakukan para peneliti sebelumnya, pengertian dasar graf, operasi-operasi pada graf, kelaskelas graf, dan dimensi metrik pada

Lebih terperinci

PENGETAHUAN DASAR TEORI GRAF

PENGETAHUAN DASAR TEORI GRAF PENGETAHUAN DASAR TEORI GRAF 1 Sejarah Singkat dan Beberapa Pengertian Dasar Teori Graf Teori graf lahir pada tahun 1736 melalui makalah tulisan Leonard Euler seorang ahli matematika dari Swiss. Euler

Lebih terperinci

PELABELAN D-LUCKY PADA JARINGAN HYPERCUBE, JARINGAN KUPU-KUPU, DAN JARINGAN BENES

PELABELAN D-LUCKY PADA JARINGAN HYPERCUBE, JARINGAN KUPU-KUPU, DAN JARINGAN BENES i PELABELAN D-LUCKY PADA JARINGAN HYPERCUBE, JARINGAN KUPU-KUPU, DAN JARINGAN BENES HALINI NORMA LIANI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

BILANGAN KROMATIK LOKASI UNTUK GRAF K n K m

BILANGAN KROMATIK LOKASI UNTUK GRAF K n K m Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 129 134 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK GRAF K n K m AULI MARDHANINGSIH, ZULAKMAL Program Studi Matematika, Fakultas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Dasar Teori Graph 2.1.1 Graph Tak Berarah dan Digraph Suatu Graph Tak Berarah (Undirected Graph) merupakan kumpulan dari titik yang disebut verteks dan segmen garis yang

Lebih terperinci

EDGE-MAGIC TOTAL LABELING PADA BEBERAPA JENIS GRAPH

EDGE-MAGIC TOTAL LABELING PADA BEBERAPA JENIS GRAPH LAPORAN PENELITIAN MANDIRI EDGE-MAGIC TOTAL LABELING PADA BEBERAPA JENIS GRAPH Oleh Abdussakir, M.Pd UNIVERSITAS ISLAM NEGERI MALANG FAKULTAS SAINS DAN TEKNOLOGI JURUSAN MATEMATIKA MEI 005 EDGE-MAGIC TOTAL

Lebih terperinci

PEWARNAAN TOTAL R-DINAMIS DENGAN TEKNIK FUNGSI PEWARNAAN BERPOLA PADA HASIL OPERASI COMB

PEWARNAAN TOTAL R-DINAMIS DENGAN TEKNIK FUNGSI PEWARNAAN BERPOLA PADA HASIL OPERASI COMB PEWARNAAN TOTAL R-DINAMIS DENGAN TEKNIK FUNGSI PEWARNAAN BERPOLA PADA HASIL OPERASI COMB SISI DARI GRAF CYCLE SERTA KAITANNYA DALAM KETERAMPILAN BERPIKIR TINGKAT TINGGI Putu Liana Wardani 1, Dafik 2, Susi

Lebih terperinci

PELABELAN GRACEFUL PADA GRAF HALIN G(2, n), UNTUK n 3

PELABELAN GRACEFUL PADA GRAF HALIN G(2, n), UNTUK n 3 PELABELAN GRACEFUL PADA GRAF HALIN G(, n), UNTUK n 3 SKRIPSI SARJANA MATEMATIKA OLEH : YUNIZAR BP. 914336 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS 13 DAFTAR

Lebih terperinci

BILANGAN KROMATIK LOKASI UNTUK GRAF K n K m

BILANGAN KROMATIK LOKASI UNTUK GRAF K n K m Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 47 52 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK GRAF K n K m RINA WALYNI, ZULAKMAL Program Studi Matematika, Fakultas Matematika

Lebih terperinci

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga TEORI GRAPH Graph Graph Graph digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar berikut ini sebuah graph yang menyatakan peta jaringan jalan raya yang

