SRI REDJEKI KALKULUS I

dokumen-dokumen yang mirip
TUJUAN INSTRUKSIONAL KHUSUS

Catatan Kuliah MA1123 Kalkulus Elementer I

BAB 1. PENDAHULUAN KALKULUS

MAT 602 DASAR MATEMATIKA II

Himpunan dari Bilangan-Bilangan

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

LIMIT DAN KEKONTINUAN

Bagian 2 Matriks dan Determinan

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

Sistem Bilangan Real. Pendahuluan

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

SISTEM BILANGAN RIIL DAN FUNGSI

Bagian 1 Sistem Bilangan

Pengertian Fungsi. MA 1114 Kalkulus I 2

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( )

Ringkasan Materi Kuliah Bab II FUNGSI

Sistem Bilangan Riil. Pendahuluan

Bilangan Real. Modul 1 PENDAHULUAN

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI

3 LIMIT DAN KEKONTINUAN

1 Sistem Bilangan Real

Perlukah Bagi Siswa?

Sistem Bilangan Ri l

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

3 LIMIT DAN KEKONTINUAN

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63

FUNGSI. Riri Irawati, M.Kom 3 sks

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K.

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Zulfaneti Yulia Haryono Rina F ebriana. Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ( + ) ( ) ( )=

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Turunan Fungsi. h asalkan limit ini ada.

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT

Semester 1 - Edisi v15

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

Sistem Bilangan Riil

LIMIT KED. Perhatikan fungsi di bawah ini:

BAB 2 LANDASAN TEORI

BAB III LIMIT DAN KEKONTINUAN FUNGSI

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT

PENDAHULUAN KALKULUS

MODUL 2 GARIS LURUS. Mesin Antrian Bank

BAB I SISTEM BILANGAN REAL

Kalkulus II. Diferensial dalam ruang berdimensi n

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus

MA5032 ANALISIS REAL

KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

3 LIMIT DAN KEKONTINUAN

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi UTS. Kalkulus 1. Semester Gasal Pengajar: Hazrul Iswadi

BAB II LANDASAN TEORI

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Persamaan dan Pertidaksamaan Linear

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag

BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL

Matematika Dasar FUNGSI DAN GRAFIK

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b

MATEMATIKA DASAR TAHUN 1987

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

TIM MATEMATIKA DASAR I

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Matematika IPA (MATEMATIKA TKD SAINTEK)

GLOSSARIUM. A Akar kuadrat

Modul Matematika 2012

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional

BAB 2. FUNGSI & GRAFIKNYA

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

(A) 3 (B) 5 (B) 1 (C) 8

BILANGAN BERPANGKAT DAN BENTUK AKAR

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

MATERI PELAJARAN MATEMATIKA SMA KELAS X BAB I: BENTUK PANGKAT, AKAR, DAN LOGARITMA. 1.1 Pangkat Bulat. A. Pangkat Bulat Positif

Hendra Gunawan. 13 September 2013

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

TURUNAN DALAM RUANG DIMENSI-n

digunakan untuk menyelesaikan integral seperti 3

MATEMATIKA TEKNIK II BILANGAN KOMPLEKS

fungsi rasional adalah rasio dari dua polinomial. Secara umum,

Open Source. Not For Commercial Use

II. TINJAUAN PUSTAKA. bilangan riil. Bilangan riil biasanya dilambangkan dengan huruf R (Negoro dan

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

BAB I PRA KALKULUS. Nol. Gambar 1.1

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya

Transkripsi:

SRI REDJEKI KALKULUS I

KLASIFIKASI BILANGAN RIIL n Bilangan yang paling sederhana adalah bilangan asli : n 1, 2, 3, 4, 5,. n n Bilangan asli membentuk himpunan bagian dari klas himpunan bilangan yang lebih besar yang disebut himpunan bilangan bulat :, -4, -3, -2, -1, 0, 1, 2, 3, 4, n Himpunan bilangan bulat masih merupakan himpunan bagian dari klas himpunan yang lebih besar yang disebut bilangan rasional. Bilangan rasional dibentuk oleh pembagian bilangan bulat. Sebagai contoh adalah : n 2, 7, 6, 0, 5 (= -5 = 5 ) n 3 5 1 9 2 2-2

" Bilangan irrasional adalah bilanganbilangan yang tidak dapat dinyatakan sebagai perbandingan bilangan bulat. Contoh bilangan irasional : " 3, 5, 1 + 2, 3 7, π, cos 19 " Bilangan rasional dan irasional bersamasama membangun suatu klas bilangan yang lebih besar yang disebut bilangan riil atau kadang disebut system bilangan riil.

