APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY

Ukuran: px
Mulai penontonan dengan halaman:

Download "APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY"

Transkripsi

1 APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY Latar belakang Masalah Pada setiap awal semester bagian pendidikan fakultas Matematika dan Ilmu Pengetahuan Universitas Negeri Yogyakarta selalu disibukkan dengan masalah pembuatan jadwal perkuliahan yang kadang merupakan persoalan yang rumit karena masih sering terjadi permasalahan semisal jadwal yang bertumbukan. Hal itu disebabkan karena keterbatasan ruang kuliah, dosen mengajar lebih dari satu mata kuliah, dan mahasiswa yang juga mengambil beberapa matakuliah sekaligus dalam satu semester. Untuk mengatasi permasalahan tersebut maka dibuat teknik penjadwalan dengan menggunakan pewarnaan simpul graf. Pewarnaan simpul graf adalah teknik mewarnai simpul-simpul pada graf sehingga tidak ada simpul-simpul yang bertetangga, yaitu terhubung langsung dengan minimal sebuah sisi, memiliki warna yang sama. Hal ini juga dikaitkan dengan penggunaan warna seminimal mungkin. Teknik pewarnaan simpul graf merupakan salah satu subjek yang menarik dan terkenal dalam bidang graf. Teori-teori yang berhubungan dengan hal tersebut telah banyak dikembangkan dan berbagai algoritma dengan kelebihan dan kekurangan masing-masing telah dibuat untuk menyelesaikannya. Aplikasi dari teknik ini telah banyak diterapkan di berbagai bidang, salah satunya adalah pembuatan jadwal. Perencanaan jadwal di sini khususnya diterapkan pada pekerjaan-pekerjaan atau hal-hal yang saling terkait, misalnya hal-hal yang berlangsung pada waktu yang sama, atau pekerjaan yang menggunakan sumber daya yang sama. Dalam penelitian ini, permasalahan yang dibahas adalah pewarnaan simpul graph untuk penjadwalan mata kuliah. Pertemuan kuliah yang meliputi mata kuliah, dosen, dan ruang kuliah diidentifikasikan sebagai sebuah simpul (vertices). Setiap simpul dimana mata kuliahnya diajarkan oleh dosen yang sama atau diberikan pada ruang yang sama dihubungkan dengan sebuah busur (edges) yang berarti mata kuliah tersebut tidak dapat dilakukan secara bersamaan.terdapat banyak algoritma yang dapat digunakan untuk menyelesaikan permasalahan - permasalahan pewarnaan simpul graph. Salah satu algortima yang dapat diimplementasikan adalah Algoritma Tabu Search dan Algoritma Greedy. Algoritma Tabu Search ini dikembangkan kali pertama oleh Glover yang merupakan metastrategy heuristic untuk mengatasi optimum lokal. Fungsi objektif dalam pewarnaan simpul graph adalah meminimumkan konflik pewarnaan, yaitu simpul-simpul

2 bertetangga yang berwarna sama.hasil pewarnaan simpul graph merupakan solusi penjadwalan kuliah dimana simpul-simpul yang berwarna sama merepresentasikan mata kuliah dapat dilaksanakan dalam waktu yang bersamaan dan jumlah warna yang didapat merupakan jumlah sesi perkuliahan.namun pada penelitian ini, fokus penulisan ada pada penerapan pewarnaan graf untuk penjadwalan kegiatan perkuliahan, sehingga tidak menjelaskan bagaimana algoritma pewarnaan graf secara rinci. RUMUSAN MASALAH Berdasarkan latar belakang masalah diatas, disusun perumusan permasalahan yaitu bagaimana mengatasi konflik penjadwalan mata kuliah di FMIPA UNY dengan menggunakan metode pewarnaan simpul graf sehingga diperoleh kombinasi terbaik untuk pasangan mata kuliah dan dosen pengajar secara keseluruhan, tidak ada permasalahan bentrokan jadwal pada sisi mahasiswa, serta ketersediaan ruang yang cukup dan sesuai secara fasilitas untuk seluruh mata kuliah yang ada. TUJUAN PENELITIAN Tujuan Penelitian ini adalah mendapatkan solusi untuk mengatasi konflik penjadwalan mata kuliah di FMIPA UNY dengan menggunakan metode pewarnaan simpul graf sehingga diperoleh kombinasi terbaik untuk pasangan mata kuliah dan dosen pengajar secara keseluruhan, tidak ada permasalahan bentrokan jadwal pada sisi mahasiswa, serta ketersediaan ruang yang cukup dan sesuai secara fasilitas untuk seluruh mata kuliah yang ada. MANFAAT PENELITIAN Manfaat Penelitian ini adalah meningkatkan pemahaman tentang aplikasi metode pewarnaan simpul graf untuk mengatasi konflik penjadwalan mata kuliah di FMIPA UNY sehingga diperoleh kombinasi terbaik untuk pasangan mata kuliah dan dosen pengajar secara keseluruhan, tidak ada permasalahan bentrokan jadwal pada sisi mahasiswa, serta ketersediaan ruang yang cukup dan sesuai secara fasilitas untuk seluruh mata kuliah yang ada.

3 METODE PENELITIAN Metode yang digunakan dalam penelitian ini adalah studi pustaka yaitu mengumpulkan informasi baik dari buku atau jurnal yang berkaitan dengan metode pewarnaan graf dan menerapkannya untuk mengatasi masalah konflik penjadwalan mata kuliah di FMIPA UNY. Adapun bagan alirnya adalah sebagai berikut: Analisa Pewarnaan Graph Sudah Dikerjakan Analisa Konflik Jadwal Kuliah Akan FMIPA Akan Dikerjakan Analisa Penyelesaian Konflik Jadwal Kuliah FMIPA dengan Algoritma Pewarnaan Graph Pembuatan Program untuk mengatasi Konflik Jadwal Kuliah FMIPA dengan Pewarnaan Graph OUTPUT Jadwal kuliah FMIPA yang dapat mengatasi Konflik Jadwal Kuliah FMIPA dengan Pewarnaan Graph Program untuk mengatasi Konflik Jadwal Kuliah FMIPA dengan Pewarnaan Graph KAJIAN PUSTAKA Graf (graph) adalah struktur diskrit yang terdiri dari simpul (vertex) dan sisi (edge), atau dengan kata lain, graf adalah pasangan himpunan (V,E) dengan V adalah himpunan tidak kosong dari vertex dan E adalah himpunan sisi yang menghubungkan sepsang simpul dalam graf tersebut.

4 Berdasarkan ada tidak nya gelang atau sisi ganda pada suatu graf, secara umum graf dapat digolongkan menjadi dua jenis, yaitu : a. Graf sederhana (simple graph) Graf sederhana adalah graf yang tidak memiliki gelang maupun simpul ganda. b. Graf tak sederhana (unsimple graph) ` Graf tak sederhana adalah graf yang memiliki sisi ganda atau gelang. Graf tak sederhana ini juga dibagi menjadi dua bagian yaitu graf ganda yang memiliki sisi ganda dan graf semu yang selain memiliki sisi gelang dapat memilki sisi ganda Berdasarkan orientasi arah pada sisi-sisinya, graf dapat dibedakan menjadi dua jenis yaitu a. Graf tak berarah (undirected graph) Graf tak berarah adalah graf yang sisinya tidak memiliki orientasi arah. Contoh graf tak berarah ditunjukkan pada gambar 1 Gambar 1 b. Graf berarah (directed graph) Graf berarah adalah graf yang sisinya memiliki orientasi arah. Sisi berarah lebih dikenal dengan sebutan busur (arc). Simpul yang ridak bertanda disebut juga simpul asal (initial vertex) sedangkan simpul yang ditunjuk oleh tanda panah disebut juga simpul terminal (terminal vertex). Contoh graf berarah ditunjukkan pada gambar 2.

