JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 3, , Desember 2001, ISSN :

Ukuran: px
Mulai penontonan dengan halaman:

Download "JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 3, , Desember 2001, ISSN :"

Transkripsi

1 Vol. 4. No. 3, 3 -, Deseme 00, ISSN : EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH Y.D. Smto Js Mtemti FMIPA UNDIP Ast Itegl McShe gsi-gsi eili el eivle deg Itegl Leesqe, m t gsi eili veto tid sell demii. Dpt dit hw Itegl Boche (Itegl Leesqe t gsi eili veto) eivle deg Itegl McShe t. Kt ci : Itegl McShe, Itegl McShe t, Itegl Boche.. PENDAHULUAN Itegl McShe gsi-gi deg ili di dlm st Rg Bch dideiisi sel deg Itegl McShe gsi-gsi eili el, yit deg meggti td ili mtl. deg td om.. Godo, 994, me hw Itegl McShe eivle deg Itegl Leesqe. Dlm tlis ii dideiisi Itegl McShe Kt d dit hw Itegl Boche eivle deg Itegl McShe Kt. Dlm tlis ii, mep itevl tettp di dlm gis el, X g Bch deg om.. Fgsi-gsi di dlm tlis ii deg domi ilg el d deg ili di dlm X. Fgsi :, X dit oti solt t pd, i t setip ilg > 0 tedpt > 0 sehigg i,v :,,..., 3

2 Eivlesi Itegl Boche (Y. D. Smto) is itevl t slig tmpg tidih di dlm, deg v, δ el v - Fgsi :, X dit teitegl Boche pd, i d hy i d gsi-gsi oti solt t F pd, deg F() = () hmpi di m-m pd,. Dlm hl ii deivti F dlh deivti Fechet.. PEMBAHASAN veto. Beit ii dideiisi Itegl McShe t gsi eili Deiisi Fgsi :, X dit teitegl McShe pd, i tedpt veto A X sehigg t setip ilg > 0 tedpt gsi positi pd, sehigg i,,v :,,..., deg = v v... v d,v - δ, δ el v - A Himp psg titi itevl,,v.. sepeti dlm Deiisi diset ptisi -ie pd,, d veto A X dlm deiisi teset dlh tggl d diset ili itegl pd, d ditlis A M. Kolesi sem gsi eili veto teitegl McShe pd, ditlis, M, X. 4

3 Vol. 4. No. 3, 3 -, Deseme 00, ISSN : Sel deg Itegl McShe gsi eili el dpt dit hw :. Ji, g M,, X, m + g, M g M M. Ji, g M,, X d c sl, m c, M c c M g M, X d M, X d. 3. Ji M,, X, m M c, d, X t setip d,. 4. Ji M,, X d c c M M M c. c,,, m Di 3 d 4 di ts dipeoleh hw t setip itevl, v, tedpt veto F(,v) = v M di dlm X. Di sii dipeoleh itegl t tet gsi pd,, yit t setip t, F t t M. Fgsi :, X teset diset gsi pimiti pd,. Beit ii dideiisi Itegl McShe Kt. Deiisi Fgsi :, X dit teitegl McShe t pd,, i, positi pd, sehigg M, X d t setip ilg > 0 tedpt gsi v - - F, v 5

4 Eivlesi Itegl Boche (Y. D. Smto) t setip ptisi -ie,,v :,,..., pd Dlm hl ii F, v Fv - F,,,...,.,. Kolesi sem gsi teitegl McShe t pd, ditlis deg S M,, X. Jels hw i S,, S M, M, X, m M, X. Beit ii dit hw i, X Theoem 3, m teitegl Boche. Ji S, t pd,. M, X deg pimiti F, m F oti solt Bti Diei seg ilg > 0, m tedpt gsi positi pd, sehigg v - - F, v t setip ptisi -ie,,v :,,..., pd,. Ke, omp, m deg Theoem Heie-Boel tedpt olesi ehigg itevl te - δ, δ,,...,, deg... sehigg, - δ, δ - - δ -, - δ - - δ, δ d :, Dimil mi d mi,,v : osog. ms :. Dimil olesi itevl t slig tmpg tidih deg v -. Ad d emgi hg t,, δ - δ deg v 6

5 Vol. 4. No. 3, 3 -, Deseme 00, ISSN : d sehigg, v - δ, δ. d d Ji c - δ, δ - δ, δ yg memehi,c - δ, δ c, v - δ, δ, : meyt itevl,c, c,v temt di dlm - δ, δ Selty dipeoleh, m yg F v - F - F F - F F ms : v - Jdi F oti solt t. Theoem 4 Ji S, hmpi di m-m pd,. M, X deg pimiti F, m F () = () Bti Dimil A himp t, sehigg F (t) tid mempyi divti t F (t) F (t). A dit hw μ A deg μ A l A. Ke S, M, X, m t setip < 0 7

