BAB II LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 15 BAB II LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi Graf Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang anggotanya adalah pasangan-pasangan tak berurut dari vertex V dan disebut dengan edge. Gambaran umum mengenai graf diartikan sebagai diagram, dimana vertex disajikan berupa titik dan dinotasikan dengan v i ; i = 1,2,3,,m dan edge disajikan berupa garis lurus atau garis lengkung yang menghubungkan dua buah vertex (v i,,v j ) dan dapat dinotasikan dengan e k ; k = 1,2,3,,n. Definisi 2.1 menyatakan bahwa V tidak boleh kosong, sedangkan E boleh kosong. Jadi, sebuah graf dimungkinkan tidak mempunyai sisi satu buah pun, tetapi simpulnya harus minimal ada satu. Sebagai ilustrasi dapat dilihat gambar 2.1 yaitu : e 1 e2 e 3 e 4 e 1 e2 e 3 e e e 6 5 e 7 2 e 8 e 3 e 6 5 e G 1 G 2 G 3 Gambar 2.1 Graf G 1 adalah graf dengan V = { 1, 2, 3, 4 } E = { (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) }

2 16 G 2 adalah graf dengan V = { 1, 2, 3, 4 } E = { (1, 2), (2, 3), (1, 3), (1, 3), (2, 4), (3, 4), (3, 4) = { e 1, e 2, e 3, e 4, e 5, e 6, e 7 } G 3 adalah graf dengan V = { 1, 2, 3, 4 } E = { (1, 2), (2, 3), (1, 3), (1, 3), (2, 4), (3, 4), (3, 4), (3, 3) } = { e 1, e 2, e 3, e 4, e 5, e 6, e 7, e 8 } Definisi Loop dan Edge Paralel Sebuah edge yang menghubungkan pasangan vertex yang sama yakni (v i,v i ) disebut loop dan dua buah atau lebih edge yang mempunyai vertex -vertex ujung yang sama disebut edge-edge yang paralel atau multiple edge. Pada gambar 2.1 dapat dilihat, gambar G 1 tidak memiliki loop maupun edge pararel, sedangkan pada gambar G 2 tidak memiliki loop tetapi memiliki edge paralel yaitu e 3, e 4 dan e 1,e 6. Dan pada gambar G 3 memiliki loop yaitu e 8 dan edge pararel yaitu e 3, e 4 dan e 1, e 6. Defenisi Graf Sederhana (Simple Graf) Simple graf adalah graf yang tidak memuat loop dan edge-edge yang pararel. V 4 e 3 V 3 e 4 e 2 V 1 e 1 V 2 Gambar 2.2 Simple Graf

3 17 Definisi Ketetanggaan (Adjacent) Dua buah simpul pada graf dikatakan bertetangga bila kedua simpul tersebut terhubung langsung. Atau dapat kita sebut, v j bertetangga dengan v k pada graf G jika (v j,v k ) adalah sisi pada sebuah graf G. Definisi Bersisian (Incident) Untuk sembarang sisi e = ( v j, v k ) dikatakan e bersisian dengan simpul v j, atau e bersisian dengan simpul v k. Definisi Simpul Terpencil (Isolated Vertex ) Simpul yang tidak memiliki sisi yang bersisian dengannya atau tidak bertetangga dengan simpul lainnya disebut dengan simpul terpencil. Definisi Graf Kosong (Null Graf) Graf yang himpunan sisinya merupakan himpunan kosong (N n ) disebut graf kosong, dimana n adalah jumlah simpul Gambar 2.3 Graf Kosong Defenisi Derajat (Degree) Derajat dari sebuah vertex v i dalam graf G adalah jumlah edge yang bersisian dengan vi, dengan loop dihitung dua kali. Bila jumlah edge yang bersisian dengan jumlah vertex v i adalah n maka degree dari v i adalah n sehingga d(v i ) = n.

4 18 v 1 e 1 v 2 e 4 e 2 v 3 e 6 e 7 e 3 v 4 e 5 v 5 e 8 v 6 v 7 Gambar 2.4 Graf (7,8) Dari gambar 2.3 tersebut, V = { v 1, v 2, v 3, v 4, v 5, v 6, v 7 } dan E = { e 1, e 2, e 3, e 4, e 5, e 6, e 7, e 8 } Simpul 1 bertetangga dengan simpul 2, 3 dan 4 tetapi tidak bertetangga dengan simpul 5 dan 6. Simpul 5 bertetangga dengan simpul 2 dan 4 tetapi tidak bertetangga dengan simpul 1, 3, 4 dan 6. Sisi (1,2) bersisian dengan simpul 1 dan simpul 2. Sisi (1,4) bersisian dengan simpul 1 dan simpul 4. Tetapi sisi (3,4) tidak bersisian dengan simpul 1, 2, 5, 6 dan 7. Simpul terpencil adalah simpul 7. Derajat, d(1) = d(2) = d(4) = 3 d(3) = d(5) = 2 d(6) = 1 dan d(7) = Jenis-jenis Graf Berdasarkan ada tidaknya gelang atau sisi ganda pada suatu graf, maka graf digolongkan menjadi dua jenis:

5 19 1. Graf sederhana (Simple Graf) Graf yang tidak mengandung gelang maupun sisi-ganda dinamakan graf sederhana. 2. Graf tak-sederhana (Unsimple-Graf) Graf yang mengandung sisi ganda atau gelang dinamakan graf tak-sederhana (unsimple graf). Berdasarkan jumlah simpul pada suatu graf, maka secara umum graf dapat digolongkan menjadi dua jenis: 1. Graf berhingga (Limited Graf) Graf berhingga adalah graf yang jumlah simpulnya n berhingga. 2. Graf tak-berhingga (Unlimited Graf) Graf yang jumlah simpulnya n tidak berhingga banyaknya disebut graf tak berhingga. Berdasarkan orientasi arah pada sisi, maka secara umum graf dibedakan atas 2 jenis: 1. Graf tak-berarah (Undirected Graf) Graf yang sisinya tidak mempunyai orientasi arah disebut graf tak-berarah. 2. Graf berarah (Directed Graf atau Digraf) Graf yang setiap sisinya diberikan orientasi arah disebut sebagai graf berarah Gambar 2.5 Graf Berarah dan Graf-Ganda Berarah

6 20 Ada juga graf sederhana khusus yang terdiri dari: a. Graf lengkap (Complete Graf) Graf lengkap ialah graf sederhana yang setiap simpulnya mempunyai sisi ke semua simpul lainnya. Graf lengkap dengan n buah simpul dilambangkan dengan K n. Jumlah sisi pada graf lengkap yang terdiri dari n buah simpul adalah n(n 1)/2. K 1 K 2 K 3 K 4 K 5 K6 Gambar 2.6 Graf Lengkap b. Graf lingkaran Graf lingkaran adalah graf sederhana yang setiap simpulnya berderajat dua. Graf lingkaran dengan n simpul dilambangkan dengan C n. Gambar 2.7 Graf Lingkaran

7 21 c. Graf teratur (Regular Graf) Graf yang setiap simpulnya mempunyai derajat yang sama disebut graf teratur. Apabila derajat setiap simpul adalah r, maka graf tersebut disebut sebagai graf teratur derajat r. Jumlah sisi pada graf teratur adalah nr/2. Gambar 2.8 Graf Teratur d. Graf bipartisi (Bipartite Graf) Graf G yang himpunan simpulnya dapat dipisah menjadi dua himpunan bagian V 1 dan V 2, sedemikian sehingga setiap sisi pada G menghubungkan sebuah simpul di V 1 ke sebuah simpul di V 2 disebut graf bipartite dan dinyatakan sebagai G(V 1, V 2 ). V 1 V 2 Gambar 2.9 Graf Bipartite e. Graf bipartisi Lengkap ( Complete Bipartite Graf ) Graf bipartisi yang tiap vertex pada V 1 dihubungkan ke setiap vertex dari V 2, maka graf yang demikian disebut graf bipartisi lengkap dan dinotasikan dengan K m,n ; dimana m dan n adalah jumlah vertex pada V 1 dan V 2.

8 22 Gambar 2.10 Graf Bipartisi Lengkap 2.3 Terminologi Dasar Definisi Walk Suatu walk dalam graf G adalah suatu barisan berhingga dari vertex dan edge secara bergantian yang dimulai dan diakhiri dengan vertex sehingga setiap edge yang bersisian dengan vertex sebelum dan sesudahnya, dimana sebuah edge hanya dilalui satu kali. Di dalam suatu walk pada sebuah graf dapat terjadi bahwa satu vertex dilalui lebih dari satu kali. Pada umumnya penulisan barisan walk biasanya mengikutsertakan edgenya, tetapi boleh juga tidak. Apabila vertex awal dan akhir dari suatu walk adalah sama, maka walk yang demikian disebut dengan closed walk (walk tertutup). Sedangkan bila vertex awal dan vertex akhir dari suatu walk berbeda, maka walk yang demikian disebut open walk (walk terbuka).