5 Gambar 2 Istilah penting dalam graf antara lain : a. Bertetangga (adjacent) Dua buah simpul dikatakan bertetangga jika keduanya terhubung secara langsung oleh sebuah sisi. b. Bersisian (incident) Sebuah sisi dikatakan bersisian dengan simpul a dan b jika simpul a dan b terhubung secara langsung oleh sisi tersebut. c. Simpul terpencil (isolated vertex) Simpul terpencil adalah simpul yang tidak mempunyai sisi yang bersisian dengannya. d. Graf kosong (null graph) Graf kosong adalah graf yang himpunan sisinya kosong. e. Derajat (degree) Derajat sebuah simpul adalah jumlah sisi yang bersisian dengan simpul tersebut. Simpul berderajat satu disebut simpul anting-anting (pendant vertex). f. Lintasan (path) Lintasan yang panjangnya n dari simpul awal v0 ke simpul tujuan vn dalam graf g adalah barisan berselang-seling simpul-simpul dan sisi-sisi berbentuk v0, e1, v1, e2, v2,, en, vn sedemikian sehingga e1=( v0, v1), e2=( v1, v2),, vn=( vn-1, vn) adalah sisi-sisi dari graf g. g. Sirkuit (circuit) Sirkuit adalah lintasan yang berawal dan berakhir pada simpul yang sama, disebut juga siklus. h. Terhubung (connected) Dua buah simpul dikatakan terhubung jika terdapat lintasan yang menghubungkan kedua simpul tersebut. Sebuah graf dikatakan graf terhubung jika semua simpulnya terhubung. i. Upagraf (subgraf) Sebuah graf g adalah upagraf dari g jika himpunan simpul di g adalah himpunan bagian dari himpunan simpul di g, dan himpunan sisi di g adalah himpunan bagian dari himpunan sisi di g. j. Upagraf merentang (spanning subgraph)

6 Upagraf merentang adalah upagraf yang mengandung semua simpul graf yang direntangnya. k. Cut-set Himpunan sisi yang bila dibuang membuat graf menjadi tidak terhubung. l. Graf berbobot (weighted graph) Graf yang setiap sisinya diberi harga atau bobot. Beberapa graf sederhana dalam penerapan yang sering ditemui antara lain : a. Graf lengkap (complete graph) Graf lengkap adalah graf sederhana yang setiap simpulnya mempunyai sisi ke semua simpul lainnya. Graf lengkap dengan n buah simpul dilambangkan dengan Kn. Setiap simpul Kn berderajat n-1. b. Graf lingkaran Graf lingkaran adalah graf sederhana yang setiap simpulnya berderajat 2. Graf lingkaran dengan n simpul diberi symbol Cn. c. Graf teratur Graf teratur adalah graf yang setiap simpulnya berderajat sama. d. Graf bipartit Graf bipartit adalah graf yang himpunan simpulnya dapat dikelompokkan menjadi dua himpunan bagian V1 dan V2, sedemikian sehingga setiap sisi dalam graf g menghubungkan sebuah simpul V1 ke sebuah simpul di V2. Graf bipartit dilambangkan dengan Km,n dengan m adalah jumlah simpul di V1 dan n adalah jumlah simpul di V2. Dalam teori graf, dikenal istilah pewarnaan graf (graph coloring) yaitu sebuah metode untuk memberi label pada sebuah graf. Label tersebut bisa diberi pada simpul, sisi maupun wilayah (region). Pewarnaan simpul dari sebuah graf adalah memberi warna pada simpul-simpul suatu graf sedemikian sehingga tidak ada dua simpul bertetangga yang memiliki warna yang sama. Kita dapat memberikan sembarang warna pada simpul-simpul asalkan berbeda dengan simpul-simpul tetangganya. Sebuah pewarnaan yang menggunakan beberapa buah warna biasanya disebut dengan n- coloring. Ukuran terkecil banyaknya warna yang dapat diberikan kepada sebuah graf G dinamakan dengan bilangan kromatik, yang dilambangkan dengan (G) [1]. Beberapa graf tertentu dapat langsung diketahui jumlah bilangan kromatiknya. Graf kosong memiliki (G)

7 sebanyak 1 karena semua simpul tidak terhubung, sehingga untuk mewarnai semua simpulnya cukup dengan satu warna saja. Graf lengkap memiliki (G) = n karena semua simpul saling terhubung satu sama lain. Graf lingkaran dengan n ganjil memiliki (G) = 3, sedangkan jika n genap maka (G) = 2. Pewarnaan sisi sebuah graf berarti cara pemberian warna pada garis sedemikian rupa sehingga setiap garis yang bertumpuan pada titik yang sama diberi warna yang berbeda. Pewarnaan sisi k dengan warna-warna dinamakan pewarnaan sisi k. Angka terkecil dari warna-warna yang dibutuhkan untuk pewarnaan sisi graf G disebut sebagai indeks kromatik atau angka kromatik sisi, (G). Personalia Peneliti Ketua Peneliti : Fitriyana Yuli Saptaningtyas, M.Si Anggota Peneliti : Husna Arifah,S.Si Mahasiswa Program Studi Matematika yang terlibat untuk penelitian : No Nama Mahasiswa NIM 1 M RIZKY M R WAHID YUNIANTO Pembiayaan penelitian Pembiayaan penelitian ini dialokasikan dari dana DIPA UNY Tahun 2010 RKPT Fakultas dengan anggaran total yang diusulkan adalah Rp ,00 ( empat juta rupiah ), dengan perincian sebagai berikut : No Komponen Pembiayaan Besarnya Biaya 1. Gaji dan Upah a. Ketua Peneliti Rp ,00 b. Anggota Peneliti Rp ,00 2. Biaya Operasional a. Peralatan Rp ,00 b. Pembuatan Program Rp ,00 c. Pengambilan data Rp ,00 d. Transport Rp ,00

8 3. Lain-lain Rp ,00 Jumlah Rp ,00

Kode MK/ Matematika Diskrit

Kode MK/ Matematika Diskrit Kode MK/ Matematika Diskrit TEORI GRAF 1 8/29/2014 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 TEORI GRAF Tujuan Mahasiswa memahami konsep

Lebih terperinci

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013 Dasar-Dasar Teori Graf Sistem Informasi Universitas Gunadarma 2012/2013 Teori Graf Teori Graf mulai dikenal saat matematikawan kebangsaan Swiss bernama Leonhard Euler, yang berhasil mengungkapkan Misteri

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel BAB 2 LANDASAN TEORI 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel Teori Dasar Graf Graf G adalah pasangan himpunan (V,E) di mana V adalah himpunan dari vertex

Lebih terperinci

Graph. Politeknik Elektronika Negeri Surabaya

Graph. Politeknik Elektronika Negeri Surabaya Graph Politeknik Elektronika Negeri Surabaya Pengantar Teori graph merupakan pokok bahasan yang memiliki banyak penerapan. Graph digunakan untuk merepresentasikan obyek-obyek diskrit dan hubungan antar