6 Eivlesi Itegl Boche (Y. D. Smto) tedpt gsi positi pd, sehigg i,, v ptisi -ie pd, el lim δ v - - F - v Tp meggi sit mm dimil t δ t t 0 sehigg t setip t tedpt Nm t t F δ d,. Dimil t A, m d ηt 0 δ t tedpt t, t δ t sehigg - Ft - t - t ηt - t t, v t - δ t sehigg t- Fv - tt - v ηt t - F A t A : =,,, m A A v t. Dipeoleh hw t, d v, t =,, mep lipt Vitli di A, m t > 0 di ts tedpt v deg, μ sehigg A, v t m, v, Jdi v d A. : mep ptisi -ie., Ke v δ μ A - v F - F - - v η Jdi μ A 0, yg eti μ A 0. 8

7 Vol. 4. No. 3, 3 -, Deseme 00, ISSN : Di ed theoem di dep dipeoleh hw i S M,, X, m teitegl Boche pd,. Fgsi :, X teitegl Boche pd, i tedpt gsi sedeh w pd, sehigg lim w, d lim - w 0. Itegl Boche pd lim w h.d. pd, dlh Beit ii dit hw i teitegl Boche m teitegl McShe t. Theoem 5 Ji teitegl Boche pd,, m S M,, X. Bti Diethi teitegl Boche pd,, m tedpt is gsi sedeh pd w pd, sehigg lim w, d lim - w 0 h.d.. Mdh dit hw t setip ilg > 0 tedpt ilg sli N sehigg i, m N el - w w m. Ut > 0 teset tedpt is ehigg itevl t slig tmpg tidih,... sehigg : deg W, - W, m deg W, v w,,,.... v 9

8 Eivlesi Itegl Boche (Y. D. Smto) Ke lim w h.d. pd,, m tp meggi ti t setip, d t ilg > 0 di dep tedpt ilg sli N, sehigg i N, m el - w Dpt dit hw setip gsi sedeh teitegl McShe t. Oleh e it, t > 0 di ts tedpt gsi positi δ pd,, sehigg i,, el ( w : ptisi δ -ie pd, - - W, Ut setip =,,... δ, δ hw t setip N el W. Di sii dipeoleh, - F, Selty dimil N d δ δ pd ptisi -ie,, ( : pd, dipeoleh,, m t - - F, - - w - w - - W, W, - F, - w - - Jdi S, M, X. Di Theoem 3, 4, d 5 dipeoleh hw S M, d hy i teitegl Boche pd,., X, i 0

9 Vol. 4. No. 3, 3 -, Deseme 00, ISSN : DAFTAR PUSTAKA. Cogi, W U d Xioo Yo, A Riem-Type Deiitio o the Boche Iteg, Jol o Mthemticl Stdy : Xime, Chi, Godo, Rssell A, The Itegls o Leesqe, Deoy, Peo, d Hestoc, Ameic Mthemticl Society, USA,

SYARAT PERLU DAN CUKUP INTEGRAL HENSTOCK-BOCHNER DAN INTEGRAL HENSTOCK-DUNFORD PADA [a,b] Solikhin, Y.D. Sumanto, Susilo Hariyanto, Abdul Aziz

SYARAT PERLU DAN CUKUP INTEGRAL HENSTOCK-BOCHNER DAN INTEGRAL HENSTOCK-DUNFORD PADA [a,b] Solikhin, Y.D. Sumanto, Susilo Hariyanto, Abdul Aziz SYRT PERLU N CUKUP INTEGRL HENSTOCK-BOCHNER N INTEGRL HENSTOCK-UNFOR P [,] Solihi, Y Sumto, Susilo Hriyto, dul ziz 1,2,3,4 eprteme Mtemti FSM Uiversits ipoegoro Jl Prof Soedrto, SH Temlg-Semrg solihi@liveudipcid

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds

Lebih terperinci

BARISAN DAN DERET 1. INTISARI TEORI A. NOTASI SIGMA B. DERET KHUSUS m dan c adalah konstanta real, menyatakan jumlah

BARISAN DAN DERET 1. INTISARI TEORI A. NOTASI SIGMA B. DERET KHUSUS m dan c adalah konstanta real, menyatakan jumlah Hsei Tpos, Bris d Deret, 06 BARISAN DAN DERET INTISARI TEORI A NOTASI SIGMA Misly st ris erhigg,,,, 3 Lg eyt jlh dri s pert ris, yit 3 Sift-sift Notsi Sig Ji d dlh ilg-ilg sli, deg d c dlh ostt rel, erl

Lebih terperinci

BAB IV INTEGRAL RIEMANN

BAB IV INTEGRAL RIEMANN Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x

Lebih terperinci

Ruang Vektor Umum. V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan

Ruang Vektor Umum. V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan /8/5 Mtris & Rng Vetor Rng Vetor Umm Strt Rng Vetor Umm Misln v w V dn l Riil V dinmn rng vetor ji terpenhi siom :. V terttp terhdp opersi penjmlhn Unt setip v V m v V.. v v ( v w ) ( v ) w. Terdpt V sehingg

Lebih terperinci

INTEGRAL-Z. Siti Khabibah, Farikhin, Bayu Surarso Jurusan Matematika FMIPA UNDIP Semarang Jl. Prof. H. Soedarto, SH, Tembalang, Semarang, 50275

