MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun"

Transkripsi

1 MA3051 Pengantar Teori Graf Semester /2014 Pengajar: Hilda Assiyatun

2 Bab 1: Graf dan subgraf Graf G : tripel terurut VG, E G, ψ G ) V G himpunan titik (vertex) E G himpunan sisi (edge) ψ G fungsi keterkaitan antara himpunan sisi dan pasangan tak terurut titik (boleh sama) Jika e sisi dan u dan v titik sehingga ψ G e = uv, maka dikatakan e menghubungkan u dan v. Titik u dan v disebut ujung dari e.

3 Contoh 1: G = V(G, E G, ψ G ) dimana V G = v 1, v 2, v 3, v 4 E G = *e 1, e 2, e 3, e 4, e 5, e 6, e 7 + ψ G didefinisikan sbb ψ G e 1 = v 1 v 3, ψ G e 2 = v 1 v 3, ψ G e 3 = v 2 v 3, ψ G e 4 = v 3 v 3, ψ G e 5 = v 4 v 3, ψ G e 6 = v 2 v 4, ψ G e 7 = v 1 v 4 Penamaan GRAF karena G dapat digambarkan secara grafis dengan diagram (lihat gambar di papan). Penggambaran diagram ini tidak tunggal. TUGAS BACA: cari dan pahami definisi: terkait (incident), bertetangga (adjacent), loop, link, graf berhingga, graf trivial, graf sederhana (simple).

4 Banyaknya titik di G disebut order dari G. Banyaknya sisi di G disebut ukuran dari G. Notasi: V G = ν(g) dan E G = ε(g). Graf G dan H identik (ditulis G = H) jika V G = V H, E G = E H, dan ψ G = ψ H. Jelas bahwa dua graf yang identik dapat mempunyai diagram yang sama. Tetapi dua graf yang tidak identik mungkin saja dapat mempunyai diagram yang pada dasarnya sama. Dalam hal ini kita katakan bahwa kedua graf isomorfik (ditulis G H). G H jika terdapat bijeksi θ: V G V H dan φ: E G E H sehingga ψ G (e) = uv ψ H (φ(e)) = θ(u)θ(v). Pasangan θ, φ disebut isomorfisme antara G dan H.

5 Contoh 2: Misalkan G = V(G, E G, ψ G ) dimana V G = v 1, v 2, v 3, v 4 E G = *e 1, e 2, e 3, e 4, e 5 + ψ G didefinisikan sbb ψ G e 1 = v 1 v 3, ψ G e 2 = v 1 v 3, ψ G e 3 = v 2 v 3, ψ G e 4 = v 3 v 3, ψ G e 5 = v 4 v 3. Misalkan H = V(H, E H, ψ H ) dimana V H = u, v, x, y E H = *a, b, c, d, e+ ψ H didefinisikan sbb ψ H a = ux, ψ H b = ux, ψ H c = vx, ψ H d = xx, ψ H e = yx. Maka pemetaan θ, φ dimana θ v 1 = u, θ v 2 = v, θ v 3 = x, θ v 4 = y, dan φ e 1 = a, φ e 2 = b, φ e 3 = c, φ e 4 = d, φ e 5 = e, adalah isomorfime antara G dan H.

6 Beberapa kelas graf istimewa: Graf lengkap, K n, adalah graf sederhana dengan n titik dimana setiap dua titik berbeda bertetangga. Graf bipartit adalah graf dimana himpunan titiknya dapat dipartisi menjadi dua subset X dan Y sehingga setiap sisi mempunyai satu ujung di X dan satu ujung di Y. TUGAS BACA: cari dan pahami definisi: graf kosong, graf bipartit lengkap K m,n.

7 Graf juga dapat direpresentasikan melalui matriks. Misalkan graf G dengan barisan titik v 1, v 2,, v ν, dan barisan sisi e 1, e 2,, e ε. Matriks keterkaitan dari G adalah matriks M G = m ij berukuran ν ε dimana m ij (nilainya 0, 1, atau 2) menyatakan frekuensi titik v i terkait dengan sisi e j. Matriks ketetanggaan dari G adalah matriks A G = a ij berukuran ν ν dimana a ij menyatakan banyaknya sisi yang menghubungkan titik v i dan titik v j. DISKUSI: 1. Mana diantara kedua matriks yang bersifat simetris? 2. Selidiki jumlah baris dan jumlah kolom dari kedua matriks. Informasi apa yang termuat disana?