PEMBAGIAN DENGAN NOL Pada perhitungan dengan bilangan riil, pembagian dengan nol tidak pernah diperkenankan karena hubungan dalam bentuk y = p/0 akan mengakibatkan 0. y = p

BILANGAN KOMPLEKS Karena kuadrat suatu bilangan riil tidak negatif, persamaan : 2 = -1 i = -1 didefinisikan memiliki sifat i2 = -1. Bilangan kompleks adalah bilangan-bilangan yang berbentuk : a + bi dengan a dan b bilangan riil. Beberapa contohnya adalah : 2 + 3i [a = 2, b = 3] 3 4i [a = 3, b = -4] 6i [a = 0, b = 6] 2 [a = 2, b = 0]

REPRESENTASI DESIMAL DARI BILANGAN RIIL Bilangan rasional dan bilangan irrasional dapat dibedakan berdasarkan bentuk penyajian desimalnya. 4 = 1.333, [3 berulang] 3 3 =.272727, [27 berulang] 11 5 =.714285714285, [714285 berulang] 7 Desimal berulang yang memuat nol setelah beberapa titik disebut desimal terakhir. 1 =.50000, 12 = 3.0000, 8 =. 320000

GARIS KOORDINAT " Geometri analitik adalah suatu cara untuk menjelaskan rumus aljabar dengan kurva geometrik dan sebaliknya, kurva geometri dengan rumus aljabar. " Dalam geometri analitik, langkah kuncinya adalah menentukan hubungan bilangan real dengan titik pada garis, hal ini dilakukan dengan menandai salah satu dari dua arah sepanjang garis sebagai arah positif dan yang lain sebagai arah negatif.-+titik Asal " Bilangan riil yang bersesuaian dengan titik pada garis disebut koordinat dari titik tersebut. " Pada gambar diberi tanda tempat titik-titik dengan koordinat 4, -3, -2,75, -1/2, 2, π, dan 4. Tempat dari 2 merupakan hampiran yang diperoleh dari hampiran desimalnya yaitu π 3.14 dan 2 1.41 " -4-3 -1.75-1/2 2 " -4-3 -2-1 0 1 2

SIFAT-SIFAT URUTAN KETIDAKSAMAAN : 1. a < b atau b > a Interpretasi geometri : a sebelah kiri b Ilustrasi : a b 2. a b atau b a Interpretasi geometri : a sebelah kiri b atauberimpit dengan b Ilustrasi : a b a b 3. 0 < a atau a > 0 Interpretasi geometri : a sebelah kanan titik asal Ilustrasi : 0 a Interpretasi geometri : a sebelah kiri titik asal

4. a < 0 atau 0 > a Interpretasi geometri : a sebelah kiri titik asal Ilustrasi : a 0 5. a < b < c Interpretasi geometri : a sebelah kiri b dan b sebelah kiri c Ilustrasi : a b c Simbol a < b c artinya a < b dan b c. Silahkan menyimpulkan arti symbol-simbol seperti : a b < c, a b c dan a < b < c < d Ketidaksamaan berikut adalah benar : 3 < 8, -7 < 1.5, -12 π, 5 5, 0 2 4. 8 3, 1.5 > -7, -π > -12, 5 5, 3 > 0 > -1.

TEOREMA 1.1 Misal a, b, c, dan d bilangan riil : a) Jika a < b dan b < c, maka a < c b) Jika a < b, maka a + c < b + c dan a c < b c c) Jika a < b, maka ac < bc untuk c positif dan ac > bc untuk c negatif d) Jika a < b dan c < d, maka a + c < b + d e) Jika a dan b keduanya positif atau keduanya negatif dan a < b, maka 1/a > 1/b

Jika arah suatu ketidaksamaan menyatakan maknanya, maka bagian (b)-(e) teorema di atas dapat diuraikan secara informal sebagai berikut : b) Ketidaksamaan tidak berubah jika kedua sisinya ditambah atau dikurangi dengan bilangan yang sama. c) Ketidaksamaan tidak berubah jika kedua sisinya digandakan dengan bilangan positif yang sama, tetapi ketidaksamaan berbalik arah jika kedua sisinya digandakan dengan bilangan negatif yang sama. d) Ketidaksamaan dengan tanda yang sama dapat dijumlahkan. e) Jika kedua sisi ketidaksamaan mempunyai tanda yang sama, maka tanda ketidaksamaannya akan berbalik arahnya dengan meletakkan tanda yang berlawanan pada setiap sisinya.