Lebih terperinci

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n Nama : Yogi Sindy Prakoso NRP : 106 100 015 Jurusan : Matematika FMIPA-ITS Pembimbing : Drs. Suhud Wahyudi, M.Si Dra. Titik Mudiati, M.Si Abstrak Grah adalah

Lebih terperinci

KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS

KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS STUDY ON SUFFICIENT CONDITION FOR THE CHROMATIC POLYNOMIAL OF CONNECTED GRAPH HAS COMPLEX ROOTS Yuni Dewi Purnama

Lebih terperinci

merupakan himpunan sisi-sisi tidak berarah pada. (Yaoyuenyong et al. 2002)

merupakan himpunan sisi-sisi tidak berarah pada. (Yaoyuenyong et al. 2002) dari elemen graf yang disebut verteks (node, point), sedangkan, atau biasa disebut (), adalah himpunan pasangan tak terurut yang menghubungkan dua elemen subset dari yang disebut sisi (edge, line). Setiap

Lebih terperinci

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n. Oleh : Yogi Sindy Prakoso ( ) JURUSAN MATEMATIKA. Company

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n. Oleh : Yogi Sindy Prakoso ( ) JURUSAN MATEMATIKA. Company DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n Oleh : Yogi Sindy Prakoso (1206100015) JURUSAN MATEMATIKA Company FAKULTAS MATEMATIKA Click to DAN add ILMU subtitle PENGETAHUAN ALAM INSTITUT TEKNOLOGI

Lebih terperinci

RAINBOW CONNECTION PADA BEBERAPA GRAF

RAINBOW CONNECTION PADA BEBERAPA GRAF Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 17 25 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND RAINBOW CONNECTION PADA BEBERAPA GRAF GEMA HISTA MEDIKA Program Studi Matematika, Program Pascasarjana

Lebih terperinci

INTRODUCTION TO GRAPH THEORY LECTURE 2

INTRODUCTION TO GRAPH THEORY LECTURE 2 INTRODUCTION TO GRAPH THEORY LECTURE Operasi-Operasi Pada Graph Union Misal G dan H adalah dua graph yang saling asing. Union G H adalah graph dengan V(G H)=V(G) V(H) dan E(G H)=E(G) E(H). Join Join dari

Lebih terperinci

BAB II Graf dan Pelabelan Total Sisi-Ajaib Super

BAB II Graf dan Pelabelan Total Sisi-Ajaib Super BAB II Graf dan Pelabelan Total Sisi-Ajaib Super 2.1 Graf dan Beberapa Definisi Dasar Graf G=(V,E) didefinisikan sebagai pasangan terurut himpunan berhingga dan tak hampa V dan himpunan E. Himpunan V dinamakan

Lebih terperinci

BILANGAN KROMATIK LOKASI GRAF TAK TERHUBUNG DARI GRAF BINTANG GANDA DAN SUBDIVISINYA. (Skripsi) Oleh SITI NURAZIZAH

BILANGAN KROMATIK LOKASI GRAF TAK TERHUBUNG DARI GRAF BINTANG GANDA DAN SUBDIVISINYA. (Skripsi) Oleh SITI NURAZIZAH BILANGAN KROMATIK LOKASI GRAF TAK TERHUBUNG DARI GRAF BINTANG GANDA DAN SUBDIVISINYA (Skripsi) Oleh SITI NURAZIZAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2017

Lebih terperinci

DIGRAF EKSENTRIK DARI GRAF STAR DAN GRAF WHEEL

DIGRAF EKSENTRIK DARI GRAF STAR DAN GRAF WHEEL DIGRAF EKSENTRIK DARI GRAF STAR DAN GRAF WHEEL skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Rido Oktosa 4150406504 JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

BILANGAN STRONG RAINBOW CONNECTION UNTUK GRAF RODA DAN GRAF KUBIK

BILANGAN STRONG RAINBOW CONNECTION UNTUK GRAF RODA DAN GRAF KUBIK Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 72 79 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN STRONG RAINBOW CONNECTION UNTUK GRAF RODA DAN GRAF KUBIK WITRI YULIANI Program Studi Magister