INTEGRAL-Z. Siti Khabibah, Farikhin, Bayu Surarso Jurusan Matematika FMIPA UNDIP Semarang Jl. Prof. H. Soedarto, SH, Tembalang, Semarang, 50275 INTEGRAL-Z Siti Khih, Frikhi, By Srrso Jrs Mtetik FMIPA UNDIP Serg Jl. Prof. H. Soedrto, SH, Telg, Serg, 5275 Astrk: Kosep egei itegrl-z terkit deg keerd deritif kt. St fgsi F yg terderitif kt pd [,] diotsik

Lebih terperinci

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI 2 FUNGSI PEMBANGKIT (GENERATION FUNGTIONS) TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM

MATEMATIKA DISKRIT FUNGSI 2 FUNGSI PEMBANGKIT (GENERATION FUNGTIONS) TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM MATEMATIKA DISKRIT Modul e: FUNGSI 2 FUNGSI PEMBANGKIT GENERATION FUNGTIONS Fults ILKOM TITI RATNASARI, SSi., MSi Pogm Studi TEKNIK INFORMATIKA www.mecubu.c.id Fugsi pembgit Fugsi pembgit digu utu meepesetsi

Lebih terperinci

BAB V INTEGRAL DARBOUX

BAB V INTEGRAL DARBOUX Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower

Lebih terperinci

BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal

BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal BARIAN DAN DERET A. POLA BILANGAN Bergi jeis ilg yg serig it pergu mempuyi pol tertetu. Pol ii serig digu dlm meetu urut / let ilg dri seumpul ilg yg ditetu, cotoh ilg gjil e-5 dri ilg :,, 5, 7, yitu 9.

Lebih terperinci

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit

Lebih terperinci

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER Modul 8. (Pertemu s/d 6) DERET FOURIER 8. FUNGSI PERIODIK DAN FUNGSI KONTINU TERPOTONG Defiisi Fugsi f diseut fugsi periodik il terdpt p > sedemiki sehigg utuk setip erlku f ( p) f ( ). Nili p > terkecil

Lebih terperinci

Robot Cerdas Pemadam Api Dan Robot Cerdas Pemain Bola

Robot Cerdas Pemadam Api Dan Robot Cerdas Pemain Bola Uivt Mdiy Ml Lt Bl ci200..c.id Id tl d bb li Kt Rbt Id (KRI), di y bi wil Id t iti t bt tit itl y dil di bb A ti J, Tild, K Slt, Ci, Mly, Vit d li-li. B l t t y wili Id d t 200 yit ti B-C di PENS (Pliti

Lebih terperinci

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah 13. INTEGRAL RIEMANN 13.1 Jumlh Riem Ats d Jumlh Riem Bwh Pd Bb 12 kit megsumsik bhw f kotiu pd [, b] d medefiisik itegrl b f(x) dx sebgi supremum dri himpu semu jumlh lus derh persegi-pjg kecil di bwh

Lebih terperinci

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES 3.1 Itegrl Riem-Stieltjes dri Fugsi Berili Rel Pd seelumy telh dihs megei eerp kosep dsr, dim kosep-kosep ii merupk slh stu teori pedukug yg tiy k erper segi

Lebih terperinci

BAB 5 PENDEKATAN FUNGSI

BAB 5 PENDEKATAN FUNGSI BAB 5 ENDEKATAN FUNGSI DEVIDE DIFFERENCE SELISIH TERBAGI A. Tuju. Memhmi oliomil Newto Selisih Terbgi b. Mmpu meetu oeisie-oeisie oliomil Newto c. Mmpu meetu oeisie-oeisie oliomil Newto deg Mtlb B. ergt

Lebih terperinci

Posisi Integral Henstock-Dunford dan Integral Henstock- Bochner pada [a,b]

Posisi Integral Henstock-Dunford dan Integral Henstock- Bochner pada [a,b] SEMINR NSIONL MTEMTIK N PENIIKN MTEMTIK UNY 06 Posisi Itegrl Hestoc-uford d Itegrl Hestoc- Bocher pd [,] Solihi, Heru Tjhj, Solichi Zi Fults Sis d Mtemti, Uiversits ipoegoro soli_erf@yhoocom -4 str Pd

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

BARISAN DAN DERET. 2. Tuliskan tiga suku berikutnya dari setiap barisan berikut ini dan tentukan rumus sederhana suku ke n! a.

BARISAN DAN DERET. 2. Tuliskan tiga suku berikutnya dari setiap barisan berikut ini dan tentukan rumus sederhana suku ke n! a. BARIAN DAN DERET A. BARIAN BILANGAN Bis dlh himpu semg usu-usu yg ditulis sec euut. Bis ilg dlh susu ilg yg disusu meuut sutu pol/ tu tetetu. Cotoh :.. Cotoh ol. Cilh 4 suku petm di is eikut, jik :.. c..