8 Graf H subgraf dari G, ditulis H G, jika V H V G, E(H) E(G), dan ψ H adalah pembatasan ψ G pada E H. Jika H G dan H G, ditulis H G, maka dikatakan H subgraf sejati dari G. Jika H subgraf dari G maka G adalah supergraf dari H. Subgraf pembangun (supergraf pembangun) dari G adalah subgraf (supergraf) H dimana V H = V G. Misalkan V adalah subset tak hampa dari V(G). Subgraf dari G yang diinduksi oleh V, ditulis G V, adalah subgraf dengan himpunan titik V dan himpunan sisi terdiri dari semua sisi yang mempunyai kedua ujung di V.

9 TUGAS BACA: cari dan pahami definisi: 1. G V, 2. G,E -, E E(G) 3. G 1 G 2, G 1 + G 2, G 1 G 2

10 Derajat titik v di G, ditulis d G terkait dengan v. v, adalah banyaknya sisi yang Derajat minimum dan derajat maksimum dari titik-tik di G dinotasikan dengan δ(g) dan G. Teorema 1.1. d v = 2ε. v V Bukti: Gunakan matriks M G. Hasil tambah semua jumlah baris harus sama dengan hasil tambah semua jumlah kolom.

11 Akibat 1.1. Dalam sebarang graf, banyaknya titik berderajat ganjil haruslah genap. Bukti: Misalkan V 1 dan V 2 adalah himpunan titik berderajat ganjil dan berderajat genap. Perhatikan bahwa persamaan v V 1 d v + d v = d(v) v V 2 v V bernilai genap, sedangkan jumlah kedua di ruas kiri juga genap. Graf G disebut k-regular jika d v DISKUSI: cari contoh graf regular. = k, v V.

12 Jalan (walk) adalah barisan tak kosong W = v 0 e 1 v 1 e 2 v 2 e k v k dimana untuk 1 i k, e i = v i 1 v i. Titik v 0 dan v k disebut pangkal dan ekor dari W, titik lainnya disebut titik internal. Panjang W adalah k. Biasa dituliskan W adalah jalan v 0, v k. Jika semua sisi berbeda, maka W disebut trail, dan jika semua titik juga berbeda maka W disebut lintasan (path). Dua titik u dan v disebut terhubung jika terdapat lintasan v 0, v k Jarak antara titik u dan v, ditulis d u, v, adalah panjang lintasan u, v terpendek.

13 Keterhubungan ini adalah sebuah relasi ekivalen pada himpunan titik V (buktikan!). Akibatnya terdapat partisi dari V menjadi kelas-kelas V 1, V 2,, V ω dimana u dan v terhubung jika dan hanya jika u dan v masuk ke dalam kelas yang sama. G,V 1 -, G,V 2 -,, G,V ω - disebut komponen-komponen dari G. Jika G hanya memiliki tepat satu komponen maka G disebut terhubung. Jika tidak demikian, G disebut tak terhubung. ω(g) menyatakan banyaknya komponen dari G.

14 Jalan disebut tertutup jika mempunyai panjang positif,dan pangkal dan ekornya sama. Trail tertutup yang semua titik internalnya berbeda disebut siklus. Teorema 1.2. G bipartit G tidak memuat siklus ganjil. Bukti: Ambil sebarang siklus C = v 0 v 1 v k v 0, tunjukkan k ganjil. Buktikan untuk G terhubung saja. Misalkan G tidak memuat siklus ganjil, dan u sebarang titik di G. Perhatikan X = x V d u, x genap+ Y = y V d u, y ganjil+. Tunjukkan bahwa (X, Y) adalah bipartisi di G.

15 LATIHAN 1. Misalkan G sederhana. Tunjukkan bahwa ε = ν 2 hanya jika G lengkap. jika dan 2. Tunjukkan terdapat 11 graf sederhana non-isomorfik berorder Komplemen dari graf sederhana G, ditulis G c, adalah graf sederhana dengan V G = V G c dan e E G c jika dan hanya jika e E G. Deskripsikan graf K n c dan K m.n c. 4. Misalkan graf bipartit k-regular mempunyai partisi (X, Y). Tunjukkan bahwa X = Y. 5. Misalkan G sederhana dan δ k. Tunjukkan bahwa G mempunyai lintasan dengan panjang k.

Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik

Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik BAB II DASAR TEORI 2.1 Teori Dasar Graf 2.1.1 Graf dan Graf Sederhana Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik yang tak kosong dan E adalah himpunan sisi. Untuk selanjutnya,

Lebih terperinci

Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah

Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah BAB II KAJIAN TEORI II.1 Teori-teori Dasar Graf II.1.1 Definisi Graf Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah himpunan tak kosong dari titik graf G, dan E, himpunan sisi

Lebih terperinci

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik 2. TINJAUAN PUSTAKA 2.1 Konsep Dasar Graf Pada bagian ini akan diberikan konsep dasar graf yang diambil dari buku Chartrand dan Zhang (2005) yaitu sebagai berikut: Suatu Graf G adalah suatu pasangan himpunan

Lebih terperinci

II. TINJAUAN PUSTAKA. kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini

II. TINJAUAN PUSTAKA. kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini 5 II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf, graf pohon dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini 2.1 KONSEP DASAR GRAF Konsep

Lebih terperinci

Bab 2. Teori Dasar. 2.1 Definisi Graf

Bab 2. Teori Dasar. 2.1 Definisi Graf Bab 2 Teori Dasar Pada bagian ini diberikan definisi-definisi dasar dalam teori graf berikut penjabaran mengenai kompleksitas algoritma beserta contohnya yang akan digunakan dalam tugas akhir ini. Berikut

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada Bagian ini akan dijelaskan beberapa definisi dan teorema terkait graf, matriks adjency, terhubung, primitifitas, dan scrambling index sebagai landasan teori yang menjadi acuan

Lebih terperinci

PENGERTIAN GRAPH. G 1 adalah graph dengan V(G) = { 1, 2, 3, 4 } E(G) = { (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) } Graph 2

PENGERTIAN GRAPH. G 1 adalah graph dengan V(G) = { 1, 2, 3, 4 } E(G) = { (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) } Graph 2 PENGERTIAN GRAPH 1. DEFINISI GRAPH Graph G adalah pasangan terurut dua himpunan (V(G), E(G)), V(G) himpunan berhingga dan tak kosong dari obyek-obyek yang disebut himpunan titik (vertex) dan E(G) himpunan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Konsep Dasar

Bab 2. Landasan Teori. 2.1 Konsep Dasar Bab 2 Landasan Teori Pada bab ini akan diuraikan konsep dasar dan teori graf yang berhubungan dengan topik penelitian ini, termasuk didalamnya mengenai pelabelan total tak teratur titik dan total vertex

Lebih terperinci

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013 Dasar-Dasar Teori Graf Sistem Informasi Universitas Gunadarma 2012/2013 Teori Graf Teori Graf mulai dikenal saat matematikawan kebangsaan Swiss bernama Leonhard Euler, yang berhasil mengungkapkan Misteri

Lebih terperinci

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga TEORI GRAPH Graph Graph Graph digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar berikut ini sebuah graph yang menyatakan peta jaringan jalan raya yang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN. Latar Belakang Masalah Seiring perkembangan zaman, maka perkembangan ilmu pengetahuan berkembang pesat, begitu pula dengan ilmu matematika. Salah satu cabang ilmu matematika yang memiliki

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini. BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori dari penelitian ini. 2.1 Konsep Dasar Graf Beberapa konsep dasar

Lebih terperinci

BAB 2. Konsep Dasar. 2.1 Definisi graf

BAB 2. Konsep Dasar. 2.1 Definisi graf BAB 2 Konsep Dasar 21 Definisi graf Suatu graf G = (V(G), E(G)) didefinisikan sebagai pasangan himpunan 2 titik V(G) dan himpunan sisi E(G) dengan V(G) dan E(G) [ VG ( )] Sebagai contoh, graf G 1 = (V(G

Lebih terperinci

Graf dan Operasi graf

Graf dan Operasi graf 6 Bab II Graf dan Operasi graf Dalam subbab ini akan diberikan konsep dasar, definisi dan notasi pada teori graf yang dipergunakan dalam penulisan disertasi ini. Konsep dasar tersebut ditulis sesuai dengan

Lebih terperinci

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin hasma_ba@yahoo.com Abstract Graf yang memuat semua siklus dari yang terkecil sampai

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi graf,

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini. 6 II. LANDASAN TEORI Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada sub bab ini akan diberikan

Lebih terperinci

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Suatu graf G adalah suatu himpunan berhingga tak kosong dari objek-objek yang disebut verteks (titik/simpul) dengan suatu himpunan yang anggotanya

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan 5 BAB II TINJAUAN PUSTAKA A. Teori Graf 1. Dasar-dasar Graf Graf G didefinisikan sebagai pasangan himpunan (V, E) ditulis dengan notasi G = (V, E), dimana V adalah himpunan titik yang tidak kosong (vertex)

Lebih terperinci

v 3 e 2 e 4 e 6 e 3 v 4

v 3 e 2 e 4 e 6 e 3 v 4 5 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan dimensi partisi graf sebagai landasan teori dari penelitian ini... Konsep Dasar Graf Pada bagian ini akan diberikan