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi yang akan dihasilkan pada penelitian ini. 2.1 Beberapa Definisi dan Istilah 1. Graf (

Lebih terperinci

Struktur dan Organisasi Data 2 G R A P H

Struktur dan Organisasi Data 2 G R A P H G R A P H Graf adalah : Himpunan V (Vertex) yang elemennya disebut simpul (atau point atau node atau titik) Himpunan E (Edge) yang merupakan pasangan tak urut dari simpul, anggotanya disebut ruas (rusuk

Lebih terperinci

FAKTORISASI GRAF BARU YANG DIHASILKAN DARI PEMETAAN TITIK GRAF SIKEL PADA BILANGAN BULAT POSITIF

FAKTORISASI GRAF BARU YANG DIHASILKAN DARI PEMETAAN TITIK GRAF SIKEL PADA BILANGAN BULAT POSITIF FAKTORISASI GRAF BARU YANG DIHASILKAN DARI PEMETAAN TITIK GRAF SIKEL PADA BILANGAN BULAT POSITIF Nova Nevisa Auliatul Faizah 1, H. Wahyu H. Irawan 2 1 Mahasiswa Jurusan Matematika, Fakultas Sains dan Teknologi,

Lebih terperinci

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf BAB 2 GRAF PRIMITIF Pada bagian ini akan dijelaskan mengenai definisi graf, istilah-istilah dalam graf, matriks ketetanggaan, graf terhubung, primitivitas graf, dan scrambling index. 2.1 Definisi Graf

Lebih terperinci

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014 Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 POHON DAN PEWARNAAN GRAF Tujuan Mahasiswa

Lebih terperinci

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY Latar belakang Masalah Pada setiap awal semester bagian pendidikan fakultas Matematika dan Ilmu Pengetahuan Universitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan himpunan dan beberapa definisi yang berkaitan dengan himpunan, serta konsep dasar dan teori graf yang akan digunakan pada bab selanjutnya. 2.1 Himpunan

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Definisi Graf

Bab 2 LANDASAN TEORI. 2.1 Definisi Graf Bab 2 LANDASAN TEORI 2.1 Definisi Graf Suatu graf G terdiri dari himpunan tak kosong terbatas dari objek yang dinamakan titik dan himpunan pasangan (boleh kosong) dari titik G yang dinamakan sisi. Himpunan

Lebih terperinci

BATAS ATAS BILANGAN DOMINASI LOKASI METRIK DARI GRAF HASIL OPERASI KORONA

BATAS ATAS BILANGAN DOMINASI LOKASI METRIK DARI GRAF HASIL OPERASI KORONA BATAS ATAS BILANGAN DOMINASI LOKASI METRIK DARI GRAF HASIL OPERASI KORONA Hazrul Iswadi Departemen MIPA Universitas Surabaya Jalan Raya Kalirungkut Gedung TG Lantai 6 Kampus Tenggilis Surabaya Indonesia

Lebih terperinci

STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA

STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA Anis Kamilah Hayati NIM : 13505075 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi

Lebih terperinci

II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan

II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan 5 II. TINJAUAN PUSTAKA Definisi 2.1 Graf (Deo,1989) Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan tak kosong dengan elemen-elemennya disebut vertex, sedangkan E(G)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ini terdiri dari tiga subbab. Subbab pertama adalah tinjauan pustaka yang memuat hasil penelitian yang dilakukan oleh peneliti sebelumnya dalam bidang dimensi metrik. Subbab kedua

Lebih terperinci

Pewarnaan Total Pada Graf Outerplanar

Pewarnaan Total Pada Graf Outerplanar JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1 Pewarnaan Total Pada Graf Outerplanar Prihasto.B Sumarno Jurusan Matematika, Fakultas Matematika Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Teori graf adalah cabang kajian matematika yang mempelajari sifat-sifat graf. Secara sederhana, suatu graf adalah himpunan benda-benda yang disebut titik yang terhubung