Lebih terperinci

PENGANTAR ANALISIS REAL. Untuk Memenuhi Tugas Mata Kuliah Pengantar Analisi Real

PENGANTAR ANALISIS REAL. Untuk Memenuhi Tugas Mata Kuliah Pengantar Analisi Real Resume PENGANTAR ANALISIS REAL Utuk Memeuhi Tugs Mt Kulih Pegtr Alisi Rel Disusu Oleh: M. ADIB JAUHARI D. P (0860009) MUHTAR SAFI I (086003) BOWO KRISTANTO (086004) ANA MARDIATUS S (086005) OKTA ARFIYANTA

Lebih terperinci

TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Rukiyah 1*, Bustami 2, Sigit Sugiarto 2

TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Rukiyah 1*, Bustami 2, Sigit Sugiarto 2 TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Ruiyh, Bustmi, Sigit Sugirto Mhsisw Progrm S Mtemti Dose Jurus Mtemti Fults Mtemti d Ilmu Pegethu Alm Uiversits Riu Kmpus Biwidy

Lebih terperinci

BAB 2 SISTEM BILANGAN DAN KESALAHAN

BAB 2 SISTEM BILANGAN DAN KESALAHAN Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg

Lebih terperinci

MATRIKS. Create by Luke

MATRIKS. Create by Luke Defiisi Mtris MTRIS Crete y Lue Seuh mtri dlh sergi eleme dlm etu persegi pg Eleme e-(i,) i dri mtris erd diris e-i d olom e- dri rgi terseut Order (uur) dri seuh mtri dit seesr (m x ) i mtris terseut

Lebih terperinci

EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH. Y.D. Sumanto Jurusan Matematika FMIPA UNDIP

EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH. Y.D. Sumanto Jurusan Matematika FMIPA UNDIP EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH Y.D. Sumanto Jurusan Matematika FMIPA UNDIP Abstrak Integral McShane fungsi-fungsi bernilai real

Lebih terperinci

INVERS MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INVERS MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ NVES MTS gusti Prdjigsih, M.Si. Jurus Mtemti FMP UNEJ gusti.fmip@uej.c.id Defiisi : NVES Ji mtris bujursgr, d ji dpt dicri mtris B sehigg B = B =, M dit ivertible d B dim ivers iverse dri. [B= - ] etuggl

Lebih terperinci

Geometrik. v + u. u u. Aljabar/Analitik. Geometrik. Aljabar/Analitik. Perkalian scalar dengan vektor. Perkalian scalar dua vektor

Geometrik. v + u. u u. Aljabar/Analitik. Geometrik. Aljabar/Analitik. Perkalian scalar dengan vektor. Perkalian scalar dua vektor VEKTOR Vekto Posisi Jik titik P( z ) d titik Q( z ) z z PQ z z PQ Titik-titik kolie/segis Titik A B d C segis jik AB AC Pedig D Vekto B P A O Kes d ekto Sdt t d ekto os d t sdt dlh D Vekto Sl Otogol d

Lebih terperinci

BILANGAN BERPANGKAT DAN BENTUK AKAR

BILANGAN BERPANGKAT DAN BENTUK AKAR BILANGAN BERPANGKAT DAN BENTUK AKAR. Sift Opersi Bilg Bult Berpgkt Defiisi Pgkt Bult Positif Jik dlh ilg rel (yt) d dlh ilg sli (ilg ult positif), k... seyk fktor deg = pgkt tu ekspoe = ilg pokok/dsr/sis

Lebih terperinci

Keywords: D-dimention, asymptotic iteration method, Schrodinger equation, modified Pöschl-Teller potential, trigonometric Scarf II potential.

Keywords: D-dimention, asymptotic iteration method, Schrodinger equation, modified Pöschl-Teller potential, trigonometric Scarf II potential. eyelei e Schodige Li iei Ut oteil ochl- Telle Teodifii d oteil Scf II Tigooeti Meggg Aytotic Itetio Method AIM Ril ilh Si d Ci og Stdi Fii Flt Mteti d Il egeth Al Uiveit Seel Met Jl. I. Sti 6 A St 576

Lebih terperinci

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Mislk N dlh proses Poisso pd itervl [, deg rt µ yg kotiu mutlk, d fugsi itesits λ yg teritegrlk lokl Sehigg, utuk setip himpu Borel terbts B mk: µ ( B Ε N( B λ(

Lebih terperinci

Solusi Persamaan Diferensial Biasa dengan Metode Runge-Kutta Orde Lima

Solusi Persamaan Diferensial Biasa dengan Metode Runge-Kutta Orde Lima Solusi Pesm Dieesil Bis deg Metode Ruge-Kutt Ode Lim Fdi i i STKIP YPUP Mss di.di@gmil.com ABSTRAK Peeliti ii meup studi litetu deg meggu metode umei g digu utu meetu solusi pesm dieesil bis ' x deg sutu

Lebih terperinci

NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA

NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA 4. K i K i Notsi Sigm : 5. ( ± V i i i V i i ± dlh otsi sigm, digu utu meyt ejumlh beuut di sutu bilg yg sudh beol. meu huuf citl S dlm bjd Yui dlh huuf

Lebih terperinci

A. Barisan Geometri. r u. 1).Definisi barisan geometri. 2). Suku ke-n barisan geometri

A. Barisan Geometri. r u. 1).Definisi barisan geometri. 2). Suku ke-n barisan geometri A. Bis Geometi ).Defiisi bis geometi Sutu bis yg suku-sukuy dipeoleh deg c meglik suku sebelumy deg sutu kostt (sio/pembdig) tu ili kost. Betuk umum bis geometi (deg suku wl d sio ) dlh : + + + +... +