Lebih terperinci

KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf

KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf II. KONSEP DASAR GRAF DAN GRAF POHON Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada bagian ini

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi II. TINJAUAN PUSTAKA Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi pada suatu graf sebagai landasan teori pada penelitian ini.. Konsep Dasar Graf Pada bagian ini akan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan beberapa konsep dasar yang berkaitan dengan permasalahan, seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. 2.1 Graf Graf

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Graf

Bab 2 TEORI DASAR. 2.1 Graf Bab 2 TEORI DASAR Pada bab ini akan dipaparkan beberapa definisi dasar dalam Teori Graf yang kemudian dilanjutkan dengan definisi bilangan kromatik lokasi, serta menyertakan beberapa hasil penelitian sebelumnya.

Lebih terperinci

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang anggotanya

Lebih terperinci

II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan

II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan II. KONSEP DASAR GRAF DAN GRAF POHON 2.1 Konsep Dasar Graf Teori dasar mengenai graf yang akan digunakan dalam penelitian ini diambil dari Deo (1989). Graf G adalah himpunan terurut ( V(G), E(G)), dengan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dipaparkan beberapa hasil penelitian yang dilakukan para peneliti sebelumnya, pengertian dasar graf, operasi-operasi pada graf, kelas-kelas graf dan dimensi partisi

Lebih terperinci

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017 Graf dan Analisa Algoritma Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017 Who Am I? Stya Putra Pratama, CHFI, EDRP Pendidikan - Universitas Gunadarma S1-2007 Teknik Informatika S2-2012

Lebih terperinci

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si.

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si. HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU Oleh: Kartika Yulianti, S.Pd., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA

Lebih terperinci

Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda

Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda Vol. 9, No.2, 114-122, Januari 2013 Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda Hasmawati 1 Abstrak Graf yang memuat semua siklus dari yang terkecil sampai ke

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dipaparkan beberapa hasil penelitian yang dilakukan para peneliti sebelumnya, pengertian dasar graf, operasi-operasi pada graf, kelas-kelas graf dan dimensi partisi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum memulai pembahasan lebih lanjut, pertama-tama haruslah dijelaskan apa yang dimaksud dengan traveling salesman problem atau dalam bahasa Indonesia disebut sebagai persoalan

Lebih terperinci

II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan

II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan 5 II. TINJAUAN PUSTAKA Definisi 2.1 Graf (Deo,1989) Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan tak kosong dengan elemen-elemennya disebut vertex, sedangkan E(G)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan himpunan dan beberapa definisi yang berkaitan dengan himpunan, serta konsep dasar dan teori graf yang akan digunakan pada bab selanjutnya. 2.1 Himpunan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 15 BAB II LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Graf Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong

Lebih terperinci

PENGETAHUAN DASAR TEORI GRAF

PENGETAHUAN DASAR TEORI GRAF PENGETAHUAN DASAR TEORI GRAF 1 Sejarah Singkat dan Beberapa Pengertian Dasar Teori Graf Teori graf lahir pada tahun 1736 melalui makalah tulisan Leonard Euler seorang ahli matematika dari Swiss. Euler

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel BAB 2 LANDASAN TEORI 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel Teori Dasar Graf Graf G adalah pasangan himpunan (V,E) di mana V adalah himpunan dari vertex

Lebih terperinci

LOGIKA DAN ALGORITMA

LOGIKA DAN ALGORITMA LOGIKA DAN ALGORITMA DASAR DASAR TEORI GRAF Kelahiran Teori Graf Sejarah Graf : masalah jembatan Königsberg (tahun 736) C A D B Gbr. Masalah Jembatan Königsberg Graf yang merepresentasikan jembatan Königsberg

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Logika Fuzzy Logika fuzzy pertama kali dikembangkan oleh Prof. Lotfi A. Zadeh, seorang peneliti dari Universitas California, pada tahun 1960-an. Logika fuzzy dikembangkan dari

Lebih terperinci

Konsep Dasar dan Tinjauan Pustaka

Konsep Dasar dan Tinjauan Pustaka Bab II Konsep Dasar dan Tinjauan Pustaka Pembahasan bilangan Ramsey pada bab-bab berikutnya menggunakan definisi, notasi, dan konsep dasar teori graf yang sesuai dengan rujukan Chartrand dan Lesniak (1996),

Lebih terperinci

Struktur dan Organisasi Data 2 G R A P H

Struktur dan Organisasi Data 2 G R A P H G R A P H Graf adalah : Himpunan V (Vertex) yang elemennya disebut simpul (atau point atau node atau titik) Himpunan E (Edge) yang merupakan pasangan tak urut dari simpul, anggotanya disebut ruas (rusuk

Lebih terperinci

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf BAB 2 GRAF PRIMITIF Pada bagian ini akan dijelaskan mengenai definisi graf, istilah-istilah dalam graf, matriks ketetanggaan, graf terhubung, primitivitas graf, dan scrambling index. 2.1 Definisi Graf

Lebih terperinci

I. PENDAHULUAN. Teori graf merupakan salah satu bidang matematika yang memiliki banyak. terapan di berbagai bidang sampai saat ini.