Pernyataan dlm teorema 1.1 diilustrasikan : n 1. Ketidaksamaan awal : -2 < 6 n Operasi : kedua sisi ditambah dengan 7 n Ketidaksamaan hasil : 5 < 13 n 2. Ketidaksamaan awal : -2 < 6 n Operasi : kedua sisi dikurangi dengan 8 n Ketidaksamaan hasil : -10 < -2 n 3. Ketidaksamaan awal : -2 < 6 n Operasi : kedua sisi digandakan 3 n Ketidaksamaan hasil : -6 < 18 n 4. Ketidaksamaan awal : 3 < 7 n Operasi : kedua sisi digandakan 4 n Ketidaksamaan hasil : 12 28 n 5. Ketidaksamaan awal : 3 < 7 n Operasi : kedua sisi digandakan 4 n Ketidaksamaan hasil : -12 > -28

PENYELESAIAN KETIDAKSAMAAN n Penyelesaian ketidaksamaan dalam yang tidak diketahui merupakan nilai untuk yang membuat ketidaksamaan itu sebagai pernyataan yang benar. Sebagai contoh = 1 merupakan penyelesaian dari ketidaksamaan < 5, tetapi = 7 bukan merupakan penyelesaian. n Proses mendapatkan himpunan penyelesaian suatu ketidaksamaan disebut menyelesaikanketidaksamaan. n Contoh : Selesaikan 3 + 7 2 9 n Penyelesaian : akan digunakan operasi dalam teorema 1.1 dengan mengumpulkan pada satu sisi ketidaksamaan n 3 + 7 2 9 [diberikan] n 7 2 12 [kurangkan 3 dari kedua sisi] n 5-12 [kurangkan 2 dari kedua sisi] n - 12 [gandakan kedua sisi dengan 1/5] n 5 n krn sudah tidak dapat digandakan dgn yang mengandung, ketidaksamaan (1)=(4). Jadi himpunannya berupa selang (-, - 12/5) n -12 n 5

Contoh : Selesaikan 7 2 5 < 9

NILAI MUTLAK n Nilai mutlak atau magnitude suatu bilangan riil a dinotasikan dengan a dan didefinisikan dengan : n a = +a jika a 0 n -a jika a < 0 n Contoh : n 5 = +5 [karena 5 > 0] n -4/7 = -(-4/7) = + 4/7 n [karena 4/7 < 0] n 0 = +0 [karena 0 0]

Pengambilan nilai mutlak pada sebuah bilangan berakibat pada hilangnya tanda minus jika bilangan negatif dan tidak berubah jika bilangan itu tak-negatif. Jadi a merupakan bilangan tak-negatif untuk semua nilai a dan - a a a

HUBUNGAN ANTARA AKAR KUADRAT DAN NILAI MUTLAK n Bilangan yang kuadratnya adalah a disebut akar kuadrat dari a. Setiap bilangan riil positif a mempunyai dua akar kuadrat riil, satu positif dan satu negatif. Akar kuadrat positif dinotasikan dengan a. n Sebagai contoh, bilangan 9 mempunyai dua akar kuadrat 3 dan 3. Karena 3 merupakan akar kuadrat positif, diperoleh 9 = 3. Sebagai tambahan didefinisikan 0 = 0.

n Terdapat kesalahan yang umumnya pada penulisan a2 = a. Meskipun persamaan ini benar apabila a tak negatif, tetapi salah untuk a negatif. Sebagai contoh jika a = -4, maka : n a2 = (-4)2 = 16 = 4 a n Teorema : Untuk setiap bilangan riil a n n a2 = a n Bukti : Karena a2 = (+a)2 = (-a)2, maka bilangan +a dan a merupakan akar-akar kuadrat dari a2. Jika n a 0, maka +a merupakan akar kuadrat tak-negatif dari a2, dan jika a < 0, maka a akar kuadrat tak-negatif dari a2, sehingga diperoleh n a2 = +a jika a 0 n a2 = - a jika a < 0 n Jadi a2 = a.

SIFAT-SIFAT NILAI MUTLAK n Teorema : Jika a dan b bilangan riil, maka n (a) -a = a Suatu bilangan dan negatifnya mempunyai nilai mutlak sama n (b) ab = a b Nilai mutlak dari perkalian merupakan perkalian nilai mutlak n (c) a/b = a / b Nilai mutlak dari perbagian merupakan pembagian nilai mutlak n Bukti (a) : -a = (-a)2 = a2 = a n Bukti (b) : ab = (ab)2 = a2b2 = a2 b2 = a b

KETIDAKSAMAAN SEGITIGA Secara umum tidak selalu benar bahwa a + b = a + b Sebagai contoh, jika a = 2 dan b = -3, maka a + b = -1, sehingga a + b = -1 = 1 Sedangkan ; a + b = 2 + -3 = 2 + 3 = 5 Jadi a + b a + b. Akan tetapi, benar bahwa nilai mutlak suatu jumlahan selalu lebih kecil atau sama dengan jumlah nilai mutlak. Hal ini merupakan isi teorema yang sangat penting, yang dikenal dengan ketidaksamaan segitiga.