Lebih terperinci

JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1

JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1 JURNAL MATEMATIKA DAN PEMBELAJARANNYA 6 VOLUME, NO.. ISSN -99 PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN! = Amr Hs Dos STKIP Pmg Idosi Mkssr 85 557 6956, E-mil: mrhs@yhoo.co.id ABSTRAK Pmkti! = dt dilkk dri

Lebih terperinci

BEBERAPA TEOREMA KEKONVERGENAN PADA INTEGRAL RIEMANN. Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon

BEBERAPA TEOREMA KEKONVERGENAN PADA INTEGRAL RIEMANN. Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon Jurl Brekeg Vol. 6 No. 1 Hl. 1 18 (2012) BEBERAA TEOREMA KEKONVERGENAN ADA INTEGRAL RIEMANN VENN YAN ISHAK ILWARU 1, H. J. WATTIMANELA 2, M. W. TALAKUA 1,2, St Jurus Mtemtik FMIA UNATTI Jl. Ir. M. utuhe,

Lebih terperinci

TEOREMA DERET PANGKAT

TEOREMA DERET PANGKAT TEOEMA DEET PANGKAT Kosep Dsr Deret pgkt erupk sutu etuk deret tk higg 3 + ( + + 3( +... ( disusik,, d koefisie i erupk ilg rel. Julh prsil utuk suku pert etuk di ts dlh s yg dpt ditulisk segi s ( + (

Lebih terperinci

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler

Lebih terperinci

TRANSFORMASI-Z RASIONAL

TRANSFORMASI-Z RASIONAL TRANSFORMASI-Z RASIONAL. Pole d Zeo Zeo di sutu tsfomsi- dlh ili-ili deg X() = 0. Pole di sutu tsfomsi- dlh ili-ili deg X() =. Jik X() dlh fugsi siol, mk () Jik 0 0 d 0 0, kit dt meghidi gkt egtif deg

Lebih terperinci

Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan

Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan Ali Ketil 4 Ali Ketil.. Pedhulu Hl yg mt petig dlm dei item kotrol dlh mlh tilit item. Buk hl yg rhi lgi hw pokok tuju terpetig dlm li d dei kotrol dlh meiptk utu item yg til. Sutu item diktk til pil teript

Lebih terperinci

SIFAT-SIFAT DASAR PERLUASAN INTEGRAL LEBESGUE (Basic Properties Of Extended Lebesgue Integral)

SIFAT-SIFAT DASAR PERLUASAN INTEGRAL LEBESGUE (Basic Properties Of Extended Lebesgue Integral) Jur Breeg Vo 6 No 1 H 37 44 (212) SFAT-SFAT DASAR PRLUASAN NTGRAL LBSGU (Bsic Properties O xteded Leesgue tegr) Yopi Adry Lesuss, Hery Juus Wttime, Mozrt Wisto Tu Jurus Mtemti, FMPA,Uiversits Pttimur mi

Lebih terperinci

Bab RUANG VEKTOR UMUM

Bab RUANG VEKTOR UMUM B 5 RUANG VEKTOR Pd seelumny, it telh memhs tentng veto di idng dn diung. Selnjutny, it n menco memhmi pengetin ung veto sec umum menuut definisi lj. Ini dipelun segi lndsn dlm memhmi tentng sis dn ung

Lebih terperinci

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh TE946 Dr Sitem Pegtur Kriteri Ketil Routh Ir. Jo Prmudijto, M.Eg. Juru Tekik Elektro FTI ITS Telp. 5947 Fx.597 Emil: jo@ee.it.c.id Dr Sitem Pegtur - 7 Ojektif: Koep Ketil Ketil Routh Proedur Ketil Routh

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige

Lebih terperinci

Persamaan Linier Simultan

Persamaan Linier Simultan Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel

Lebih terperinci

Modul II Limit Limit Fungsi

Modul II Limit Limit Fungsi Modul II Limit Kosep it merupk sutu kosep dsr yg petig utuk memhmi klkulus dieresil d itegrl Oleh kre itu seelum kit mempeljri leih ljut tetg klkulus diresil d itegrl, mk kit terleih dhulu hrus mempeljri

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bmbg Irwto Jurus Mtemtik FMIPA UNDIP Abstct I this er, it ws lered of the ecessry d sufficiet coditio for

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 PAKET. Sit: SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN. ~ p q p ~ q. ~ p q~ p ~ q Jdi, igkr dri pert dlh Air sugi melup d kot tidk kejir tu eerp wrg kot tidk hidup mederit. []. Sit:. p q ~ q ~

Lebih terperinci

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika olusi engyn Mtemti Edisi Met en Ke-, 007 Nomo ol: -0. Lus pesegi pnjng dlh 007 m. Titi E dn F dlh titi tengh di dn, sedngn G dn H dlh titi pd dn sedemiin sehingg G = G dn H = H. eph lus EGFH? F 006 006

Lebih terperinci

MA SKS Silabus :