I. PENDAHULUAN. Teori graf merupakan salah satu bidang matematika yang memiliki banyak. terapan di berbagai bidang sampai saat ini. 1 I. PENDAHULUAN 1.1 Latar Belakang Teori graf merupakan salah satu bidang matematika yang memiliki banyak terapan di berbagai bidang sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek

Lebih terperinci

AUTOMORFISME GRAF BINTANG DAN GRAF LINTASAN

AUTOMORFISME GRAF BINTANG DAN GRAF LINTASAN AUTOMORFISME GRAF BINTANG DAN GRAF LINTASAN Reni Tri Damayanti Mahasiswa Pascasarjana Jurusan Matematika Universitas Brawijaya Email: si_cerdazzz@rocketmail.com ABSTRAK Salah satu topik yang menarik untuk

Lebih terperinci

Bagaimana merepresentasikan struktur berikut? A E

Bagaimana merepresentasikan struktur berikut? A E Bagaimana merepresentasikan struktur berikut? B D A E F C G Bagaimana merepresentasikan struktur berikut? Contoh-contoh aplikasi graf Peta (jaringan jalan dan hubungan antar kota) Jaringan komputer Jaringan

Lebih terperinci

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang BAB III KONSEP DASAR TEORI GRAF Teori graf adalah salah satu cabang matematika yang terus berkembang dengan pesat. Teori ini sangat berguna untuk mengembangkan model-model terstruktur dalam berbagai keadaan.

Lebih terperinci

SEKILAS TENTANG GRAPH. Oleh: Baso Intang Sappaile

SEKILAS TENTANG GRAPH. Oleh: Baso Intang Sappaile Algoritma (Jurnal Matematika dan Pendidikan Matematika), Vol.2 No.2 Desember 27 hal. 9-3 ISSN: 97-7882 SEKILAS TENTAN RAPH Oleh: Baso Intang Sappaile Abstrak. Suatu raph terdiri dari suatu himpunan tak

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi yang akan dihasilkan pada penelitian ini. 2.1 Beberapa Definisi dan Istilah 1. Graf (

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Definisi Graf

Bab 2 LANDASAN TEORI. 2.1 Definisi Graf Bab 2 LANDASAN TEORI 2.1 Definisi Graf Suatu graf G terdiri dari himpunan tak kosong terbatas dari objek yang dinamakan titik dan himpunan pasangan (boleh kosong) dari titik G yang dinamakan sisi. Himpunan

Lebih terperinci

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika Discrete Mathematics & Its Applications Chapter 10 : Graphs Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika 16/12/2015 2 Sub Topik A. Graf dan Model Graf B. Terminologi Dasar Graf dan Jenis

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI.1 Sejarah Graf Menurut catatan sejarah, masalah jembatan KÖnigsberg adalah masalah yang pertama kali menggunakan graf (tahun 1736). Di kota KÖnigsberg (sebelah timur Negara bagian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Dasar Teori Graph 2.1.1 Graph Tak Berarah dan Digraph Suatu Graph Tak Berarah (Undirected Graph) merupakan kumpulan dari titik yang disebut verteks dan segmen garis yang

Lebih terperinci

BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE. Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema

BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE. Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema sebagai landasan berfikir dalam melakukan penelitian ini dan akan mempermudah

Lebih terperinci

Graph. Matematika Informatika 4. Onggo

Graph. Matematika Informatika 4. Onggo Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi adalah struktur diskrit yang mengandung vertex dan edge yang menghubungkan vertex-vertex tersebut. vertex edge 2 Jenis-jenis Definisi 1: Suatu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dipaparkan beberapa hasil penelitian yang dilakukan para peneliti sebelumnya, pengertian dasar graf, operasi-operasi pada graf, kelaskelas graf, dan dimensi metrik pada

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan konsep dasar dalam teori graf dan pelabelan graf yang akan digunakan pada bab selanjutnya. 2.1 Definisi dan Istilah Dalam Teori Graf