Teorema (Ketidaksamaan Segitiga) : Jika a dan b sebarang bilangan riil, maka a + b a + b Bukti :- a a a dan - b b b Dengan menambahkan kedua ketidaksamaan tersebut didapat -( a + b ) a + b ( a + b )

INTERPRETASI GEOMETRIK DARI NILAI MUTLAK Notasi nilai Mutlak muncul secara alamiah dalam masalah jarak. Karena jarak tak negatif, maka jarak d antara A dan B adalah : b a jika a < b d = a b jika a > b 0 jika a = b A B B A a b b a b-a a-b (1) b-a = positif, jadi b-a = b-a (2) b-a = negatif, jadi a-b = -(b-a) = b-a

n Rumus Jarak ; TEOREMA 1.5 n Jika A dan B titik titik pada suatu garis koordinat yang masing-masing mempunyai koordinat a dan b, maka jarak d antara A dan B adalah ; n d = b - a n Rumus diatas memberikan interpretasi geometrik yang berguna untuk beberapa ekspresi matematika yang umum dan dapat dituliskan sbb ;

TABEL RUMUS JARAK EKSPRESI INTERPRE GEOMETRIK PADA GRS KOORDINAT - a Jarak antara dan a + a Jarak antara dan a (krn +a = -(-a) ) Jarak antara dan titik asal (karena = -0 ) Ketidaksamaan dalam bentuk -a < k dan -a > k, sering digunakan, sehingga dijabarkan lagi dlm tabel berikut ; Ketidak Interpretasi Gambar Bentuk Alternatif Himpunan Samaan geometrik ketidaksamaan penyelesain (k>0) -a <k didlm k k k -k<-a<k (a-k, a+k) satuan dr a a-k a a+k -a >k lebih dr k k -a<-k atau (-,a-k) U k stn dr a a-k a a+k -a>k (a+k, + ) Dlm tabel diatas, < dapat diganti dgn dan > dgn, yaitu titik2 terbuka diganti dgn titik2 tertutup dlm ilustrasi diatas

l Selesaikan ; - 3 <4 l Contoh ; Penyelesaian : ketidaksamaan tsb ditulis kembali sebagai l -1 < < 7-4 < 3 < 4 (+3) l dlm notasi selang ;(-1,7) l -1 3 7 l Selesaikan : + 4 2 l Penyelesaian : ketidaksamaan dpt ditulis kembali l + 4-2 -6 l atau atau lebih sederhana atau l + 4 2-2 l -6-4 -2

BIDANG KOORDINAT DAN GRAFIK SISTEM KOORDINAT SIKU-SIKU Suatu sistem koordinat siku-siku (juga disebut sistem koordinat Cartesian) merupakan pasangan garis koordinat yang tegak lurus, yang disebut sumbu-sumbu koordinat sedemikian sehingga keduanya berpotongan di titik asal. Biasanya, salah satu garis tersebut horizontal dengan arah positif ke kanan, dan yang lain vertical dengan arah positif ke atas. titik asal sumbu-y 0-4 -3-2 -1-1 1 2 3 4-2 -3-4 sumbu-

*KOORDINAT GRAFIK Kuadran II Kuadran III Kuadran I Kuadran IV ( -, + ) ( +, + ) ( -, - ) ( +, - )

Contoh : Buatlah sketsa grafik dari y = 2 Himpunan penyelesaian dari y = 2 mempunyai tak hingga banyak anggota, sehingga tak mungkin digambarkan semuanya 9 8 7 6 5 4 3 2 1 y = 2 (, y) 0 1 2 3-1 -2-3 0 1 4 9 1 4 9 (0, 0) (1, 1) (2, 4) (3, 9) (-1, 1) (-2, 4) (-3, 9) -3-2 -1 1 2 3 Sebaiknya diingat bahwa kurva dalam gambar di atas hanyalah hampiran grafik y = 2. Pada umumnya, hanya dengan cara kalkulus bentuk grafik yang benar dapat diketahui dengan pasti.