9 23 Sebagai contoh diberikan pada gambar berikut : v 1 e 1 e 2 v 2 e 3 e 9 v 3 e 5 e 6 e 4 v 5 e 8 e 7 v 6 Gambar 2.11 Graf Pada gambar tersebut dapat diambil beberapa walk diantaranya sebagai berikut : v 1 e 1 v 2 e 4 v 6 e 7 v 5 e 6 v 3 e 2 e 1 v 1 e 2 v 3 e 6 v 5 e 7 v 6 (closed walk) (open walk) Walk di atas boleh juga ditulis dengan cara sebagai berikut : v 1 v 2 v 6 v 5 v 3 v 1 v 1 v 3 v 5 v 6 (closed walk) (open walk) Definisi Trail Walk yang semua sisi di dalam setiap barisan harus berbeda disebut trail. Trail tertutup adalah suatu trail dengan simpul awal dan simpul akhir yang sama. Dari gambar 2.11, salah satu contoh yang merupakan trail adalah : v 1 e 2 v 3 e 6 v 5 e 7 v 6 e 4 v 2 e 1 v 1

10 24 Defenisi Lintasan (Path) Path dari suatu graf G adalah suatu walk yang keseluruhan vertex nya berbeda kecuali vertex awal dan vertex akhir yang boleh sama. Bila dalam suatu path di mana vertex awal dan akhir sama maka path yang demikian disebut closed path (path tertutup), sedangkan bila vertex awal dan akhir tidak sama maka disebut open path (path terbuka). Sebagai contoh lihat gambar 2.11 v 1 v 3 v 5 v 3 v 2 v 6 v 5 v 3 v 6 v 2 v 1 v 5 (open path) (closed path) Defenisi Sirkuit (Cycle) Cycle dari suatu graf G adalah suatu closed path (path tertutup). Atau dengan kata lain cycle merupakan lintasan yang berawal dan berakhir pada simpul yang sama. Dari gambar di atas, yang merupakan cycle diantaranya : v 1 v 2 v 5 v 6 v 3 v 1 Definisi Connected Graf dan Disconnected Graf Suatu graf G dikatakan connected graf jika untuk setiap pasangan vertex di dalam G terdapat paling sedikit satu path. Sebaliknya jika dalam suatu graf G ada pasangan vertex yang tidak mempunyai path penghubung maka graf yang demikian dinamakan disconected graf.

11 25 Defenisi Graf Berbobot Dan Graf Berlabel Graf berbobot graf yang setiap sisinya diberi sebuah bobot sedangkan graf berlabel adalah graf yang tidak memiliki bobot. a a e 8 b e b Defeinisi Distance d Gambar 2.12 Graf Berbobot Dan Graf Berlabel Distance antara dua vertex v i dan v j dituliskan d( v 1, v 2 ) diartikan sebagai panjang terpendek antara v i dan v j. Sebagai contoh dapat dilihat pada gambar 2.12 yaitu jarak dari a ke b atau d (a,b) adalah c d c 2.4 Lintasan Dan Hamilton Cycle Lintasan Hamilton adalah lintasan yang melalui tiap vertex di dalam graf G tepat satu kali. Bila lintasan itu kembali lagi ke vertex awal dan membentuk lintasan tertutup (cycle), maka lintasan tertutup itu dinamakan Hamilton Cycle. Jadi, Hamilton Cycle adalah cycle yang melalui tiap vertex di dalam graf G tepat satu kali, kecuali vertex awal dan vertex akhir dan graf yang memiliki Hamilton Cycle dinamakan Hamilton Graf. Istilah Hamilton Cycle pertama kali muncul pada tahun 1987 sejak Sir William Hamilton membuat suatu permainan teka-teki mengenai sebuah dodecahedron (yaitu sebuah benda padat yang terdiri dari 12 buah sisi yang berbentuk segilima dan terdapat 20 titik sudut), dan tiap titik sudut diberi nama sebuah kota. Adapun tekatekinya adalah bagaimana menentukan sebuah bangunan yang berbentuk cycle sepanjang edge-edge dari dodecahedron tersebut yang melalui setiap kota tepat hanya satu kali.

12 26 Gambar 2.13 Graf Hamilton Teorema Di dalam sebuah graf lengkap G dengan sekurang-kurangnya 3 buah vertex, selalu terdapat suatu hamilton cycle. Bukti : Misalkan di dalam suatu graf lengkap terdapat sebuah lintasan dengan p-1 edge yang bertemu dengan barisan vertex-vertex (v 1,v 2,,v p ). Misalkan v x sebuah vertex yang tidak ada dalam lintasan ini. Jika edge (v x,v 1 ) di dalam graf ini, maka edge ini dapat digandengkan pada lintasan tadi sehingga vertex v x sekarang ada di dalam lintasan gandengannya. Akan tetapi jika tidak ada edge (v x,v 1 ), maka di dalam lintasan gandengannnya ini pasti terdapat edge (v 1,v x ). Misalkan edge (v x,v 2 ) juga ada di dalam graf ini, dengan demikian edge (v 1,v 2 ) di dalam lintasan asal dapat diganti