Lebih terperinci

MATEMATIKA DISKRIT II ( 2 SKS)

MATEMATIKA DISKRIT II ( 2 SKS) MATEMATIKA DISKRIT II ( 2 SKS) Rabu, 18.50 20.20 Ruang Hard Disk PERTEMUAN XI, XII RELASI Dosen Lie Jasa 1 Matematika Diskrit Graf (lanjutan) 2 Lintasan dan Sirkuit Euler Lintasan Euler ialah lintasan

Lebih terperinci

Graf. Bekerjasama dengan. Rinaldi Munir

Graf. Bekerjasama dengan. Rinaldi Munir Graf Bekerjasama dengan Rinaldi Munir Beberapa Aplikasi Graf Lintasan terpendek (shortest path) (akan dibahas pada kuliah IF3051) Persoalan pedagang keliling (travelling salesperson problem) Persoalan

Lebih terperinci

TERAPAN POHON BINER 1

TERAPAN POHON BINER 1 TERAPAN POHON BINER 1 Terapan pohon biner di dalam ilmu komputer sangat banyak, diantaranya : 1. Pohon ekspresi 2. Pohon keputusan 3. Kode Prefiks 4. Kode Huffman 5. Pohon pencarian biner 2 Pohon Ekspresi

Lebih terperinci

PERANGKAT LUNAK PENGAMBILAN KEPUTUSAN DALAM PENJADWALAN DENGAN METODE RECURSIVE LARGEST FIRST

PERANGKAT LUNAK PENGAMBILAN KEPUTUSAN DALAM PENJADWALAN DENGAN METODE RECURSIVE LARGEST FIRST PERANGKAT LUNAK PENGAMBILAN KEPUTUSAN DALAM PENJADWALAN DENGAN METODE RECURSIVE LARGEST FIRST Sadar Aman Gulo (0911040) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan Jl. Sisingamangaraja

Lebih terperinci

ANALISA DAN IMPLEMENTASI ALGORITMA PRIORITY DISPATCHING DALAM PENJADWALAN PEMBAGIAN RUANGAN UJIAN

ANALISA DAN IMPLEMENTASI ALGORITMA PRIORITY DISPATCHING DALAM PENJADWALAN PEMBAGIAN RUANGAN UJIAN ANALISA DAN IMPLEMENTASI ALGORITMA PRIORITY DISPATCHING DALAM PENJADWALAN PEMBAGIAN RUANGAN UJIAN DEDI MASYOYO (1111976) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan Jl. Sisingamangaraja

Lebih terperinci

PELABELAN TOTAL TITIK AJAIB PADA COMPLETE GRAPH

PELABELAN TOTAL TITIK AJAIB PADA COMPLETE GRAPH PELABELAN TOTAL TITIK AJAIB PADA COMPLETE GRAPH SKRIPSI Oleh : Novi Irawati J2A 005 038 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO

Lebih terperinci

RAINBOW CONNECTION PADA GRAF k-connected UNTUK k = 1 ATAU 2

RAINBOW CONNECTION PADA GRAF k-connected UNTUK k = 1 ATAU 2 Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 78 84 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND RAINBOW CONNECTION PADA GRAF k-connected UNTUK k = 1 ATAU 2 SALLY MARGELINA YULANDA Program Studi Matematika,

Lebih terperinci

PERBANDINGAN ALGORITMA KRUSKAL DENGAN ALGORITMA GENETIKA DALAM PENYELESAIAN MASALAH MINIMUM SPANNING TREE (MST) SKRIPSI

PERBANDINGAN ALGORITMA KRUSKAL DENGAN ALGORITMA GENETIKA DALAM PENYELESAIAN MASALAH MINIMUM SPANNING TREE (MST) SKRIPSI PERBANDINGAN ALGORITMA KRUSKAL DENGAN ALGORITMA GENETIKA DALAM PENYELESAIAN MASALAH MINIMUM SPANNING TREE (MST) SKRIPSI Oleh : RISKA G1A006049 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS

KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS STUDY ON SUFFICIENT CONDITION FOR THE CHROMATIC POLYNOMIAL OF CONNECTED GRAPH HAS COMPLEX ROOTS Yuni Dewi Purnama

Lebih terperinci

Graph, termasuk struktur non linear, yang oleh beberapa buku literatur didefinisikan sebagai berikut :

Graph, termasuk struktur non linear, yang oleh beberapa buku literatur didefinisikan sebagai berikut : ab Graph, termasuk struktur non linear, yang oleh beberapa buku literatur didefinisikan sebagai berikut : graph, G, consists of two sets V and. V is a finite non-empty set of vertices. is a set of pairs

Lebih terperinci

Teori Pohon. Begin at the beginning and go on /ll you come to the end: then stop. Lewis Caroll, Alice s Adventures in Wonderland, 1865

Teori Pohon. Begin at the beginning and go on /ll you come to the end: then stop. Lewis Caroll, Alice s Adventures in Wonderland, 1865 Teori Pohon Begin at the beginning and go on /ll you come to the end: then stop. Lewis Caroll, Alice s Adventures in Wonderland, 1865 1 Pohon Suatu graf tak berarah terhubung yang Hdak memiliki sirkuit

Lebih terperinci

APLIKASI PEWARNAAN SIMPUL DENGAN ALGORITMA WELCH- POWELL PADA TRAFFIC LIGHT DI YOGYAKARTA

APLIKASI PEWARNAAN SIMPUL DENGAN ALGORITMA WELCH- POWELL PADA TRAFFIC LIGHT DI YOGYAKARTA APLIKASI PEWARNAAN SIMPUL DENGAN ALGORITMA WELCH- POWELL PADA TRAFFIC LIGHT DI YOGYAKARTA SKRIPSI Untuk memenuhi sebagian persyaratan guna Memperoleh derajat Sarjana S-1 Program Studi Matematika Diajukan

Lebih terperinci

memberikan output berupa solusi kumpulan pengetahuan yang ada.

memberikan output berupa solusi kumpulan pengetahuan yang ada. MASALAH DAN METODE PEMECAHAN MASALAH (Minggu 2) Pendahuluan Sistem yang menggunakan kecerdasan buatan akan memberikan output berupa solusi dari suatu masalah berdasarkan kumpulan pengetahuan yang ada.

Lebih terperinci

B C D E F G H I J K L M N O P Q R S T. Tinaliah, S.Kom POHON BINER

B C D E F G H I J K L M N O P Q R S T. Tinaliah, S.Kom POHON BINER A B C D E F G H I J K L M N O P Q R S T U V W X Y Z POHON BINER Tinaliah, S.Kom DEFINISI Pohon (dalam struktur data) struktur berisi sekumpulan elemen dimana salah satu elemen adalah akar (root) dan elemen-elemen

Lebih terperinci

Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo

Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo Hendy - 13507011 Jurusan Teknik Informatika, ITB, Bandung 40116, email: if17011@students.if.itb.ac.id Abstract Makalah ini membahas

Lebih terperinci

PENCARIAN TITIK LOKASI DENGAN PEMANFAATAN ALGORITMA FLOYD-WARSHALL SEBAGAI PERHITUNGAN JARAK TERDEKAT DI INSTITUT TEKNOLOGI BANDUNG