MA SKS Silabus : Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7

Lebih terperinci

DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA

DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA Muslih 1), Sutrim 2) d Supriydi Wiowo 3) 1,2,3) Jurus Mtemtik FMIPA UNS, muslih_mus@yhoo.om, zutrim@yhoo.om, supriydi_w@yhoo.o.id Astrk

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

BAB III LIMIT FUNGSI DAN KEKONTINUAN

BAB III LIMIT FUNGSI DAN KEKONTINUAN BAB III LIMIT FUNGSI DAN KEKONTINUAN 3. Pedhulu Seelu hs liit fugsi di sutu titik terleih dhulu kit k egti perilku sutu fugsi f il peuh edekti sutu ilg ril tertetu. Misl terdpt sutu fugsi f() = + 4. Utuk

Lebih terperinci

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j

Lebih terperinci

1. Bilangan Berpangkat Bulat Positif

1. Bilangan Berpangkat Bulat Positif N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui

Lebih terperinci

DERET FOURIER FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN. Oleh :

DERET FOURIER FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN. Oleh : DERET FOURIER Oleh : Nm :. Neti Okmyti 7..6). Reto Fti Amh 7..6). Feri Febrisyh 7..8) Kels : 6. Mt Kulih : Mtemtik jut Dose Pegsuh : Fdli, S.Si FAKUTAS KEGURUAN DAN IMU PENDIDIKAN UNIVERSITAS PGRI PAEMBANG

Lebih terperinci

MetodeLelaranUntukMenyelesaikanSPL

MetodeLelaranUntukMenyelesaikanSPL MetodeLelrUtukMeyelesikSPL Metode elimisi Guss melitk yk glt pemult. Glt pemult yg terjdi pd elimisi Guss dpt meyek solusiyg diperoleh juh drisolusiseery. Ggs metod lelr pd pecri kr persm irljr dptjugditerpkutukmeyelesikspl.

Lebih terperinci

EXPONEN DAN LOGARITMA

EXPONEN DAN LOGARITMA Drs Pudjul Prijoo SMA Negeri Mlg EXPONEN DAN LOGARITMA A EXPONEN Sift-sift il Berpgkt yg ekspoey il Bult Sift-sift il Berpgkt yg ekspoey il Rsiol/Peh 0 ; 0 ; 0 0, 0 ; 0 0 d ; 7 0 0; ; Meyederhk etuk :

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008 Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+

Lebih terperinci

Penyelesaian Persamaan Linier Simultan

Penyelesaian Persamaan Linier Simultan Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d

Lebih terperinci

BAB 1 DERET TAKHINGGA

BAB 1 DERET TAKHINGGA Di Kulih EL- Memi Tei I BAB DERET TAKHINGGA Bris Thigg Bris dlh susu bilg-bilg riil secr beruru. Perhi cooh beriu. ),, 8, 6, b),,,, 8 6 c),, 7,,, Secr umum, bris d diulis { },,, deg memeuhi ersm ereu.

Lebih terperinci

Interpolasi dan Turunan Numerik (Rabu, 2 Maret 2016) Hidayatul Mayyani G

Interpolasi dan Turunan Numerik (Rabu, 2 Maret 2016) Hidayatul Mayyani G Iterpolsi d Turu Numeri (Rbu Mret 6) Hidytul Myyi G55535 Outlie: Iterpolsi Lier - Poliomil Lgrge - Poliomil Newto - Vdermode Mtris - Ivers Iterpolsi - Iterpolsi Neville Glt Iterpolsi Turu Numeri Estrpolsi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Liner Elementer MA SKS Sils : B I Mtriks dn Opersiny B II Determinn Mtriks B III Sistem Persmn Liner B IV Vektor di Bidng dn di Rng B V Rng Vektor B VI Rng Hsil Kli Dlm B VII rnsformsi Liner B VIII

Lebih terperinci

APLIKASI INTEGRAL TENTU

APLIKASI INTEGRAL TENTU APLIKASI INTEGRAL TENTU Apliksi Itegrl Tetu థ Lus ditr 2 kurv థ Volume ed dlm idg (deg metode ckrm d cici) థ Volume ed putr (deg metode kulit tug) థ Lus permuk ed putr థ Mome d pust mss 1 2 1. LUAS DIANTARA

Lebih terperinci

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1 Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

PANGKAT, AKAR, DAN LOGARITMA., maka berlaku sifat-sifat operasi hitung: a).