13 27 dengan kedua edge (v 1,v x ) dan (v x,v 2 ) sehingga vertex v x ada dalam lintasan gandengannnya. Akan tetapi jika edge (v x,v 2 ) tidak ada, maka pasti edge (v 2,v x ) ada didalam graf dan cara diatas diulangi lagi. Pada akhirnya jika ternyata tidak mungkin memasukkan vertex v x ke dalam lintasan gandengan dengan cara mengganti edge (v x,v k+1 ) di dalam lintasan asalnya dengan kedua edge (v k,v x ) dan (v k,v k+1 ), dengan 1 k p-1, maka dapat disimpulkan pastiada edge (v p,v x ) di dalam graf ini. Oleh karenanya,edge (v p,v x ) dapat digandengkan pada lintasan asalnya agar v x berada di dalam lintasan gandengannya. Langkah-langkah diulangi terus sampai semua vertex yang ada di dalam graf ini tercakup di dalam lintasan. 2.5 Travelling Salesman Problem Travelling Salesmen Problem (TSP) merupakan masalah klasik yang mencoba mencari rute atau jarak terpendek yang dilalui salesmen yang ingin mengunjungi beberapa tempat tanpa harus mendatangi tempat yang sama lebih dari satu kali untuk mengoptimalkan waktu dan ongkos yang diperlukan. Masalah Travelling Salesman Problem (TSP) dapat direpresentasikan ke dalam suatu terminologi graf, yakni sebuah graf G= (V,E) dengan vertex mewakili kota-kota yang akan diunjungi dan edge mewakili jalan-jalan yang menghubungkan dua kota. Panjang edge (x,y) yakni d(x,y) merupakan jarak, waktu atau biaya dari perjalanan sepanjang edge (x,y). Hamilton cycle sering dikenal sebagai masalah Travelling Salesman Problem (TSP) pada graf yang dapat diformulasikan pada directed graf maupun undirected graf yang mana pada undirected graf umumnya disebut sebagai masalah perjalanan Travelling Salesman Problem (TSP) yang simetris yakni panjang perjalananan dari vertex x ke vertex y maupun dari vertex y ke vertex x mempunyai bobot yang sama. Sedangkan masalah pada directed graf pada umumnya disebut sebagai masalah perjalanan. Travelling Salesman Problem (TSP) yang tidak simetris, yakni bobot dari perjalanan dari vertex x ke vertex y berbeda dengan bobot perjalanan dari vertex y ke vertex x.

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang anggotanya

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel BAB 2 LANDASAN TEORI 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel Teori Dasar Graf Graf G adalah pasangan himpunan (V,E) di mana V adalah himpunan dari vertex

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum memulai pembahasan lebih lanjut, pertama-tama haruslah dijelaskan apa yang dimaksud dengan traveling salesman problem atau dalam bahasa Indonesia disebut sebagai persoalan

Lebih terperinci

LOGIKA DAN ALGORITMA

LOGIKA DAN ALGORITMA LOGIKA DAN ALGORITMA DASAR DASAR TEORI GRAF Kelahiran Teori Graf Sejarah Graf : masalah jembatan Königsberg (tahun 736) C A D B Gbr. Masalah Jembatan Königsberg Graf yang merepresentasikan jembatan Königsberg

Lebih terperinci

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )}

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )} GRAF Graf G(V,E) didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan berhingga dan tidak kosong dari simpul-simpul (verteks atau node). Dan E adalah himpunan berhingga dari busur (vertices

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan penelitian sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik 2. TINJAUAN PUSTAKA 2.1 Konsep Dasar Graf Pada bagian ini akan diberikan konsep dasar graf yang diambil dari buku Chartrand dan Zhang (2005) yaitu sebagai berikut: Suatu Graf G adalah suatu pasangan himpunan

Lebih terperinci

G r a f. Pendahuluan. Oleh: Panca Mudjirahardjo. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.

G r a f. Pendahuluan. Oleh: Panca Mudjirahardjo. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. G r a f Oleh: Panca Mudjirahardjo Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. 1 Pendahuluan Jaringan jalan raya di propinsi Jawa Tengah

Lebih terperinci

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf Bab 2 LANDASAN TEORI 2.1. Konsep Dasar Graf Definisi Graf Suatu graf G terdiri atas himpunan yang tidak kosong dari elemen elemen yang disebut titik atau simpul (vertex), dan suatu daftar pasangan vertex

Lebih terperinci

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER TEORI GRAF ILHAM SAIFUDIN Selasa, 13 Desember 2016 Universitas Muhammadiyah Jember Pendahuluan 1 OUTLINE 2 Definisi Graf

Lebih terperinci

BAB I PENDAHULUAN. dirasakan peranannya, terutama pada sektor sistem komunikasi dan

BAB I PENDAHULUAN. dirasakan peranannya, terutama pada sektor sistem komunikasi dan BAB I PENDAHULUAN 1.1. Latar Belakang. Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan

Lebih terperinci

Kode MK/ Matematika Diskrit

Kode MK/ Matematika Diskrit Kode MK/ Matematika Diskrit TEORI GRAF 1 8/29/2014 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 TEORI GRAF Tujuan Mahasiswa memahami konsep

Lebih terperinci

Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus

Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus Elmo Dery Alfared NIM: 00 Program Studi Teknik Informatika ITB, Institut Teknologi Bandung email: if0 @students.itb.ac.id Abstract Makalah

Lebih terperinci

Graf. Matematika Diskrit. Materi ke-5

Graf. Matematika Diskrit. Materi ke-5 Graf Materi ke-5 Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul

Lebih terperinci

Graf. Program Studi Teknik Informatika FTI-ITP

Graf. Program Studi Teknik Informatika FTI-ITP Graf Program Studi Teknik Informatika FTI-ITP Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi yang akan dihasilkan pada penelitian ini. 2.1 Beberapa Definisi dan Istilah 1. Graf (

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong

Lebih terperinci

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013 Dasar-Dasar Teori Graf Sistem Informasi Universitas Gunadarma 2012/2013 Teori Graf Teori Graf mulai dikenal saat matematikawan kebangsaan Swiss bernama Leonhard Euler, yang berhasil mengungkapkan Misteri

Lebih terperinci

BAB II KAJIAN PUSTAKA. Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V

BAB II KAJIAN PUSTAKA. Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V BAB II KAJIAN PUSTAKA A. Pengertian Graf Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan tak kosong dari simpul-simpul (vertices) pada G. Sedangkan E adalah himpunan

Lebih terperinci

PENDAHULUAN MODUL I. 1 Teori Graph Pendahuluan Aswad 2013 Blog: 1.

PENDAHULUAN MODUL I. 1 Teori Graph Pendahuluan Aswad 2013 Blog:    1. MODUL I PENDAHULUAN 1. Sejarah Graph Teori Graph dilaterbelakangi oleh sebuah permasalahan yang disebut dengan masalah Jembatan Koningsberg. Jembatan Koningsberg berjumlah tujuh buah yang dibangun di atas

Lebih terperinci

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Rahadian Dimas Prayudha - 13509009 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan

BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan

Lebih terperinci

Konsep. Graph adalah suatu diagram yang memuat informasi tertentu. Contoh : Struktur organisasi

Konsep. Graph adalah suatu diagram yang memuat informasi tertentu. Contoh : Struktur organisasi GRPH 1 Konsep Graph adalah suatu diagram yang memuat informasi tertentu. Contoh : Struktur organisasi 2 Contoh Graph agan alir pengambilan mata kuliah 3 Contoh Graph Peta 4 5 Dasar-dasar Graph Suatu graph

Lebih terperinci

Matematik tika Di Disk i r t it 2

Matematik tika Di Disk i r t it 2 Matematika tik Diskrit it 2 Teori Graph Teori Graph 1 Kelahiran Teori Graph Masalah Jembatan Konigsberg g : Mulai dan berakhir pada tempat yang sama, bagaimana caranya untuk melalui setiap jembatan tepat

Lebih terperinci

Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2

Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2 Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2 Michael - 13514108 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Informasi Geografis (SIG) Sistem Informasi Geografis atau Geographic Information System (GIS) merupakan suatu sistem informasi yang berbasis komputer, dirancang untuk bekerja

Lebih terperinci

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika Discrete Mathematics & Its Applications Chapter 10 : Graphs Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika 16/12/2015 2 Sub Topik A. Graf dan Model Graf B. Terminologi Dasar Graf dan Jenis

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Dasar Teori Graph 2.1.1 Graph Tak Berarah dan Digraph Suatu Graph Tak Berarah (Undirected Graph) merupakan kumpulan dari titik yang disebut verteks dan segmen garis yang

Lebih terperinci

II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan

II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan 5 II. TINJAUAN PUSTAKA Definisi 2.1 Graf (Deo,1989) Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan tak kosong dengan elemen-elemennya disebut vertex, sedangkan E(G)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI.1 Sejarah Graf Menurut catatan sejarah, masalah jembatan KÖnigsberg adalah masalah yang pertama kali menggunakan graf (tahun 1736). Di kota KÖnigsberg (sebelah timur Negara bagian

Lebih terperinci

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kend al. Salatiga.