PENCARIAN TITIK LOKASI DENGAN PEMANFAATAN ALGORITMA FLOYD-WARSHALL SEBAGAI PERHITUNGAN JARAK TERDEKAT DI INSTITUT TEKNOLOGI BANDUNG JURNAL LPKIA, Vol. No., Januari 205 PENCARIAN TITIK LOKASI DENGAN PEMANFAATAN ALGORITMA FLOYD-WARSHALL SEBAGAI PERHITUNGAN JARAK TERDEKAT DI INSTITUT TEKNOLOGI BANDUNG Ahmad Adityo Anggoro Program Studi

Lebih terperinci

Kata Kunci : Jaringan Jalan, Metoda Penilaian Kualitas, Teori Graf, Konektivitas. ISBN No. 978-979-18342-0-9 C-146

Kata Kunci : Jaringan Jalan, Metoda Penilaian Kualitas, Teori Graf, Konektivitas. ISBN No. 978-979-18342-0-9 C-146 PENGGUNAAN KONSEP KONEKTIVITAS TEORI GRAF SEBAGAI PIJAKAN BAGI UPAYA PENYUSUNAN METODA PENILAIAN KUALITAS JARINGAN JALAN PRIMER Hitapriya Suprayitno Jurusan Teknik Sipil. Institut Teknologi Sepuluh Nopember

Lebih terperinci

BAB II. TINJAUAN PUSTAKA. Terdapat beberapa jenis persoalan lintasan terpendek, antara lain:

BAB II. TINJAUAN PUSTAKA. Terdapat beberapa jenis persoalan lintasan terpendek, antara lain: 0 BAB II. TINJAUAN PUSTAKA 2. LANDASAN TEORI 2.. LINTASAN TERPENDEK (Shortest Path) Persoalan mencari lintasan terpendek di dalam graf merupakan persoalan optimasi klasik. Graf yang diacu adalah graf berbobot

Lebih terperinci

BAB 5 POSET dan LATTICE

BAB 5 POSET dan LATTICE BAB 5 POSET dan LATTICE 1. Himpunan Urut Parsial Suatu relasi R pada himpunan S dikatakan urut parsial pada S, jika R bersifat : 1. Refleksif, yaitu a R a, untuk setiap a Є s 2. Anti simetris, yaitu a

Lebih terperinci

Pengembangan Algoritma Greedy untuk Game Treasure Hunter

Pengembangan Algoritma Greedy untuk Game Treasure Hunter Pengembangan Algoritma Greedy untuk Game Treasure Hunter Michael Alexander Wangsa 13512046 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah : 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x=38. 38 terdiri dari 3 puluhan

Lebih terperinci

Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment)

Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment) Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment) Metoda Kuadrat Terkecil adalah salah satu metoda yang paling populer dalam menyelesaikan masalah hitung perataan. Aplikasi pertama perataan kuadrat

Lebih terperinci

NASKAH PUBLIKASI Disusun Untuk Memenuhi Sebagian Persyaratan Guna Mencapai Derajat Sarjana S-1 Jurusan Pendidikan Matematika

NASKAH PUBLIKASI Disusun Untuk Memenuhi Sebagian Persyaratan Guna Mencapai Derajat Sarjana S-1 Jurusan Pendidikan Matematika PENINGKATAN PERCAYA DIRI DAN KEMANDIRIAN SISWA DALAM PEMBELAJARAN MATEMATIKA MELALUI PEMBELAJARAN ATTENTION RELEVANCE CONFIDENCE SATISFACTION (ARCS) (PTK Pada Siswa Kelas VIIA SMP Muhammadiyah 1 Surakarta

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. penjelasan tentang pola hubungan (model) antara dua variabel atau lebih.. Dalam

BAB 2 TINJAUAN TEORITIS. penjelasan tentang pola hubungan (model) antara dua variabel atau lebih.. Dalam BAB 2 TINJAUAN TEORITIS 21 Pengertian Regresi Linier Pengertian regresi secara umum adalah sebuah alat statistik yang memberikan penjelasan tentang pola hubungan (model) antara dua variabel atau lebih

Lebih terperinci

Bab 9. Peluang Diskrit

Bab 9. Peluang Diskrit Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

Deteksi dan Koreksi Error

Deteksi dan Koreksi Error BAB 10 Deteksi dan Koreksi Error Setelah membaca bab ini, diharapkan pembaca memperoleh wawasan tentang: beberapa jenis kesalahan (error); teknik deteksi error; teknik memperbaiki error. 2 Deteksi dan

Lebih terperinci

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8 2. Program Linier a. Defenisi Program linier adalah metode untuk mendapatkan penyelesaian optimum dari suatu fungsi sasaran yang mengandung kendala atau batasan yang dapat dibuat dalam bentuk sistem pertidaksamaan

Lebih terperinci

MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN METODE EBIK

MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN METODE EBIK MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN METODE EBIK Nuryadi, S.Pd, M.Pd. 1 A. PENDAHULUAN Pendidikan hendaknya mampu membentuk cara berpikir dan berprilaku

Lebih terperinci

PERTEMUAN 3 FUNGSI BARIS TUNGGAL

PERTEMUAN 3 FUNGSI BARIS TUNGGAL PERTEMUAN 3 FUNGSI BARIS TUNGGAL Tujuan Pembelajaran : Memahami bermacam tipe fungsi yang tersedia dalam SQL Menggunakan fungsi Karakter, Bilangan dan Tanggal dalam statement SELECT Dapat melakukan fungsi

Lebih terperinci

Pertemuan 1 HIMPUNAN. a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.)

Pertemuan 1 HIMPUNAN. a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.) Pertemuan 1 HIMPUNAN 1.3.1. Definisi a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.) b. Misalkan nєν Himpunan S dikatakan mempunyai n anggota jika ada suatu fungsi

Lebih terperinci

UPAYA MENGATASI MISKONSEPSI SISWA MELALUI METODE PEMBELAJARAN DELIKAN

UPAYA MENGATASI MISKONSEPSI SISWA MELALUI METODE PEMBELAJARAN DELIKAN UPAYA MENGATASI MISKONSEPSI SISWA MELALUI METODE PEMBELAJARAN DELIKAN (DENGAR, LIHAT, KERJAKAN) PADA SISWA KELAS VIII SEMESTER GENAP SMP MUHAMMADIYAH 2 SURAKARTA SKRIPSI Untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id Kinerja yang perlu ditelaah pada algoritma: beban komputasi efisiensi penggunaan memori Yang perlu

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA PMIPA FKIP UNIVERSITAS JAMBI UJIAN AKHIR SEMESTER

PROGRAM STUDI PENDIDIKAN MATEMATIKA PMIPA FKIP UNIVERSITAS JAMBI UJIAN AKHIR SEMESTER PROGRAM STUDI PENDIDIKAN MATEMATIKA PMIPA FKIP UNIVERSITAS JAMBI UJIAN AKHIR SEMESTER Kode: Area: Program Studi Tanggal dikeluarkan: Tanggal Revisi: TUJUAN Tujuan Standar Operasional Prosedur ini adalah

Lebih terperinci

RINCIAN BIAYA KULIAH AKUNTANSI DAN MANAJEMEN TAHUN AKADEMIK 2015/2016 INSTITUT BISNIS NUSANTARA. Semester SPP UKT SKS/SMT* TOTAL