Lebih terperinci

Matematik tika Di Disk i r t it 2

Matematik tika Di Disk i r t it 2 Matematika tik Diskrit it 2 Teori Graph Teori Graph 1 Kelahiran Teori Graph Masalah Jembatan Konigsberg g : Mulai dan berakhir pada tempat yang sama, bagaimana caranya untuk melalui setiap jembatan tepat

Lebih terperinci

Teori Dasar Graf (Lanjutan)

Teori Dasar Graf (Lanjutan) Teori Dasar Graf (Lanjutan) MATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. Matriks-matriks yang dapat menyajikan

Lebih terperinci

OPERASI PADA GRAF FUZZY

OPERASI PADA GRAF FUZZY OPERASI PADA GRAF FUZZY Budi Setiawan, Prof. Dr. Dwi Juniati, M.Si. Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Surabaya Jalan Ketintang Surabaya 60231 Email: b_diset@yahoo.com,

Lebih terperinci

Teori Dasar Graf (Lanjutan)

Teori Dasar Graf (Lanjutan) Teori Dasar Graf (Lanjutan) ATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. atriks-matriks yang dapat menyajikan

Lebih terperinci

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )}

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )} GRAF Graf G(V,E) didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan berhingga dan tidak kosong dari simpul-simpul (verteks atau node). Dan E adalah himpunan berhingga dari busur (vertices

Lebih terperinci

BAB II TEORI GRAF DAN PELABELAN GRAF. Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari

BAB II TEORI GRAF DAN PELABELAN GRAF. Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari BAB II TEORI GRAF DAN PELABELAN GRAF Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari teori graf, serta akan dijelaskan beberapa jenis pelabelan graf yang akan digunakan pada bab-bab

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Untuk menjelaskan pelabelan analytic mean pada graf bayangan dari graf bintang K 1,n dan graf bayangan dari graf bistar B n,n perlu adanya beberapa teori dasar yang akan menunjang

Lebih terperinci

DIGRAF EKSENTRIK DARI GRAF STAR DAN GRAF WHEEL

DIGRAF EKSENTRIK DARI GRAF STAR DAN GRAF WHEEL DIGRAF EKSENTRIK DARI GRAF STAR DAN GRAF WHEEL skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Rido Oktosa 4150406504 JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

Pertemuan 12. Teori Graf

Pertemuan 12. Teori Graf Pertemuan 2 Teori Graf Derajat Definisi Misalkan adalah titik dalam suatu Graf G. Derajat titik (simbol d()) adalah jumlah garis yang berhubungan dengan titik dan garis suatu loop dihitung dua kali. Derajat

Lebih terperinci

PENENTUAN BILANGAN DOMINASI SISI PADA GRAF HASIL OPERASI PRODUK TENSOR

PENENTUAN BILANGAN DOMINASI SISI PADA GRAF HASIL OPERASI PRODUK TENSOR TESIS - SM 142501 PENENTUAN BILANGAN DOMINASI SISI PADA GRAF HASIL OPERASI PRODUK TENSOR ROBIATUL ADAWIYAH NRP 1214 201 019 DOSEN PEMBIMBING Dr. Darmaji, S.Si., M.T. PROGRAM MAGISTER JURUSAN MATEMATIKA

Lebih terperinci

BILANGAN KROMATIK LOKASI DARI GRAF ULAT

BILANGAN KROMATIK LOKASI DARI GRAF ULAT Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 1 6 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI DARI GRAF ULAT AIDILLA DARMAWAHYUNI, NARWEN Program Studi Matematika, Fakultas Matematika

Lebih terperinci

MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN

MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN 2301-9115 PLANARITAS-1 HASIL KALI LEKSIKOGRAFIK GRAF Novi Dwi Pratiwi (S1 Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan

BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan penelitian yang dilakukan. 2.1. Konsep Dasar Graf Graf G didefinisikan sebagai pasangan himpunan terurut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ini terdiri dari tiga subbab. Subbab pertama adalah tinjauan pustaka yang memuat hasil penelitian yang dilakukan oleh peneliti sebelumnya dalam bidang dimensi metrik. Subbab kedua

Lebih terperinci

I.1 Latar Belakang Masalah

I.1 Latar Belakang Masalah Bab I Pendahuluan I.1 Latar Belakang Masalah Teori Ramsey adalah suatu area penelitian dalam teori graf yang sedang berkembang pesat dan mempunyai banyak aplikasi. Dalam makalah Rosta (2004) disebutkan

Lebih terperinci

Dasar Teori Graf. Dr. Ahmad Sabri Universitas Gunadarma Kuliah Matrikulasi Magister Teknik Elektro, 11 April 2016