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kend al. Salatiga. GRAF PENDAHULUAN Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan 5 BAB II TINJAUAN PUSTAKA A. Teori Graf 1. Dasar-dasar Graf Graf G didefinisikan sebagai pasangan himpunan (V, E) ditulis dengan notasi G = (V, E), dimana V adalah himpunan titik yang tidak kosong (vertex)

Lebih terperinci

LATIHAN ALGORITMA-INTEGER

LATIHAN ALGORITMA-INTEGER LATIHAN ALGORITMA-INTEGER Nyatakan PBB(295,70) = 5 sebagai kombinasi lanjar 295 dan 70 Tentukan inversi dari 27(mod 7) Tentukan solusi kekongruenan lanjar dari 27.x kongruen 1(mod 7) dengan cara 1 ( cara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf didefinisikan sebagai pasangan terurut himpunan dimana: 1. adalah sebuah himpunan tidak kosong yang berhingga yang anggotaanggotanya

Lebih terperinci

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017 Graf dan Analisa Algoritma Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017 Who Am I? Stya Putra Pratama, CHFI, EDRP Pendidikan - Universitas Gunadarma S1-2007 Teknik Informatika S2-2012

Lebih terperinci

TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB

TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB STEVIE GIOVANNI NIM : 13506054 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jln, Ganesha 10, Bandung

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi II. TINJAUAN PUSTAKA Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi pada suatu graf sebagai landasan teori pada penelitian ini.. Konsep Dasar Graf Pada bagian ini akan

Lebih terperinci

Pengaplikasian Graf dalam Pendewasaan Diri

Pengaplikasian Graf dalam Pendewasaan Diri Pengaplikasian Graf dalam Pendewasaan Diri Syafira Fitri Auliya 13510088 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Aplikasi Graf pada Hand Gestures Recognition

Aplikasi Graf pada Hand Gestures Recognition Aplikasi Graf pada Hand Gestures Recognition Muthmainnah 13515059 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Andika Mediputra NIM : 13509057 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY Latar belakang Masalah Pada setiap awal semester bagian pendidikan fakultas Matematika dan Ilmu Pengetahuan Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan

BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan penelitian yang dilakukan. 2.1. Konsep Dasar Graf Graf G didefinisikan sebagai pasangan himpunan terurut

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Logika Fuzzy Logika fuzzy pertama kali dikembangkan oleh Prof. Lotfi A. Zadeh, seorang peneliti dari Universitas California, pada tahun 1960-an. Logika fuzzy dikembangkan dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini. BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori dari penelitian ini. 2.1 Konsep Dasar Graf Beberapa konsep dasar

Lebih terperinci

PENGETAHUAN DASAR TEORI GRAF

PENGETAHUAN DASAR TEORI GRAF PENGETAHUAN DASAR TEORI GRAF 1 Sejarah Singkat dan Beberapa Pengertian Dasar Teori Graf Teori graf lahir pada tahun 1736 melalui makalah tulisan Leonard Euler seorang ahli matematika dari Swiss. Euler

Lebih terperinci

Graf dan Pengambilan Rencana Hidup

Graf dan Pengambilan Rencana Hidup Graf dan Pengambilan Rencana Hidup M. Albadr Lutan Nasution - 13508011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung e-mail: albadr.ln@students.itb.ac.id

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Graf 2.1.1 Definisi Graf Graf adalah pasangan himpunan (V, E), dan ditulis dengan notasi G = (V, E), V adalah himpunan tidak kosong dari verteks-verteks {v 1, v 2,, v n } yang

Lebih terperinci

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN Eric Cahya Lesmana - 13508097 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jalan Ganesa

Lebih terperinci

Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends

Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends Reinaldo Ignatius Wijaya 13515093 Program Studi Teknik Informatika Sekolah Teknik Elektro dan

Lebih terperinci

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga GRAPH Graph Graph Graph digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar berikut ini sebuah graph yang menyatakan peta jaringan jalan raya yang menghubungkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Sejarah Graf Lahirnya teori graf pertama kali diperkenalkan oleh Leonhard Euler seorang matematikawan berkebangsaan Swiss pada Tahun 1736 melalui tulisan Euler yang berisi tentang

Lebih terperinci

MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun

MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun MA3051 Pengantar Teori Graf Semester 1 2013/2014 Pengajar: Hilda Assiyatun Bab 1: Graf dan subgraf Graf G : tripel terurut VG, E G, ψ G ) V G himpunan titik (vertex) E G himpunan sisi (edge) ψ G fungsi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar seperti teorema dan beberapa definisi yang akan penulis gunakan sebagai landasan berpikir dalam melakukan penelitian ini sehingga mempermudah

Lebih terperinci

II. LANDASAN TEORI. Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan

II. LANDASAN TEORI. Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan 4 II. LANDASAN TEORI Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan Konisberg yang kemudian menghasilkan konsep graf Eulerian merupakan awal dari lahirnya teori graf. Euler mengilustrasikan

Lebih terperinci

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Arifin Luthfi Putranto (13508050) Program Studi Teknik Informatika Institut Teknologi Bandung Jalan Ganesha 10, Bandung E-Mail: xenoposeidon@yahoo.com

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Konsep Dasar Graph Sebelum sampai pada pendefenisian masalah lintasan terpendek, terlebih dahulu pada bagian ini akan diuraikan mengenai konsep-konsep dasar dari model graph dan

Lebih terperinci

Graf. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.