RINCIAN BIAYA KULIAH AKUNTANSI DAN MANAJEMEN TAHUN AKADEMIK 2015/2016 INSTITUT BISNIS NUSANTARA. Semester SPP UKT SKS/SMT* TOTAL RINCIAN BIAYA KULIAH AKUNTANSI DAN MANAJEMEN 1 Rp2,200,000 Rp1,300,000 Rp2,880,000 Rp6,380,000 2 Rp2,200,000 Rp1,300,000 Rp2,880,000 Rp6,380,000 3 Rp2,200,000 Rp1,300,000 Rp2,880,000 Rp6,380,000 4 Rp2,200,000

Lebih terperinci

BAB 3 LANGKAH PEMECAHAN MASALAH

BAB 3 LANGKAH PEMECAHAN MASALAH BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Kriteria Optimasi Optimasi adalah persoalan yang sangat penting untuk diterapkan dalam segala sistem maupun organisasi. Dengan optimalisasi pada sebuah sistem

Lebih terperinci

PANDUAN OLIMPIADE DAN KISI-KISI SOAL OLIMPIADE SAINS KOMPUTER

PANDUAN OLIMPIADE DAN KISI-KISI SOAL OLIMPIADE SAINS KOMPUTER PANDUAN OLIMPIADE DAN KISI-KISI SOAL OLIMPIADE SAINS KOMPUTER I. Panduan Olimpiade Secara Umum a. Peserta ujian wajib mengenakan seragam sekolah lengkap. b. Peserta ujian hadir di tempat ujian 30 menit

Lebih terperinci

Perangkat Lunak Pemahaman The Lift-To-Front Algorithm untuk Menyelesaikan Problema Maximum Flow

Perangkat Lunak Pemahaman The Lift-To-Front Algorithm untuk Menyelesaikan Problema Maximum Flow Perangkat Lunak Pemahaman The Lift-To-Front Algorithm untuk Menyelesaikan Problema Maximum Flow Marto Sihombing, Hansen Tanjaya STMIK IBBI Jl. Sei Deli No. 18 Medan, Telp. 061-4567111 Fax. 061-4527548

Lebih terperinci

Nama Soal Peta Jalan Batas Waktu - Nama Berkas peta[no.urut].out.[1..10] Batas Memori - Tipe output only Sumber Prima Chairunnanda

Nama Soal Peta Jalan Batas Waktu - Nama Berkas peta[no.urut].out.[1..10] Batas Memori - Tipe output only Sumber Prima Chairunnanda Nama Soal Peta Jalan Batas Waktu - Nama Berkas peta[no.urut].out.[1..10] Batas Memori - Tipe output only Sumber Prima Chairunnanda Pada suatu hari Pak Ganesh ingin pergi ke kota untuk membeli barang keperluan

Lebih terperinci

Model Matematika dari Sistem Dinamis

Model Matematika dari Sistem Dinamis Model Matematika dari Sistem Dinamis September 2012 () Model Matematika dari Sistem Dinamis September 2012 1 / 60 Pendahuluan Untuk analisis dan desain sistem kontrol, sistem sis harus dibuat model sisnya.

Lebih terperinci

DAMPAK PENGATURAN JADWAL KEGIATAN AKADEMIK TERHADAP MOBILITAS KENDARAAN MAHASISWA DI UNIVERSITAS KRISTEN PETRA

DAMPAK PENGATURAN JADWAL KEGIATAN AKADEMIK TERHADAP MOBILITAS KENDARAAN MAHASISWA DI UNIVERSITAS KRISTEN PETRA DAMPAK PENGATURAN JADWAL KEGIATAN AKADEMIK TERHADAP MOBILITAS KENDARAAN MAHASISWA DI UNIVERSITAS KRISTEN PETRA Rudy Setiawan Jurusan Teknik Sipil,Universitas Kristen Petra, Jl. Siwalankerto 121-131 Surabaya

Lebih terperinci

Teori dan Operasi Pada Himpunan

Teori dan Operasi Pada Himpunan Teori dan Operasi Pada Himpunan Oleh: Suprih Widodo Pendahuluan Pada dasarnya setiap hari manusia berhubungan dengan himpunan, klasifikasi himpunan dalam hidup manusia sangat beragam dan banyak sekali,

Lebih terperinci

SKRIPSI. persyaratan. Disusun oleh: IRINA A 410 090 195

SKRIPSI. persyaratan. Disusun oleh: IRINA A 410 090 195 PENINGKATAN KEMAMPUAN BERPIKIR KREATIF SISWA PADA MATERI LINGKARAN MELALUI PENDEKATAN KONTEKSTUAL DENGAN MODEL PEMBELAJARAN PROBLEM POSING (PTK Pembelajaran Matematikaa Kelas VIIII F Semester Genap SMP

Lebih terperinci

CONTOH SILABUS BERDIVERSIFIKASI DAN PENILAIAN BERBASIS KELAS

CONTOH SILABUS BERDIVERSIFIKASI DAN PENILAIAN BERBASIS KELAS CONTOH SILABUS BERDIVERSIFIKASI DAN BERBASIS KELAS Mata Pelajaran MATEMATIKA LAYANAN KHUSUS SEKOLAH dan MADRASAH IBTIDAIYAH DEPARTEMEN PENDIDIKAN NASIONAL Jakarta, 2003 Katalog dalam Terbitan Indonesia.

Lebih terperinci

Batra Yudha Pratama m111511006@students.jtk.polban.ac.id

Batra Yudha Pratama m111511006@students.jtk.polban.ac.id Operasi Morfologi Pada Citra Biner Batra Yudha Pratama m111511006@students.jtk.polban.ac.id Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan secara bebas

Lebih terperinci

Penerapan Algoritma Needleman-Wunsch sebagai Salah Satu Implementasi Program Dinamis pada Pensejajaran DNA dan Protein

Penerapan Algoritma Needleman-Wunsch sebagai Salah Satu Implementasi Program Dinamis pada Pensejajaran DNA dan Protein Penerapan lgoritma Needleman-Wunsch sebagai Salah Satu Implementasi Program Dinamis pada Pensejajaran DN dan Protein Muhamad Reza Firdaus Zen 1, Sila Wiyanti Putri 2, Muhamad Fajrin Rasyid 3 Laboratorium

Lebih terperinci

PERT / CPM. Materi MPK. www.adamjulian.net MANAJEMEN PENGAMBILAN KEPUTUSAN. Penjelasan PERT dan CPM METODE MANUAL: PERT CPM SOFTWARE POM QM: PERT CPM

PERT / CPM. Materi MPK. www.adamjulian.net MANAJEMEN PENGAMBILAN KEPUTUSAN. Penjelasan PERT dan CPM METODE MANUAL: PERT CPM SOFTWARE POM QM: PERT CPM MANAJEMEN PENGAMBILAN KEPUTUSAN PERT / CPM THE DECISION PROCESS IN OPERATIONS Materi MPK Penjelasan PERT dan CPM METODE MANUAL: PERT CPM SOFTWARE POM QM: PERT CPM Analisis Jaringan Kerja Metode yang digunakan

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

MINIMALISASI BOTTLENECK PROSES PRODUKSI DENGAN MENGGUNAKAN METODE LINE BALANCING

MINIMALISASI BOTTLENECK PROSES PRODUKSI DENGAN MENGGUNAKAN METODE LINE BALANCING MINIMALISASI BOTTLENECK PROSES PRODUKSI DENGAN MENGGUNAKAN METODE LINE BALANCING Yayan Indrawan, Ni Luh Putu Hariastuti Jurusan Teknik Industri Institut Teknologi Adhi Tama Surabaya Putu_hrs@yahoo.com