PANGKAT, AKAR, DAN LOGARITMA., maka berlaku sifat-sifat operasi hitung: a). Sip UN Mtetik sikeljrwordpresso PANGKAT, AKAR, DAN LOGARITMA A Sift-sift Opersi Hitug Pgkt Jik d ilg rel d 0,, k erlku sift-sift opersi hitug: ) deg srt sek ) ) d) e) f) g) 0 h) i) j) Pehs sol UN tetik

Lebih terperinci

Sistem Bilangan dan Kesalahan. Metode Numerik

Sistem Bilangan dan Kesalahan. Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c

Lebih terperinci

4. Fungsi Khusus Lainnya. (Hermite, Laguerre, Polinomial Chebyshev, Hipergeometri)

4. Fungsi Khusus Lainnya. (Hermite, Laguerre, Polinomial Chebyshev, Hipergeometri) 4. Fugsi Khusus Liy Hemite, Lguee, Poliomil Chebyshev, Hipegeometi 4.. Fugsi Hemite Fugsi geeto utuk poliomil Hemit: H : g, t e t t Hubug ekusi: d H H H t! H H ' H 4. 4. 4.3 tuuk f.g. thd t 4.; thd 4.3

Lebih terperinci

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ... Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit

Lebih terperinci

SISTEM ORTONORMAL DALAM RUANG HILBERT Orthonormal Systems in Hilbert Space

SISTEM ORTONORMAL DALAM RUANG HILBERT Orthonormal Systems in Hilbert Space Jrl Breeg Vol 8 No Hl 9 6 (04) SISTEM ORTONORMAL DALAM RUANG HILBERT Orthoorl Systes i Hilert Spe ZETH ARTHUR LELEURY Jrs Mteti Flts MIPA Uiersits Pttir Jl Ir M Pthe Kps Uptti Po-Ao E-il: zethrthr8@gilo

Lebih terperinci

24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain.

24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain. // Alj Lie Elemete MUGE SKS Silus : B I Mtiks d Oesi B II Detemi Mtiks B III Sistem Pesm Lie B IV Vekto di Bidg d di Rug B V Rug Vekto B VI Rug Hsil Kli Dlm B VII Tsfomsi Lie B VIII Rug Eige // :8 MUGE

Lebih terperinci

BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA

BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA Notsi Sig : dlh otsi sig, digu utu eyt ejulh beuut di sutu bilg yg sudh beol. eu huuf citl S dl bjd Yui dlh huuf et di t SM yg beti julh. Betu

Lebih terperinci

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter IV. FUNGSI KARAKTERISTIK Pd bgi seljuty k dijbrk megei ugsi krkteristik. Pd peeliti ii k ditetuk ugsi krkteristik dri distribusi our-prmeter geerlized t deg megguk deiisi d kemudi k membuktik ugsi krkteristik

Lebih terperinci

TEORI PERMAINAN. Aplikasi Teori Permainan. Strategi Murni

TEORI PERMAINAN. Aplikasi Teori Permainan. Strategi Murni TEORI PERMAINAN Apliksi Teori Peri Lw pei (puy itelegesi yg s) Setip pei epuyi beberp strtegi utuk slig eglhk Two-Perso Zero-Su Ge Peri deg pei deg peroleh (keutug) bgi slh stu pei erupk kehilg (kerugi)

Lebih terperinci

LIMIT FUNGSI. lim lim. , c = konstanta 6. lim f(x) Penting : Persoalan limit adalah mengubah bentuk tak tentuk menjadi bentuk tertentu.

LIMIT FUNGSI. lim lim. , c = konstanta 6. lim f(x) Penting : Persoalan limit adalah mengubah bentuk tak tentuk menjadi bentuk tertentu. LIMIT FUNGSI Teoem. f() g() f() g( ). f().g() f(). g( ) f(). f() g() f() g( ). deg g() g() g(). c.f() c. f(), c = kostt. f() f() f() Betuk Tk Tetu Betuk di dlm mtemtik d mcm, yitu :. Betuk tedefiisi (tetetu)

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN SUMBER BELAJAR PENUNJANG PLPG 207 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN Dr. Djdir, M.Pd. Dr. Ilhm Miggi, M.Si J fruddi,s.pd.,m.pd. Ahmd Zki, S.Si.,M.Si

Lebih terperinci

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc. Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh

Lebih terperinci

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal.

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal. BASIS ORTOGONA Bts Bl V rg Ecldes S V dsebt Hmp Ortogol bl tp d sr S ortogol DAI J S hmp ortogol yg terdr dr K bh etor t ol dlm rg Ecldes V m S bebs ler V hssy bl dmes V S bss t V dsebt Bss ortogol DAI

Lebih terperinci

KRIPTOGRAFI KUNCI PUBLIK: SANDI RSA

KRIPTOGRAFI KUNCI PUBLIK: SANDI RSA Kiptogfi Kuci Pulik: Sdi RSA KRIPTOGRAFI KUNCI PUBLIK: SANDI RSA Oleh: M Zki Riyto Pogm Studi Mtemtik, Fk Sis d Tekologi UIN Su Klijg Yogykt Sdi RSA Sdi RSA meupk lgoitm kiptogfi kuci pulik (simetis) Ditemuk

Lebih terperinci

Catatan Kecil Untuk MMC

Catatan Kecil Untuk MMC Ctt Keil Utuk MMC Judul : MMC (Metode Meghitug Cept), Tekik ept d uik dlm megerjk sol mtemtik utuk tigkt SMA. Peulis : It Puspit. Peerit : PT NIR JAYA Bdug. Thu :. Tel : 8 + 5 hlm. Berikut dlh tt keil

Lebih terperinci

Bentuk Umum Perluasan Teorema Pythagoras

Bentuk Umum Perluasan Teorema Pythagoras Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem

Lebih terperinci

1 0 0 m 2 BUDIDAYA PEMBESARAN IKAN NILA

1 0 0 m 2 BUDIDAYA PEMBESARAN IKAN NILA P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) B U D I D A Y A P E M B E S A R A N I K A N N I L A P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) B U D I D A Y A P E M B E S A

Lebih terperinci

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs Diijik memperyk demi kepetig pedidik deg tetp metumk lmt situs LATIH UN IPS. 008 00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOLUSI REDIKSI UJIAN NASIONAL MATEMATIKA IS TAHUN AKET ilih Gd: ilihlh stu jw g plig tept.. Sit: p q p q Jdi, igkr dri pert dlh emerith meghpusk keijk susidi h kr mik tetpi d org g hidup tidk sejhter.