Lebih terperinci

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang anggotanya

Lebih terperinci

LOGIKA DAN ALGORITMA

LOGIKA DAN ALGORITMA LOGIKA DAN ALGORITMA DASAR DASAR TEORI GRAF Kelahiran Teori Graf Sejarah Graf : masalah jembatan Königsberg (tahun 736) C A D B Gbr. Masalah Jembatan Königsberg Graf yang merepresentasikan jembatan Königsberg

Lebih terperinci

BILANGAN KROMATIK LOKASI UNTUK GRAF KEMBANG API F n,2 DAN F n,3 DENGAN n 2

BILANGAN KROMATIK LOKASI UNTUK GRAF KEMBANG API F n,2 DAN F n,3 DENGAN n 2 Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 49 53 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK GRAF KEMBANG API F n,2 DAN F n,3 DENGAN n 2 ANDRE SAPUTRA Program Studi

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel BAB 2 LANDASAN TEORI 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel Teori Dasar Graf Graf G adalah pasangan himpunan (V,E) di mana V adalah himpunan dari vertex

Lebih terperinci

SEMINAR TUGAS AKHIR RAINBOW CONNECTION PADA GRAF 1-CONNECTED VOENID DASTI ( )

SEMINAR TUGAS AKHIR RAINBOW CONNECTION PADA GRAF 1-CONNECTED VOENID DASTI ( ) SEMINAR TUGAS AKHIR RAINBOW CONNECTION PADA GRAF 1-CONNECTED VOENID DASTI 08103201 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Andalas Jumu ah 26 APRIL 2013 List of Contents

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik pencacahan dalam bentuk definisi dan teorema yang berhubungan dengan penelitian yang akan dilakukan. 2.1

Lebih terperinci

Abstract

Abstract Nilai Kromatik pada Graf Hasil Operasi Kiki Kurdianto 1,2, Ika Hesti A. 1,2, Dafik 1,3 1 CGANT- University of Jember 2 Department of Mathematics Education - University of Jember 3 Department of Information

Lebih terperinci

Penerapan Pewarnaan Graf untuk Mencari Keunikan Solusi Sudoku

Penerapan Pewarnaan Graf untuk Mencari Keunikan Solusi Sudoku Penerapan Pewarnaan Graf untuk Mencari Keunikan Solusi Sudoku Andi Setiawan Jurusan Teknik Informatika ITB, Bandung 40116, email: andise@students.its.ac.id Abstract Makalah ini membahas tentang pewarnaan

Lebih terperinci

GRAF AMALGAMASI POHON BERBILANGAN KROMATIK LOKASI EMPAT

GRAF AMALGAMASI POHON BERBILANGAN KROMATIK LOKASI EMPAT GRAF AMALGAMASI POHON BERBILANGAN KROMATIK LOKASI EMPAT ASMIATI, FITRIANI Jurusan Matematika, FMIPA Universitas Lampung Jl. Prof. Soemantri Brojonegoro No.1 Gedong Meneng, Bandar Lampung Email : asmiati308@yahoo.com;

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 15 BAB II LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Graf Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

Lebih terperinci

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN Eric Cahya Lesmana - 13508097 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jalan Ganesa

Lebih terperinci

II.TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung

II.TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung II.TINJAUAN PUSTAKA Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung dalam penelitian ini. 2.1. Konsep Dasar Teori Graf Graf G didefinisikan sebagai pasangan himpunan terurut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Sejarah Graf Lahirnya teori graf pertama kali diperkenalkan oleh Leonhard Euler seorang matematikawan berkebangsaan Swiss pada Tahun 1736 melalui tulisan Euler yang berisi tentang

Lebih terperinci