Lebih terperinci

Hal ini menunjukkan bahwa teknologi pengomposan dipandang lebih mampu. memberikan peluang kerja bagi masyarakat, lebih memiliki potensi konflik yang

Hal ini menunjukkan bahwa teknologi pengomposan dipandang lebih mampu. memberikan peluang kerja bagi masyarakat, lebih memiliki potensi konflik yang Gambar 16. Perbandingan Skala Prioritas antara Incenerator dan Pengomposan Berdasarkan Kriteria dalam Aspek Sosial. Keterangan : TENAKER = Penyerapan tenaga kerja KONFLIK = Potensi konflik dengan masyarakat

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari BAB 2 LANDASAN TEORI 21 Analisis Komponen Utama 211 Pengantar Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari tulisan Karl Pearson pada tahun 1901 untuk peubah non-stokastik Analisis

Lebih terperinci

Sesi IX : RISET OPERASI. Perkembangan Riset Operasi

Sesi IX : RISET OPERASI. Perkembangan Riset Operasi Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi IX : RISET OPERASI e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Perkembangan Riset Operasi Dimulai

Lebih terperinci

Bab 3. Permutasi dan Kombinasi

Bab 3. Permutasi dan Kombinasi Bab 3. Permutasi dan Kombinasi Dalam kehidupan sehari-hari kita sering menghadapi masalah pengaturan suatu obyek yang terdiri dari beberapa unsur, baik yang disusun dengan mempertimbangkan urutan sesuai

Lebih terperinci

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS STRUKTUR ALJABAR 1 Winita Sulandari FMIPA UNS Pengantar Struktur Aljabar Sistem Matematika terdiri dari Satu atau beberapa himpunan Satu atau beberapa operasi yg bekerja pada himpunan di atas Operasi-operasi

Lebih terperinci

MANUAL PROSEDUR PROSES PENYUSUNAN KRS DAN PRS

MANUAL PROSEDUR PROSES PENYUSUNAN KRS DAN PRS MANUAL PROSEDUR PROSES PENYUSUNAN KRS DAN PRS JURUSAN TEKNIK ELEKTRO UNIVERSITAS BANGKA BELITUNG 2012 MANUAL PROSEDUR PROSES PENYUSUNAN KRS DAN PRS Kode Dokumen : SOP-FT-TE-002 Revisi : 00 Tanggal : 12

Lebih terperinci

PENGARUH PERTUMBUHAN DANA PIHAK KETIGA DAN AKTIVA PRODUKTIF TERHADAP NET INTEREST MARGIN PADA BANK PEMERINTAH RANGKUMAN SKRIPSI

PENGARUH PERTUMBUHAN DANA PIHAK KETIGA DAN AKTIVA PRODUKTIF TERHADAP NET INTEREST MARGIN PADA BANK PEMERINTAH RANGKUMAN SKRIPSI PENGARUH PERTUMBUHAN DANA PIHAK KETIGA DAN AKTIVA PRODUKTIF TERHADAP NET INTEREST MARGIN PADA BANK PEMERINTAH RANGKUMAN SKRIPSI Oleh : ADITYA RAHMAN HAKIM 2005210181 SEKOLAH TINGGI ILMU EKONOMI PERBANAS

Lebih terperinci

Outline 0 PENDAHULUAN 0 TAHAPAN PENGEMBANGAN MODEL 0 SISTEM ASUMSI 0 PENDEKATAN SISTEM

Outline 0 PENDAHULUAN 0 TAHAPAN PENGEMBANGAN MODEL 0 SISTEM ASUMSI 0 PENDEKATAN SISTEM Outline 0 PENDAHULUAN 0 TAHAPAN PENGEMBANGAN MODEL 0 SISTEM ASUMSI 0 PENDEKATAN SISTEM Pendahuluan 0 Salah satu dasar utama untuk mengembangkan model adalah guna menemukan peubah-peubah apa yang penting

Lebih terperinci

Lalu masukkan user name anda yang telah diberitahukan oleh administrator anda, misalnya seperti contoh dibawah ini.

Lalu masukkan user name anda yang telah diberitahukan oleh administrator anda, misalnya seperti contoh dibawah ini. 1. Penggunaan Aplikasi Untuk menjalankan aplikasi ini, anda dapat mengetik http://dosen.bundamulia.ac.id/ pada browser Internet Explorer. Setelah itu, maka akan tampil Menu Login seperti dibawah ini :

Lebih terperinci

TIN314 Perancangan Tata Letak Fasilitas. h t t p : / / t a u f i q u r r a c h m a n. w e b l o g. e s a u n g g u l. a c. i d

TIN314 Perancangan Tata Letak Fasilitas. h t t p : / / t a u f i q u r r a c h m a n. w e b l o g. e s a u n g g u l. a c. i d #4 - AC dan OPC 1 TIN314 Perancangan Tata Letak Fasilitas Assembly Chart (AC) (1) 2 Bagian paling kiri AC merupakan nama part. Semakin ke kiri, penomoran S bertambah dan semakin ke bawah penomoran A bertambah.

Lebih terperinci

BAB IV LAPORAN HASIL PENELITIAN. khususnya materi geometri kurang diminati bagi guru lebih-lebih bagi siswa.

BAB IV LAPORAN HASIL PENELITIAN. khususnya materi geometri kurang diminati bagi guru lebih-lebih bagi siswa. BAB IV LAPORAN HASIL PENELITIAN A. Refleksi Awal Kenyataan selama ini membuktikan bahwa dalam pelajaran matematika, khususnya materi geometri kurang diminati bagi guru lebih-lebih bagi siswa. Geometri

Lebih terperinci

BORANG PENILAIAN NASKAH DISERTASI PPSUB-2013

BORANG PENILAIAN NASKAH DISERTASI PPSUB-2013 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA PROGRAM PASCASARJANA BORANG PENILAIAN NASKAH DISERTASI PPSUB-2013 Nama Mahasiswa NIM Judul Disertasi :. : / PRODI: :. BAGIAN AWAL DISERTASI 1

Lebih terperinci

BAB 13 REVITALISASI PROSES DESENTRALISASI

BAB 13 REVITALISASI PROSES DESENTRALISASI BAB 13 REVITALISASI PROSES DESENTRALISASI DAN OTONOMI DAERAH Kebijakan desentralisasi dan otonomi daerah sesuai dengan Undang-undang Nomor 22 Tahun 1999 tentang Pemerintahan Daerah dan Undang-undang Nomor

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI 1 (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 120 MENIT

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI 1 (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 120 MENIT OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 20 MENIT I. Soal Pilihan Ganda, ada 0 soal dalam test ini. Petunjuk

Lebih terperinci

Perangkat Lunak Simulasi Langkah Kuda Dalam Permainan Catur

Perangkat Lunak Simulasi Langkah Kuda Dalam Permainan Catur Perangkat Lunak Simulasi Langkah Kuda Dalam Permainan Catur Hartono 1) Liva Junter 2) STMIK IBBI Medan Jl. Sei Deli No. 18 Medan, Telp. 061-4567111 Fax. 061-4527548 Email: hartonoibbi@gmail.com 1 Abstrak