Lebih terperinci

Solusi Numerik Persamaan Diferensial Biasa Dengan Metode Adams-Bashforth-Moulton Orde Lima

Solusi Numerik Persamaan Diferensial Biasa Dengan Metode Adams-Bashforth-Moulton Orde Lima Jul Mtemti Sttisti & Komputsi Jul Mtemti Sttisti & Komputsi Vol. No Juli 00 Vol. 7 No. Juli 00 9 Vol 7 No 9-55 Juli 00 Solusi Numei Pesm Dieesil Bis Deg Metode Adms-Bsot-Moulto Ode Lim Je Kusum d Abdill

Lebih terperinci

BAB V ENERGI DAN POTENSIAL

BAB V ENERGI DAN POTENSIAL ENERGI DN POTENSIL 4. Eegi g dipeluk meggek mut titik dlm med listik. Itesits med listik didefiisik sebgi g g betumpu pd mut uji stu pd titik g igi kit dptk hg med vekt. Jik mut uji tesebut digekk melw

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

ALJABAR. 1. AMS (Algemeene Middelbare School)-HBS (Hogere Burger School), 1949 Y terletak pada garis y

ALJABAR. 1. AMS (Algemeene Middelbare School)-HBS (Hogere Burger School), 1949 Y terletak pada garis y Megeg Jejk Sebgi Kecil Bgs Idoesi Yg Peh Megikuti Uji Sekolh Pd Awl Ms Keedek UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 949 ALJABAR. AMS (Algeeee Middelbe School)-HBS (Hogee Buge School), 949

Lebih terperinci

BAB 3. DIFFERENSIAL. lim. Motivasi:

BAB 3. DIFFERENSIAL. lim. Motivasi: BAB. DIFFERENSIAL Motivsi: bim meetuk rdie ris siu sutu kurv di sutu titik pd kurv bim meetuk kecept sest sutu bed bererk sepj ris lurus Deiisi: mislk dl usi terdeiisi pd sel buk memut. Turu usi di diotsik

Lebih terperinci

Hendra Gunawan. 21 Februari 2014

Hendra Gunawan. 21 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge

Lebih terperinci

EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen.

EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen. EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA theresivei.wordpress.o A. BENTUK PANGKAT BULAT. Pgkt Bult Positif Igt: 5 5 = (-) = -() = Defiisi Bilg erpgkt ult positif : Mislk ilg ult positif d ilg Rel,

Lebih terperinci

Ketaksamaan Chaucy Schwarz Engel

Ketaksamaan Chaucy Schwarz Engel Keksm Chuy Shwrz Egel Fedi Alfi Fuzi Rigks Keksm Cuhy Shwrz merupk Keksm yg ukup mpuh uuk memehk ergi mm persol yg meygku sol keksm pd olimpide memik igk siol mupu iersiol. Pd pper ii k diperkelk euk li

Lebih terperinci

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan ) Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of

Lebih terperinci

Teorema-Teorema Kekonvergenan pada Integral Riemann, Lebesgue dan Henstock

Teorema-Teorema Kekonvergenan pada Integral Riemann, Lebesgue dan Henstock Prosidig Semir Nsiol Mtemtik Prodi Pedidik Mtemtik, Uiversits Muhmmdiyh Surkrt, 24 Juli 2 Teorem-Teorem Kekoverge pd Itegrl Riem, Leesgue d Hestock Rit P.Khotimh, Soepr Drmwijy 2, Ch. Rii Idrti 3, Prodi

Lebih terperinci

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs Diijik memperyk demi kepetig pedidik deg tetp mectumk lmt situs LATIH UN IPA. 00-00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT. Oleh Shahibul Ahyan

PERSAMAAN DAN FUNGSI KUADRAT. Oleh Shahibul Ahyan PERSAMAAN DAN FUNGSI KUADRAT Oleh Shhil Ahyn A. Bentk Umm Persmn Kdrt Definisi : Mislkn,, Rdn, mk persmn yng erentk + + = dinmkn persmn kdrt dlm peh. Berkitn dengn nili-nili dri,, dikenl eerp persmn kdrt

Lebih terperinci

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug

Lebih terperinci

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT) SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA0 MATEMATIKA A Hedr Guw Semester II, 06/07 0 Februri 07 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kekoverge deret

Lebih terperinci

Metode Iterasi Gauss Seidell

Metode Iterasi Gauss Seidell Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier

Lebih terperinci