Dasar Teori Graf. Dr. Ahmad Sabri Universitas Gunadarma Kuliah Matrikulasi Magister Teknik Elektro, 11 April 2016 Dasar Teori Graf Dr. Ahmad Sabri Universitas Gunadarma 2016 Kuliah Matrikulasi Magister Teknik Elektro, 11 April 2016 Review konsep Definisi Graf Jenis-jenis graf: sederhana, berarah, multi, pseudo. Derajat

Lebih terperinci

Representasi Graph Isomorfisme. sub-bab 8.3

Representasi Graph Isomorfisme. sub-bab 8.3 Representasi Graph Isomorfisme sub-bab 8.3 Representasi graph:. Adjacency list. Adjacency matrix 3. Incidence matrix Contoh: undirected graph Adjacency list : tiap vertex v :, 3, di-link dengan 3:,, 5

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan pertumbuhannya, setiap organisasi baik organisasi bisnis (perusahaan), industri, jasa dan sebagainya, menghadapi kenyataan bahwa sumber daya

Lebih terperinci

Penerapan Teori Graf untuk Mencari Eksentrik Digraf dari Graf Star, Graf Double Star dan Graf Komplit Bipartit

Penerapan Teori Graf untuk Mencari Eksentrik Digraf dari Graf Star, Graf Double Star dan Graf Komplit Bipartit Penerapan Teori Graf untuk Mencari Eksentrik Digraf dari Graf Star, Graf Double Star dan Graf Komplit Bipartit Ivan Saputra 13505091 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. III BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk 00) Konsep ini merupakan pengembangan dari konsep dimensi partisi pewarnaan graf Pewarnaan titik pada

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Konsep Dasar Graph Sebelum sampai pada pendefenisian masalah lintasan terpendek, terlebih dahulu pada bagian ini akan diuraikan mengenai konsep-konsep dasar dari model graph dan

Lebih terperinci

SEMINAR TUGAS AKHIR RAINBOW CONNECTION PADA GRAF 1-CONNECTED VOENID DASTI ( )

SEMINAR TUGAS AKHIR RAINBOW CONNECTION PADA GRAF 1-CONNECTED VOENID DASTI ( ) SEMINAR TUGAS AKHIR RAINBOW CONNECTION PADA GRAF 1-CONNECTED VOENID DASTI 08103201 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Andalas Jumu ah 26 APRIL 2013 List of Contents

Lebih terperinci

`BAB II LANDASAN TEORI

`BAB II LANDASAN TEORI `BAB II LANDASAN TEORI Landasan teori yang digunakan sebagai materi pendukung untuk menyelesaikan permasalahan yang dibahas dalam Bab IV adalah teori graf, subgraf, subgraf komplit, graf terhubung, graf

Lebih terperinci

KLASIFIKASI GRAF PETERSEN BERBILANGAN KROMATIK LOKASI EMPAT ATAU LIMA

KLASIFIKASI GRAF PETERSEN BERBILANGAN KROMATIK LOKASI EMPAT ATAU LIMA KLASIFIKASI GRAF PETERSEN BERBILANGAN KROMATIK LOKASI EMPAT ATAU LIMA (Tesis) Oleh : Devriyadi Saputra S NPM. 1427031001 MAGISTER MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG

Lebih terperinci

EDGE-MAGIC TOTAL LABELING PADA BEBERAPA JENIS GRAPH

EDGE-MAGIC TOTAL LABELING PADA BEBERAPA JENIS GRAPH LAPORAN PENELITIAN MANDIRI EDGE-MAGIC TOTAL LABELING PADA BEBERAPA JENIS GRAPH Oleh Abdussakir, M.Pd UNIVERSITAS ISLAM NEGERI MALANG FAKULTAS SAINS DAN TEKNOLOGI JURUSAN MATEMATIKA MEI 005 EDGE-MAGIC TOTAL

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat III. BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.00). Konsep ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. Pewarnaan

Lebih terperinci

EKSENTRIK DIGRAF DARI GRAF-GRAF KHUSUS

EKSENTRIK DIGRAF DARI GRAF-GRAF KHUSUS EKSENTRIK DIGRAF DARI GRAF-GRAF KHUSUS Sulistyo Unggul Wicaksono NIM : 13503058 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail: if13058@students.if.itb.ac.id

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik pencacahan dalam bentuk definisi dan teorema yang berhubungan dengan penelitian yang akan dilakukan. 2.1