Contoh : Buatlah sketsa grafik dari y = 3 8 y -2 2 y = 3 (, y) 0 1 2-1 -2 0 1 8-1 -8 (0, 0) (1, 1) (2, 8) (-1, -1) (-1, 1) -8

PERPOTONGAN Perpotongan grafik dengan sumbu- berbentuk (a, 0) dan perpotongan dengan sumbu-y berbentuk (0, b). Bilangan a tersebut dinamakan perpotongan- dari grafik dan bilangan b dinamakan perpotongan-y. Contoh : Dapatkan semua perpotongan- dan perpotongany dari (a) 3 + 2y = 6, (b) = y2 2y, (c) y = 1/ Penyelesaian (a) : Untuk mendapatkan perpotongan-, berikan y = 0 dan diselesaikan untuk : 3 = 6 atau = 2 Untuk mendapatkan perpotongan-y diberikan = 0 dan diselesaikan untuk y : 2y = 6 atau y = 3

Grafik dari 3 + 2y = 6 merupakan garis seperti ditunjukkan dalam gambar. (0, b) perpotongan-y (a, 0) perpotongan- 3 3 + 2y = 6 2

GRAFIK DENGAN SKALA TIDAK SAMA Sebagai contoh, y = 3 untuk nilai antara 10 dan 10, akan mempunyai mempunyai nilai y antara (-10)3 = -1000, yang sulit digambarkan pada lembar kertas standar atau halaman cetak; satusatunya cara mengatasinya menggunakan skala yang tidak sama 8 y 140 y -2 2-2 2-140 -8

KATALOG GRAFIK-GRAFIK DASAR y y y = 2 y y = - 2 y = y 2 = -y 2 y y y = y = -

y y y = 3 y = 3 y y y = 1/ y = -1/

GARIS o *Kemiringan o Dalam pengamatan, tanjakan atau kemiringan suatu bukit didefinisikan sebagai perbandingan jarak horisontal (run) dengan ketinggian (rise). y P 2 ( 2, y 2 ) y2 y1 P 1 ( 1, y 1 ) (rise) 2 1 (run)

Definisi ; Jika P1(1,y1) dan P2(2,y2) adalah titik-titik pada bidang koordinat maka kemiringan m dari garis tersebut didefinisikan dengan m= rise = y2-y1 run 2-1 n Definisi diatas; tidak diterapkan untuk garis vertikal. Untuk garis vertikal akan diperoleh 2=1, sehingga memuat perbandingan dengan nol. Kemiringan garis vertikal tidak didefinisikan. Garis vertikal mempunyai kemiringan tak hingga

Contoh ; Pada tiap bagian tentukan kemiringan dan garis yang melalui (a) titik (6,2) dan titik (9,8) (b) titik (2,9) dan titik (4,3) (c) titik (-2,7) dan titik (5,7) n Penyelesaian n (a) m = 8-2/9-6 = 6/3 = 2 n (c) m = 7-7/5-(-2) = 0/7 = 0 n (b) m = 3-9/4-2 = -6/2 = -3 y P 2 ( 2, y 2 ) P 2 ( 2, y 2 ) y 2 y 1 P 1 ( 1, y 1 ) 2 1 P 1 ( 1, y 1 ) 2 1 Q y 2 y 1 Q

PERSAMAAN UMUM GARIS l Suatu persamaan yang dapat dinyatakan dalam bentuk l A + By + C = 0 l disebut persamaan derajat-pertama dalam dan y. Sebagai contoh, l 4 + 6y 5 = 0 l adalah persamaan derajat-pertama dalam dan y karena memiliki bentuk sesuai di atas dengan l A = 4, B = 6, C = -5 l Teorema : Setiap persamaan derajat-pertama dalam dan y mempunyai grafik berupa garis lurus, sebaliknya, setiap garis lurus dapat disajikan oleh suatu persamaan derajat-pertama dalam dan y. l Bentuk persamaan A + By + C = 0 kadang disebut persamaan umum dari suatu garis atau persamaan linear dalam dan y.

Contoh : Gambarkan grafik persamaan 3 4y + 12 = 0 y (0, 3) (-4, 0) 3 4y + 12 = 0

FUNGSI *KONSEP FUNGSI Luas lingkaran bergantung pada jari-jari r dengan persamaan A = πr2, sehingga dikatakan A fungsi dari r. Sebagai contoh, y = 4 + 1 mendefinisikan y sebagai fungsi dari sebab setiap nilai yang diberikan pada menentukan tepat satu nilai y. y = f () (dibaca y sama dengan f dari ) menyatakan bahwa y adalah fungsi dari. Besaran pada persamaan di atas disebut peubah bebas dari f dan y peubah tak bebas dari f.

" Contoh 1 : Jika f () = 3 4 maka " f (0) = 3.0 4 = - 4 " f (1) = (3.1) 4 = -1 " f (2) = (3.2) 4 = 2 " f (-3) = (3.-3) 4 = -13 " f ( 5) = (3. 5) 4 = 3 5 4 " Contoh 2 : Jika Φ() = 1 maka " 3 1 " Φ(3 7) = 1 = 1 = 1/6 " (3 7) 3 1 7 1 " Φ(5 1/6 ) = 1 = 1 " (5 1/6 ) 3 1 5 1

PEMBALIKAN PERAN DAN y " Sebagai contoh, = 4y 5 2y 3 + 7y 5 " merupakan bentuk = g(y) ; yaitu sebagai fungsi dari y. y dipandang sebagai peubah bebas dan sebagai peubah tak bebas. ". Sebagai contoh, persamaan " 3 + 2y = 6 " dapat ditulis " y = - 3 + 3 atau = - 2 y + 2 2 3 " Pemilihan bentuk tergantung pada bagaimana persamaan tersebut digunakan.

OPERASI-OPERASI PADA FUNGSI OPERASI-OPERASI ARITMATIK PADA FUNGSI Fungsi-fungsi dapat dijumlahkan, dikurangkan, digandakan dan dibagi. Sebagai contoh, jika f() = dan g() = 2, maka f() + g() = + 2 Rumus ini mendefinisikan suatu fungsi baru yang disebut jumlah dari f dan g dan dituliskan dengan f + g. Jadi (f + g)() = f() + g() = + 2

Definisi : Diketahui fungsi f dan g, maka rumusrumus untuk jumlah f + g, selisih f g, hasil kali f. g dan hasil bagi f /g didefinisikan dengan; (f + g)() = f() + g() (f g)() = f() g() (f. g)() = f(). g() (f /g)() = f() /g() Contoh : Dimisalkan f() = 1 + 2 dan g() = 1 Dapatkan (f + g)(), (f g)(), (f. g)(), (f /g)()

KOMPOSISI FUNGSI n Secara informal dinyatakan bahwa operasi komposisi dibentuk dengan mensubstitusikan beberapa fungsi pada peubah bebas dari fungsi lainnya. Sebagai contoh, misalkan f() = 2 dan g() = + 1 n Jika g() disubstitusikan pada dalam rumus f, diperoleh fungsi baru f(g()) = (g()) 2 = ( + 1) 2 n yang dituliskan dengan f o g. Jadi f o g = f(g()) = (g()) 2 = ( + 1) 2

Contoh :f() = 2 +3 dan g() =. Dapatkan; a). (f o g)() b).(gof)() P e n y e l e s a i a n (a) : f(g()) = () 2 + 3 = ( ) 2 + 3 =+3 (b);g(f())= ()= 2 +3

SATU CONTOH DALAM KALKULUS Contoh : Misalkan f() = 2 dan h adalah sebarang bilangan riil tak nol. Dapatkan ; f( + h) f() h dan sederhanakan Penyelesaian : f( + h) f() = ( + h) 2 2 = 2 + 2h + h 2 2 h h h = 2h + h 2 = h(2 + h) h h Dengan mencoret h dan dengan memperhatikan pembatasan pada h, diperoleh f( + h) f() = 2 + h, h 0

KLASIFIKASI FUNGSI l Fungsi yang paling sederhana disebut fungsi konstan. Contohnya ; f() = 3 maka l f(-1) = 3, f(0) = 3, f( 2) = 3, f(9) = 3 l Fungsi dengan bentuk c n, dimana c adalah suatu konstanta dan n adalah bilangan bulat tak negatif, disebut monomial dalam. l contoh 2 3, π 7, 4 0 (= 4), -6, 17 l Fungsi-fungsi 4 1/2 dan -3 bukan monomial sebab pangkat dari bukan bilangan bulat tak negatip.

POLINOMIAL DALAM X. Contoh : 3 + 4 + 7, 3 2 3 + 17, 9, 17 2, 5 Rumus untuk polinomial dalam adalah f() = a 0 + a 1 + a 2 2 + + a n n 3 atau f() = a n n + a n-1 n-1 + a n-2 n-2 + +a 0

Polinomial-polinomial derajat pertama, kedua, ke-tiga DESKRIPSI Polinomial linier Polinomial kuadratik Polinomial kubik RUMUS UMUM a 0 + a 1 (a 1 0) a 0 + a 1 + a 2 2 (a 2 0) a 0 + a 1 + a 2 2 + a 3 3 (a 3 0)

Fungsi rasional Adalah suatu fungsi yang dapat dinyatakan sebagai rasio dua polinomial. Contoh : X 5 2 2 + 1 X 2-4 + 1 A 0 + a 1 + a 2 + + a n n F() = b 0 + b 1 +b 2 2 + + b n n fungsi-fungsi aljabar eksplisit Contoh : f() = 2/3 = ( ) 2 dan g() = ( 3) 5 + 2 + 1

GRAFIK FUNGSI Definisi grafik fungsi Grafik suatu fungsi f pada bidang y didefinisikan sebagai grafik dari persamaan y = f(). Contoh : Buatlah sketsa grafik f() = + 2 2-2

Menggambar fungsi dengan geseran (translasi) Contoh : gambarkan grafik fungsi berikut ini ; y = 2 + 2 y = 2 2 y = (+2) 2 y = ( 2) 2

L I M I T " Kalkulus berpusat di sekitar dua permasalahan dasar ; " Masalah garis singgung y Garis singgung di P y = f () P( 0, y 0 )

Masalah luas Diberikan fungsi f, dapatkan luas antara grafik f dan suatu selang [a, b] pada sumbu-. luas sebenarnya dibawah kurva tersebut sebagai suatu nilai limit y y = f () a b

Limit menggambarkan perilaku suatu fungsi jika peubah bebasnya bergerak menuju suatu nilai tertentu. Contoh ; f() = sin /, dibuat tabel sbb ; f() = sin / f() = sin/ 1,0 0,84147-1,0 0,84147 0,9 0,87036-0.9 0,87036 0,8 0,89670-0,8 0,89670 0,7 0,92031-0,7 0,92031 0,6 0,94107-0,6 0,94107 0,5 0,95885-0,5 0,95885 0,4 0,97355-0,4 0,97355 0,3 0,98507-0,3 0,98507 0,2 0,99335-0,2 0,99335 0,1 0,99833-0,1 0,99833 0 0,99998 0 0,99998

BEBERAPA LIMIT DASAR Limit lim k = k à a lim k = k à + lim k = k à - lim = a à a lim = + à + lim = - à - Contoh lim 3 = 3 lim 3 = 3 à 2 à -2 lim 3 = 3 lim 0 = 0 à + à + lim 3 = 3 lim 0 = 0 à - à - lim = 5 lim = 0 lim = -2 à 5 à 0 à -2

Teorema : Dimisalkan lim di sini berarti satu dari limit-limit lim, lim, lim, lim atau lim. Jika à a à a- à a+ à + à - L 1 = lim f() dan L 2 = lim g() keduanya ada, maka (a) lim [ f() + g()] = lim f() + lim g() = L 1 + L 2 (b) lim [ f() g()] = lim f() lim g() = L 1 L 2 (c) lim [ f()g()] = lim f() lim g() = L 1 L 2 (d) lim f() = lim f() = L 1 jika L 2 0 g() lim g() L 2 (e) lim n f() = n lim f() = n L 1, untuk L 1 0 jika n genap.

Untuk sebarang fungsi yang banyaknya berhingga lim [ f 1 () + f 2 () + + f n ()] = lim f 1 () + lim f 2 () + + lim f n () lim [f 1 () f 2 () f n ()] = lim f 1 () lim f 2 () lim f n () lim [ f()] n = [lim f()] n lim n à a = [ lim ] n = a n à a Contoh : lim 4 = 3 4 = 81 à 3

LIMIT DARI POLINOMIAL UNTUK à a Contoh : Dapatkan lim 2 4 + 3 dan jelaskan à 5 setiap langkahnya. Penyelesaian : lim ( 2 4 + 3) = lim 2 lim 4 + lim 3 à 5 à 5 à 5 à 5 = lim 2 4 lim + lim 3 à 5 à 5 à 5 = 5 2 4(5) + 3 = 8

Contoh : Limit dari fungsi rasional untuk a dapatkan ; lim 5 3 + 4 2-3 Penyelesaian ; lim 5 3 + 4 = lim 5 3 + 4 = 5.2 3 + 4 = - 44 2-3 2 2 3 lim - 3 2

Limit pembilang dan penyebut mendekati nol " Dapatkan ; lim 2 4 2 2 " Lim 2 4 = lim ( 2)( + 2) = lim ( + 2) = 4 2 2 2-2 2

LIMIT YANG MEMUAT 1/X 1/ 1/ 1/ 1/ NILAI 1 10 100 1000 10.000. 1 0,1 0,01 0,001 0,0001. -1-10 -100-1000 -10.000. -1-0,1 -,001 -,001-0,0001.. 1 0,1 0,01 0,001 0,0001. 1 10 100 1000 10.000. -1-0,1-0,01-0,001-0,0001-1 -10-100 -1000-10.000 KESIMPULAN Untuk nilai dari 1/ turun menuju nol Untuk - nilai dari 1/ bertambah/naik menuju nol Untuk o + nilai dari 1/ naik menuju tanpa batas Untuk o - nilai dari 1/ turun menuju tanpa batas

Lim 1/ = +, lim 1/ = -, lim 1/ =0, lim 1/ = 0 o + o - + - y=1/ y=1/ Lim 1/ = +, lim 1/ =- o + o - lim 1/ =0, lim 1/ = 0 + -

Limit dari Polinomial untuk + atau - y y 8 8 y= y= 2-4 4-4 +4 Lim = +, lim 2 = +, + + Lim = -, lim 2 = +, - - y y 8 8 y= 3 y= 4-4 +4-4 +4

Lim n = +, untuk n = 1,2,3,4... + lim n = +, untuk n = 2,4,6... - = -, untuk n = 1,3,5... untuk perkalian n bilangan real negatip menghasilkan tanda berlawan. Tapi untuk perkalian n bilangan real positip menghasilkan tanda sama. Contoh ; lim 2 5 = + lim 2 5 = - + - lim -7 6 = - lim -7 6 = - + - 1 lim 1 = (lim ) n = 0, n + +

Limit Fungsi Rasional untuk + atau - -pembilang dan penyebut dibagi dengan pangkat tertinggi dari penyebut ; Contoh : Dapatkan ; lim + 3 6 + 5 8 Penyelesaian : bagi dengan untuk pembilang dan penyebut 3 + 5 6 8 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red still appears, you may have to delete the image and then insert it again. Lim = lim 3 + lim 5/ = lim 3 + 5 lim 1/ + + + + + = 1/2 lim 6 + lim 8/ lim 6 + 8 lim 1/

c d n m n m Metode cepat Limit Fungsi Rasional untuk + atau - Limit fungsi rasional untuk + atau -, tidak terpengaruh jika semua suku dlm pembilang dan penyebut dihilangkan kecuali suku pangkat tertinggi Lim d c 0 0 + c + d 1 1 +... + c +... + d = lim + + n m n m c d n m n m

Untuk contoh berikut gunakan rumus tersebut ; Selesaikan limit berikut ini : 1. lim + 2. lim + 3 2 + 1 4 3. lim 4 3 + 2 5 2

LIMIT YANG MEMUAT AKAR CONTOH, DAPATKAN ;limit + Penyelesaian ; 3 3 6 + 5 8 3 + 5 6 8 lim it 3 + 5 Limit = = 3 + 6 8 3 3 1 2

Bentuk limit akar lainnya ; n Selesaikan ; n A. limit 3 2 + 2 6 B.limit 3 2 + 2 6 n + - n Penyelesain ; n dengan cara manipuasi fungsi dengan membagi pembilang dan penyebut dengan n Dimana = 2

Soal-soal 2 1 1. Diberikan f() = {, >3 2, 3 dapatkan ; (a) f(-4) b) f(4) f(t 2 + 5) 2. Misalkan f() = 3/ dapatkan ; 1 1 a). f + f ( ) b.). f(2 ) + f 2 () 3. Dapatkan : f o g dan g o f dari pers.berikut ini ; a. f() = sin 2, g() = cos b. f() = 2 1+, g() = 1 4. Buat sketsa grafik fungsinya dari ; a). f() = 2 sin b). g() = { 2, ± 4 0, = 4

Soal-soal 5. a. lim 1 3 3 b. lim 1 2 2 + 5 3 6. a.lim 6 4 4 2 2 + + b. lim 4 16 2 2 4 7. a. lim 3 6 7 5 + b. lim + 2 2 3 7 5 8. a. Lim 3 2 5 2 + b. lim 2 6 7 2 y y + - + 9. lim 1 2 4 3 7 5 7 + s s s b. lim 3 7 6 3 3 + t t s + s +

Definisi ; Kontinuitas Suatu fungsi f dikatakan kontinu di titik c, jika syarat-syarat berikut dipenuhi ; 1. f(c) terdefinisi 2. lim f () ada c 3. lim f() = f(c) c Jika salah satu tidak terpenuhi, maka fungsi disebut : diskontinu

Contoh diskontinuitas y = f() y = f() c Pada gambar diatas terjadi lubang pada titik c Karena fs f tidak terdifinisi di ttk tsb (a) y = f() Pada gb diatas terjadi patahan pd grafiknya, fs f terdifinisi di c, tapi lim f() tdk ada (b) c c y = f() c Sama seperti gambar (b) c Pada gambar diatas, fs f terdifinisi di c dan lim f() ada, tetapi ada patahan pd ttk c, lim f() f(c)

Contoh Kontinu dan diskontinu 1. f ( ) = 2 4 2 2. g() = 2 4 2, 2 3, = 2