Graf. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Graf Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan sejumlah

Lebih terperinci

Struktur dan Organisasi Data 2 G R A P H

Struktur dan Organisasi Data 2 G R A P H G R A P H Graf adalah : Himpunan V (Vertex) yang elemennya disebut simpul (atau point atau node atau titik) Himpunan E (Edge) yang merupakan pasangan tak urut dari simpul, anggotanya disebut ruas (rusuk

Lebih terperinci

II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan

II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan II. KONSEP DASAR GRAF DAN GRAF POHON 2.1 Konsep Dasar Graf Teori dasar mengenai graf yang akan digunakan dalam penelitian ini diambil dari Deo (1989). Graf G adalah himpunan terurut ( V(G), E(G)), dengan

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini. 6 II. LANDASAN TEORI Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada sub bab ini akan diberikan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Suatu graf G adalah suatu himpunan berhingga tak kosong dari objek-objek yang disebut verteks (titik/simpul) dengan suatu himpunan yang anggotanya

Lebih terperinci

BAB II LANDASAN TEORI. definisi, teorema, serta istilah yang diperlukan dalam penelitian ini. Pada bab ini

BAB II LANDASAN TEORI. definisi, teorema, serta istilah yang diperlukan dalam penelitian ini. Pada bab ini 4 BAB II LANDASAN TEORI Setiap permasalahan yang akan dicari cara penyelesaiannya terlebih dahulu dibuat rumusan masalah, demikian pula dengan matematika. Untuk mengetahui lebih lanjut tentang pembahasan

Lebih terperinci

BAB II TEORI GRAF DAN PELABELAN GRAF. Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari

BAB II TEORI GRAF DAN PELABELAN GRAF. Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari BAB II TEORI GRAF DAN PELABELAN GRAF Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari teori graf, serta akan dijelaskan beberapa jenis pelabelan graf yang akan digunakan pada bab-bab

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II LNSN TEORI Landasan teori dalam penyusunan tugas akhir ini menggunakan beberapa teori pendukung yang akan digunakan untuk menentukan lintasan terpendek pada jarak esa di Kecamatan Rengat arat. 2.1 Graf

Lebih terperinci

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si.

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si. HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU Oleh: Kartika Yulianti, S.Pd., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA

Lebih terperinci

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang BAB III KONSEP DASAR TEORI GRAF Teori graf adalah salah satu cabang matematika yang terus berkembang dengan pesat. Teori ini sangat berguna untuk mengembangkan model-model terstruktur dalam berbagai keadaan.

Lebih terperinci

v 3 e 2 e 4 e 6 e 3 v 4

v 3 e 2 e 4 e 6 e 3 v 4 5 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan dimensi partisi graf sebagai landasan teori dari penelitian ini... Konsep Dasar Graf Pada bagian ini akan diberikan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Teori Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan

Lebih terperinci

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga TEORI GRAPH Graph Graph Graph digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar berikut ini sebuah graph yang menyatakan peta jaringan jalan raya yang

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada Bagian ini akan dijelaskan beberapa definisi dan teorema terkait graf, matriks adjency, terhubung, primitifitas, dan scrambling index sebagai landasan teori yang menjadi acuan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan konsep dasar dalam teori graf dan pelabelan graf yang akan digunakan pada bab selanjutnya. 2.1 Definisi dan Istilah Dalam Teori Graf

Lebih terperinci

BAB II LANDASAN TEORI. Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah

BAB II LANDASAN TEORI. Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah BAB II LANDASAN TEORI 2.1. Pendahuluan Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah berkembang sangat pesat dan digunakan untuk menyelesaikan persoalanpersoalan pada berbagai bidang

Lebih terperinci

Graf Sosial Aplikasi Graf dalam Pemetaan Sosial

Graf Sosial Aplikasi Graf dalam Pemetaan Sosial Graf Sosial Aplikasi Graf dalam Pemetaan Sosial Muhammad Kamal Nadjieb - 13514054 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

I. LANDASAN TEORI. Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu

I. LANDASAN TEORI. Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu I. LANDASAN TEORI Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu matematika yang mempresentasikan suatu objek berupa vertex (titik) dan edge (garis), edge merupakan

Lebih terperinci

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Nur Fajriah Rachmah - 0609 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan

Lebih terperinci

APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS

APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS Muhammad Farhan 13516093 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ini terdiri dari tiga subbab. Subbab pertama adalah tinjauan pustaka yang memuat hasil penelitian yang dilakukan oleh peneliti sebelumnya dalam bidang dimensi metrik. Subbab kedua

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 39 BAB 2 TINJAUAN PUSTAKA 2.1. Teori Graf 2.1.1 Definisi Graf Teori graf merupakan salah satu cabang matematika yang paling banyak aplikasinya dalam kehidupan sehari hari. Salah satu bentuk dari graf adalah

Lebih terperinci

BAB 2 BEBERAPA ISTILAH DARI GRAPH

BAB 2 BEBERAPA ISTILAH DARI GRAPH BAB 2 BEBERAPA ISTILAH DARI GRAPH Pada bab ini akan dibahas beberapa konsep dan terminologi dalam graph yang akan dipergunakan sebagai landasan berpikir dalam melakukan penelitian ini. Juga akan dibahas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI A. Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan

Lebih terperinci

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kendal.