Lebih terperinci

LAPORAN EVALUASI PROSES BELAJAR MENGAJAR (PBM) FAKULTAS SASTRA SEMESTER II 2000/2001

LAPORAN EVALUASI PROSES BELAJAR MENGAJAR (PBM) FAKULTAS SASTRA SEMESTER II 2000/2001 LAPORAN EVALUASI PROSES BELAJAR MENGAJAR (PBM) FAKULTAS SASTRA SEMESTER II 2000/2001 Bambang Yudi Cahyono 1 Abstrak: Kata kunci: evaluasi PBM, instrumen evaluasi Fakultas Sastra memandang perlu diadakan

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI LAMPIRAN 5 BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI Laporan 2 Pelaksanaan OSN-PERTAMINA 2012 69 Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor

Lebih terperinci

HAL-HAL YANG PERLU DIPERHATIKAN DALAM PENGGUNAAN APLIKASI RKA-KL 2015 TERKAIT DENGAN BERLAKUNYA SPAN SECARA PENUH PADA TAHUN ANGGARAN 2015

HAL-HAL YANG PERLU DIPERHATIKAN DALAM PENGGUNAAN APLIKASI RKA-KL 2015 TERKAIT DENGAN BERLAKUNYA SPAN SECARA PENUH PADA TAHUN ANGGARAN 2015 HAL-HAL YANG PERLU DIPERHATIKAN DALAM PENGGUNAAN APLIKASI RKA-KL 2015 TERKAIT DENGAN BERLAKUNYA SPAN SECARA PENUH PADA TAHUN ANGGARAN 2015 POKOK BAHASAN I. II. III. IV. V. VI. PENCANTUMAN VOLUME KPJM PADA

Lebih terperinci

Pengantar Sistem Pakar

Pengantar Sistem Pakar Chapter 1 Tujuan Instruksional Khusus Mahasiswa mampu menjelaskan konsep dasar Sistem Pakar. Mahasiswa mampu memberi contoh aplikasi-aplikasi sistem pakar dalam sistem komputer modern. Mahasiswa memahami

Lebih terperinci

BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN. Pada BAB V ini, peneliti akan membahas hasil penelitian dan diskusi hasil

BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN. Pada BAB V ini, peneliti akan membahas hasil penelitian dan diskusi hasil 67 BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN Pada BAB V ini, peneliti akan membahas hasil penelitian dan diskusi hasil penelitian. Pembahasan hasil penelitian berdasarkan deskripsi data tentang strategi

Lebih terperinci

ANALISA SINYAL DAN SISTEM TE 4230

ANALISA SINYAL DAN SISTEM TE 4230 ANALISA SINYAL DAN SISTEM TE 430 TUJUAN: Sinyal dan Sifat-sifat Sinyal Sistem dan sifat-sifat Sisterm Analisa sinyal dalam domain Waktu Analisa sinyal dalam domain frekuensi menggunakan Tools: Transformasi

Lebih terperinci

Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia Yogyakarta Pedoman Tugas Akhir

Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia Yogyakarta Pedoman Tugas Akhir Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia Yogyakarta Pedoman Tugas Akhir JURUSAN TEKNIK SIPIL i KATA PENGANTAR Tugas akhir merupakan karya ilmiah mahasiswa pada tingkat akhir program

Lebih terperinci

(RENCANA KERJA) TAHUN 2015

(RENCANA KERJA) TAHUN 2015 (RENCANA KERJA) TAHUN 2015 SEPUCUK JAMBI SEMBILAN LURAH BIRO PEMERINTAHAN SEKRETARIAT DAERAH PROVINSI JAMBI RENJA RENCANA KERJA TAHUN 2015 BIRO PEMERINTAHAN SEKRETARIAT DAERAH PROVINSI JAMBI BAB I PENDAHULUAN

Lebih terperinci

ANOVA SATU ARAH Nucke Widowati Kusumo Projo, S.Si, M.Sc

ANOVA SATU ARAH Nucke Widowati Kusumo Projo, S.Si, M.Sc ANOVA SATU ARAH Nucke Widowati Kusumo Proo, S.Si, M.Sc It s about: Ui rata-rata untuk lebih dari dua populasi Ui perbandingan ganda (ui Duncan & Tukey) Output SPSS PENDAHULUAN Ui hipotesis yang sudah kita

Lebih terperinci

Pengisian Kartu Rencana Studi Mahasiswa (oleh Mahasiswa)

Pengisian Kartu Rencana Studi Mahasiswa (oleh Mahasiswa) BAB 1 Pengisian Kartu Rencana Studi Mahasiswa (oleh Mahasiswa) 1. Login Mahasiswa. Mahasiswa dapat melakukan login / masuk ke sistem informasi akademik melalui http://unmuhbengkulu.net dan memilih icon

Lebih terperinci

Deskripsikan Maksud dan Tujuan Kegiatan Litbangyasa :

Deskripsikan Maksud dan Tujuan Kegiatan Litbangyasa : ISI FORM D *Semua Informasi Wajib Diisi *Mengingat keterbatasan memory database, harap mengisi setiap isian dengan informasi secara general, singkat dan jelas. A. Uraian Kegiatan Deskripsikan Latar Belakang

Lebih terperinci

Guide untuk Sistem Informasi Manajemen Akademik Mahasiswa Universitas Mercubuana

Guide untuk Sistem Informasi Manajemen Akademik Mahasiswa Universitas Mercubuana 1 Daftar Isi DAFTAR ISI... II 1 MELAKUKAN LOGIN ( LOGIN SEBAGAI MAHASISWA )... 1 1.1 Untuk Melakukan Proses Login...1 1.2 Untuk Melakukan Perubahan Password...2 1.3 Untuk Melihat Detail Mahasiswa...3 1.4

Lebih terperinci

Problem A. Raja yang Bijak

Problem A. Raja yang Bijak Problem A Raja yang Bijak Wacat adalah seorang pangeran yang baru saja diangkat menjadi raja menggantikan ayahnya, Hubu, seorang raja yang terkenal bijaksana. Hubu mampu mengambil segala keputusan yang

Lebih terperinci

CONTOH MODEL PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR

CONTOH MODEL PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR CONTOH MODEL PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR Disampaikan pada Diklat Instruktur/Pengembang Matematika SD Jenjang Lanjut Tanggal 6 s.d. 9 Agustus 200 di PPPG Matematika Oleh: Dra. Sukayati, M.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan sistem informasi diseluruh dunia telah membuat hidup manusia semakin lebih mudah. Terutama sejak diciptakannya internet, komunikasi menjadi semakin tidak

Lebih terperinci

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor Bab 5 Sumber: www.in.gr Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan fungsi komposisi dalam pemecahan masalah; menggunakan konsep, sifat, dan aturan fungsi invers

Lebih terperinci

BAB III METODOLOGI LAPORAN TUGAS AKHIR

BAB III METODOLOGI LAPORAN TUGAS AKHIR BAB III METODOLOGI III.1 Persiapan Tahap persiapan merupakan rangkaian kegiatan sebelum memulai pengumpulan dan pengolahan data. Dalam tahap awal ini disusun hal-hal penting yang harus segera dilakukan

Lebih terperinci

METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET

METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET TESIS Oleh: TRI MULYANI NIM 111820101004 MAGISTER MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2013 METODE

Lebih terperinci

FAK. ILMU SOSIAL & ILMU POLITIK UNIVERSITAS KADIRI TANGGAL STANDARD OPERATING PROCEDURE BERLAKU: PROSES PEMBELAJARAN REVISI :

FAK. ILMU SOSIAL & ILMU POLITIK UNIVERSITAS KADIRI TANGGAL STANDARD OPERATING PROCEDURE BERLAKU: PROSES PEMBELAJARAN REVISI : DOKUMEN LEVEL KODE SOP/LAK/B.01 UNIVERSITAS KADIRI TANGGAL STANDARD OPERATING PROCEDURE BERLAKU FAK. ILMU SOSIAL & ILMU POLITIK PROSES PEMBELAJARAN REVISI A. TUJUAN Untuk terlaksananya kegiatan pembelajaran

Lebih terperinci

IMPLEMENTASI METODE FUZZY TSUKAMOTO PADA PENENTUAN HARGA JUAL BARANG DALAM KONSEP FUZZY LOGIC

IMPLEMENTASI METODE FUZZY TSUKAMOTO PADA PENENTUAN HARGA JUAL BARANG DALAM KONSEP FUZZY LOGIC IMPLEMENTASI METODE FUZZY TSUKAMOTO PADA PENENTUAN HARGA JUAL BARANG DALAM KONSEP FUZZY LOGIC Riky Amelia (1111981) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan Jl. Sisingamangaraja

Lebih terperinci

Uji Hipotesis. Atina Ahdika, S.Si, M.Si. Universitas Islam Indonesia 2015

Uji Hipotesis. Atina Ahdika, S.Si, M.Si. Universitas Islam Indonesia 2015 Uji Hipotesis Atina Ahdika, S.Si, M.Si Universitas Islam Indonesia 015 Definisi Hipotesis Suatu pernyataan tentang besarnya nilai parameter populasi yang akan diuji. Pernyataan tersebut masih lemah kebenarannya

Lebih terperinci

BAB I PENDAHULUAN. perekonomian khususnya perkotaan. Hal tersebut dikarenakan transportasi

BAB I PENDAHULUAN. perekonomian khususnya perkotaan. Hal tersebut dikarenakan transportasi 1 BAB I PENDAHULUAN 1.1. Latar Belakang Transportasi memegang peranan penting dalam pertumbuhan perekonomian khususnya perkotaan. Hal tersebut dikarenakan transportasi berhubungan dengan kegiatan-kegiatan

Lebih terperinci

BAB I PENDAHULUAN. dan meningkatnya kemampuan manusia, situasi dan kondisi lingkungan yang

BAB I PENDAHULUAN. dan meningkatnya kemampuan manusia, situasi dan kondisi lingkungan yang BAB I PENDAHULUAN A. Latar Belakang Masalah Permasalahan pendidikan selalu muncul bersama dengan berkembang dan meningkatnya kemampuan manusia, situasi dan kondisi lingkungan yang ada, pengaruh informasi

Lebih terperinci

ALAT PERAGA MATEMATIKA SEDERHANA UNTUK SEKOLAH DASAR. Oleh : Drs. Ahmadin Sitanggang, M.Pd Widyaiswara LPMP Sumatera Utara

ALAT PERAGA MATEMATIKA SEDERHANA UNTUK SEKOLAH DASAR. Oleh : Drs. Ahmadin Sitanggang, M.Pd Widyaiswara LPMP Sumatera Utara ALAT PERAGA MATEMATIKA SEDERHANA UNTUK SEKOLAH DASAR Oleh : Drs. Ahmadin Sitanggang, M.Pd Widyaiswara LPMP Sumatera Utara LEMBAGA PENJAMINAN MUTU PENDIDIKAN (LPMP) SUMATERA UTARA 2013 Jl. Bunga Raya No.

Lebih terperinci

PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 10 TAHUN 2013 TENTANG DANA ALOKASI UMUM DAERAH PROVINSI DAN KABUPATEN/KOTA TAHUN ANGGARAN 2013

PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 10 TAHUN 2013 TENTANG DANA ALOKASI UMUM DAERAH PROVINSI DAN KABUPATEN/KOTA TAHUN ANGGARAN 2013 PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 10 TAHUN 2013 TENTANG DANA ALOKASI UMUM DAERAH PROVINSI DAN KABUPATEN/KOTA TAHUN ANGGARAN 2013 DENGAN RAHMAT TUHAN YANG MAHA ESA PRESIDEN REPUBLIK INDONESIA,

Lebih terperinci

ARTIKEL CONTOH PENERAPAN MODEL PEMBELAJARAN BERBASIS MASALAH MATEMATIKA SMP KELAS VII

ARTIKEL CONTOH PENERAPAN MODEL PEMBELAJARAN BERBASIS MASALAH MATEMATIKA SMP KELAS VII ARTIKEL CONTOH PENERAPAN MODEL PEMBELAJARAN BERBASIS MASALAH MATEMATIKA SMP KELAS VII Oleh Adi Wijaya, S.Pd, MA PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA

Lebih terperinci

PANDUAN AKADEMIK ON-LINE BAGI MAHASISWA UNIVERSITAS DARMA PERSADA

PANDUAN AKADEMIK ON-LINE BAGI MAHASISWA UNIVERSITAS DARMA PERSADA PANDUAN AKADEMIK ON-LINE BAGI MAHASISWA UNIVERSITAS DARMA PERSADA 1. User Login - Pilih salah satu menu untuk akses internet : Internet Explorer atau Mozilla Firefox (agar keamanan terjamin disarankan

Lebih terperinci

PENERAPAN PELAPORAN KEUANGAN PADA YAYASAN NURUL HAYAT YANG SESUAI DENGAN PSAK NO.45 RANGKUMAN SKRIPSI

PENERAPAN PELAPORAN KEUANGAN PADA YAYASAN NURUL HAYAT YANG SESUAI DENGAN PSAK NO.45 RANGKUMAN SKRIPSI PENERAPAN PELAPORAN KEUANGAN PADA YAYASAN NURUL HAYAT YANG SESUAI DENGAN PSAK NO.45 RANGKUMAN SKRIPSI Oleh : HENKIE PRIEMAADIENOVA BUDIRAHARDJO NIM : 2005310278 SEKOLAH TINGGI ILMU EKONOMI PERBANAS S U

Lebih terperinci

BAB I PENDAHULUAN. seluruh pelosok Jawa Timur khususnya untuk bagian hidrologi. Untuk dapat

BAB I PENDAHULUAN. seluruh pelosok Jawa Timur khususnya untuk bagian hidrologi. Untuk dapat BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Balai Besar Wilayah Sungai Brantas (BBWS) merupakan suatu lembaga pemerintahan yang bertugas untuk mengelola semua data banjir dan sungai di seluruh pelosok

Lebih terperinci

PENERAPAN PROGRAM LINIER DALAM OPTIMASI BIAYA PAKAN IKAN DENGAN METODE SIMPLEKS (STUDI KASUS PT. INDOJAYA AGRINUSA MEDAN)

PENERAPAN PROGRAM LINIER DALAM OPTIMASI BIAYA PAKAN IKAN DENGAN METODE SIMPLEKS (STUDI KASUS PT. INDOJAYA AGRINUSA MEDAN) PENERAPAN PROGRAM LINIER DALAM OPTIMASI BIAYA PAKAN IKAN DENGAN METODE SIMPLEKS (STUDI KASUS PT. INDOJAYA AGRINUSA MEDAN) Beby Sundary (1011297) Mahasiswa Program Studi Teknik Informatika STMIK Budi Darma

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1 Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler Karyati Jurusan Pendidikan Matematika Universitas Negeri Yogyakarta E-mail: yatiuny@yahoocom Abstrak Pada kajian

Lebih terperinci