Lebih terperinci

Graf. Program Studi Teknik Informatika FTI-ITP

Graf. Program Studi Teknik Informatika FTI-ITP Graf Program Studi Teknik Informatika FTI-ITP Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan

Lebih terperinci

3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf. Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya

3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf. Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya BAB III DIMENSI PARTISI n 1 3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya cukup mudah atau sederhana. Kelas graf

Lebih terperinci

MIDDLE PADA BEBERAPA GRAF KHUSUS

MIDDLE PADA BEBERAPA GRAF KHUSUS PELABELAN DAN PEMBENTUKAN GRAF MIDDLE PADA BEBERAPA GRAF KHUSUS skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Meliana Deta Anggraeni 4111409019

Lebih terperinci

BAB 2 BEBERAPA ISTILAH DARI GRAPH

BAB 2 BEBERAPA ISTILAH DARI GRAPH BAB 2 BEBERAPA ISTILAH DARI GRAPH Pada bab ini akan dibahas beberapa konsep dan terminologi dalam graph yang akan dipergunakan sebagai landasan berpikir dalam melakukan penelitian ini. Juga akan dibahas

Lebih terperinci

BAB III PELABELAN KOMBINASI

BAB III PELABELAN KOMBINASI 1 BAB III PELABELAN KOMBINASI 3.1 Konsep Pelabelan Kombinasi Pelabelan kombinasi dari suatu graf dengan titik dan sisi,, graf G, disebut graf kombinasi jika terdapat fungsi bijektif dari ( himpunan titik

Lebih terperinci

ALTERNATIF PEMBUKTIAN PENGEMBANGAN TEOREMA DIRAC UNTUK GRAF BERORDE KURANG ATAU SAMA DENGAN SEPULUH

ALTERNATIF PEMBUKTIAN PENGEMBANGAN TEOREMA DIRAC UNTUK GRAF BERORDE KURANG ATAU SAMA DENGAN SEPULUH ALTERNATIF PEMBUKTIAN PENGEMBANGAN TEOREMA DIRAC UNTUK GRAF BERORDE KURANG ATAU SAMA DENGAN SEPULUH Hasmawati, Jusmawati Massalesse, Hendra, Muhamad Hasbi Jurusan Matematika FMIPA Universitas Hasanudin

Lebih terperinci

Penerapan Algoritma Steiner Tree dalam Konstruksi Jaringan Pipa Gas

Penerapan Algoritma Steiner Tree dalam Konstruksi Jaringan Pipa Gas Penerapan Algoritma Steiner Tree dalam Konstruksi Jaringan Pipa Gas Achmad Baihaqi, NIM: 13508030 Program Studi Teknik Informatika Institut Teknologi Bandung Jalan Ganesa 10 Bandung e-mail: baihaqi@students.itb.ac.id

Lebih terperinci

HUTAN DAN SIKEL PADA GRAF FUZZY

HUTAN DAN SIKEL PADA GRAF FUZZY HUTAN DAN SIKEL PADA GRAF FUZZY Aisyahtin Afidah Arifai 1, Dwi Juniati 2 1 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya, 60231 2 Jurusan Matematika, Fakultas

Lebih terperinci

I. LANDASAN TEORI. Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu

I. LANDASAN TEORI. Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu I. LANDASAN TEORI Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu matematika yang mempresentasikan suatu objek berupa vertex (titik) dan edge (garis), edge merupakan

Lebih terperinci

7. PENGANTAR TEORI GRAF

7. PENGANTAR TEORI GRAF Definisi : Secara umum merupakan kumpulan titik dan garis. Sebuah garf G terdiri dari: 1. Sebuah himpunan V=V(G) yang memiliki elemen2 yg dinamakan verteks/titik/node. 2. Sebuah kumpulan E=E(G) merupakan

Lebih terperinci

Kode MK/ Matematika Diskrit

Kode MK/ Matematika Diskrit Kode MK/ Matematika Diskrit TEORI GRAF 1 8/29/2014 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 TEORI GRAF Tujuan Mahasiswa memahami konsep

Lebih terperinci

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN 2301-9115 GRAF TOTAL SUATU MODUL BERDASARKAN SUBMODUL SINGULER Dian Ambarsari (S1 Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

II.TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung

II.TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung II.TINJAUAN PUSTAKA Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung dalam penelitian ini. 2.1. Konsep Dasar Teori Graf Graf G didefinisikan sebagai pasangan himpunan terurut

Lebih terperinci

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER TEORI GRAF ILHAM SAIFUDIN Selasa, 13 Desember 2016 Universitas Muhammadiyah Jember Pendahuluan 1 OUTLINE 2 Definisi Graf

Lebih terperinci