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kendal. Graf Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan

Lebih terperinci

Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik

Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik BAB II DASAR TEORI 2.1 Teori Dasar Graf 2.1.1 Graf dan Graf Sederhana Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik yang tak kosong dan E adalah himpunan sisi. Untuk selanjutnya,

Lebih terperinci

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Muhamad Irfan Maulana - 13515037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

7. PENGANTAR TEORI GRAF

7. PENGANTAR TEORI GRAF Definisi : Secara umum merupakan kumpulan titik dan garis. Sebuah garf G terdiri dari: 1. Sebuah himpunan V=V(G) yang memiliki elemen2 yg dinamakan verteks/titik/node. 2. Sebuah kumpulan E=E(G) merupakan

Lebih terperinci

Aplikasi Graf pada Fitur Friend Suggestion di Media Sosial

Aplikasi Graf pada Fitur Friend Suggestion di Media Sosial Aplikasi Graf pada Fitur Friend Suggestion di Media Sosial Octavianus Marcel Harjono - 13513056 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Algoritma adalah teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun secara logis dan sitematis

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Menurut (Suarga, 2012 : 1) algoritma: 1. Teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun

Lebih terperinci

Penerapah Graf untuk Memecahkan Teka-Teki Menyeberangi Sungai

Penerapah Graf untuk Memecahkan Teka-Teki Menyeberangi Sungai Penerapah Graf untuk Memecahkan Teka-Teki Menyeberangi Sungai Raka Hadhyana, 1351699 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 1 Bandung

Lebih terperinci

Deteksi Wajah Menggunakan Program Dinamis

Deteksi Wajah Menggunakan Program Dinamis Deteksi Wajah Menggunakan Program Dinamis Dandun Satyanuraga 13515601 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi Graf G didefinisikan sebagai pasangan himpunan (V, E), yang dalam hal ini:

BAB 2 LANDASAN TEORI. Definisi Graf G didefinisikan sebagai pasangan himpunan (V, E), yang dalam hal ini: 10 BAB 2 LANDASAN TEORI 2.1.Konsep Dasar Graf Definisi 2.1.1 Graf G didefinisikan sebagai pasangan himpunan (V, E), yang dalam hal ini: V = himpunan tidak kosong dari simpul-simpul (vertices atau node)

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik pencacahan dalam bentuk definisi dan teorema yang berhubungan dengan penelitian yang akan dilakukan. 2.1

Lebih terperinci

II.TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung

II.TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung II.TINJAUAN PUSTAKA Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung dalam penelitian ini. 2.1. Konsep Dasar Teori Graf Graf G didefinisikan sebagai pasangan himpunan terurut

Lebih terperinci

BAB 2 LANDASAN TEORI. Secara garis besar ilmu statistik dibagi menjadi dua bagian yaitu:

BAB 2 LANDASAN TEORI. Secara garis besar ilmu statistik dibagi menjadi dua bagian yaitu: BAB 2 LANDASAN TEORI 2.1 Pembagian Ilmu Statistik Secara garis besar ilmu statistik dibagi menjadi dua bagian yaitu: 1. Statistik Parametrik Statistik parametrik adalah ilmu statistik yang digunakan untuk

Lebih terperinci

Penyelesaian Teka-Teki Sudoku dengan Didasarkan pada Teknik Pewarnaan Graf

Penyelesaian Teka-Teki Sudoku dengan Didasarkan pada Teknik Pewarnaan Graf Penyelesaian Teka-Teki Sudoku dengan Didasarkan pada Teknik Pewarnaan Graf William, 13515144 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah Bab 1 PENDAHULUAN 1.1 Latar Belakang Masalah Teori graf merupakan pokok bahasan yang memiliki banyak terapan sampai saat ini. Graf di gunakan untuk merepresentasikan objek objek diskrit dan hubungan antara

Lebih terperinci

KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf

KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf II. KONSEP DASAR GRAF DAN GRAF POHON Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada bagian ini

Lebih terperinci

Matematika Diskret (Graf I) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Matematika Diskret (Graf I) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Matematika Diskret (Graf I) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah

Lebih terperinci

Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi

Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi Ryan Yonata (13513074) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci