RANGKUMAN MATERI ALAT OPTIK

Ukuran: px
Mulai penontonan dengan halaman:

Download "RANGKUMAN MATERI ALAT OPTIK"

Transkripsi

1 RANGKUAN ATERI ALAT OPTIK Priip Huyg Dari uatu umbr cahaya, tiap aat lalu trbtuk muka glmbag / wavrt (tmpat kduduka titik-titik yag aya ama). Titik-titik pada muka glmbag ii brtidak bagai umbr titik (wavlt) glmbag yag baru, dibut umbr kudr, yag aka mghailka muka glmbag yag baru. Gari iggug muka-muka glmbag ii mjadi muka glmbag dari umbr glmbag primr. Glmbag cahaya adalah glmbag lktrmagtik, yag dalam pjalaraya tidak mmbutuhka mdium. Kcpata cahaya dalam hampa tlah dibuktika lh axwll tahu 865 adalah: c 3,0 x 0 8 m/ 0 0 Idk bia uatu baha/mdium adalah prbadiga atara kcpata glmbag cahaya dalam hampa ( c )dga kcpataya dalam baha/mdium ( v ) trbut. kcpata cahaya dalam hampa idk bia kcpata cahaya dalam mdium. Siat Cahaya: Jalaya luru, Dapat dipatulka, Dapat dibiaka, Dapat diuraika (mgalami dviai da dipri)., Dapat britrri, Dapat trdiraki, Dapat diplariaika. Yag tiga trakhir trkait dga iat cahaya bagai glmbag Hukum Pmatula da Pmbiaa Cahaya. Buyi Hukum Pmatula da Pmbiaa:. Siar datag, iar patul, iar bia da gari rmal bidag bata, trltak dalam atu bidag datar.. Utuk.Pmatula: Sudut datag (i) ama bar dga udut patul (r) i r 3. Utuk Pmbiaa: Prbadiga atara iu udut datag (i) dga iu udut bia (r ) mrupaka ilai yag kta (Hukum Slliu)..

2 Syarat trjadi pmatula mpura: iθ i iθ r v v a. Siar datag dari mdium rapat k rggag b. Sudut datagya lbih bar dari udut kriti. i δ mi + β ' i k dimaa ' Siar datag k prima aka trjadi dviai miimum bila: i r' da r' i / p i β Pmbtuka bayaga pada crmi datar, brlaku: Jarak bda () jarak bayaga ( ). Tiggi bda (h) tiggi bayaga (h ). Pmatula pada crmi ckug Trdapat tiga (3) iar itimwa yag didaarka pada hukum pmatula:. Siar datag jajar umbu utama, aka dipatulka mlalui titik Fku (Titik api). Siar datag mlalui titik Fku aka dipatulka jajar umbu utama Siar datag mlalui puat klgkuga crmi aka dipatulka kmbali k arah mula. Jarak kuya: R Prbara bayaga h' ' h Tada gati trlihat haya pada atu ii aja. a. Apabila gati pada ii kaa, artiya alah atu dari bda da bayaga brilai gati, atau briat maya., da ii kiri piti yag artiya bayagaya tgak. b. Apabila gatiya di ii kiri, maka bayagaya trbalik, da ttuya blah kaa piti. Jadi, bda da bayaga dua-duaya yata, atau dua-duaya maya.

3 Pmatula pada crmi cmbug. Brbda dga crmi ckug, pada crmi cmbug lalu trjadi bayaga maya. Nilai R da lalu gati, kara di blakag crmi. Pmbtuka bayaga pmbiaa pada prmukaa Trdapat hubuga atara jarak bda ()), jarak bayaga (( ), idk bia mdium ( da ) da R yaitu: + R Dga kttua, R < 0.bila arah pgukura R brlawaa dga arah iar bia, da R > 0 bila arah pgukura R arah dga arah iar bia. Pmbtuka bayaga akibat pmbiaa pada la Nilai rua kaa adalah : + l l ( R R ) ( R R ) Pmbtuka bayaga pada la cmbug Trdapat tiga (3) iar itimwa yag didaarka pada hukum pmbiaa. a. Siar datag jajar umbu utama, dbiaka mlalui titik Fku (F F) b. Siar datag mlalui puat la aka ditruka c. Siar datag mlalui titik Fku (F F). dibiaka jajar umbu utama. La gabuga ii trdiri dari dua la yaitu la prtama yag dibatai lh prmukaaa lgkug/datar dga radiu R da lgkug/datar dga radiu R. da la k dua lh prmukaa yag bigguga dga radiu R R da lgkug/datar dga radiu R. Jarak ku la gabuga adalah: gab +

4 Kkuata la (P) adalah kmampua dari uatu la utuk mmkuka iar yag datag padaya. Alat utuk mmbatu mata yag trdiri dari Lp, mikrkp, Tlkp, da lailai. P (m) Alat Optik Kacamata diguaka utuk mlg mata yag titik jauh / titik dkatya tidak ama dga mata rmal (mata cacat). acam-macam cacat mata da la kacamata utuk mlgya :. ypi : Ditlg drga la gati. Hyprmtrpia da Hyprpia : Ditlg dga la piti 3. Atigmatima Utuk mlgya diguaka la phrcylidric (la ilidri ri), Lp utuk mmbatu mata mmprbar udut padag mata. agulr Utuk mata tak akmdai udut padag dga alat ptik udut padag tapa alat agulr ta α ta α h h 5 agulr 5 lp 5 ikrkp Trdiri dari la bykti yag brugi mmprbar bda da la kulr atau la mata, yag ugiya mmprbar udut padag mata. Prbara mikrkp

5 Tlkp Tlkp brugi utuk mlihat bda-bda jauh. Diprluka la bykti yag jarak kuya bar, yag ugiya utuk mdkatka bda. Prbara tlkp Prbara la bjkti : L Prbara ttal la bjkti da kulr : ta ta Utuk mata tak akmdai

OPTIK GEOMETRI. 2) Sebuah titik di letakkan diantara 2 cermin yang membentuk sudut Jumlah bayangan yang terjadi

OPTIK GEOMETRI. 2) Sebuah titik di letakkan diantara 2 cermin yang membentuk sudut Jumlah bayangan yang terjadi OPTIK GEOETRI A. Pematula i r i r B. Cermi Datar ) Sebuah beda diletakka di depa cermi datar Siat bayaga : a. (jarak beda didepa cermi = jarak bayaga dibelakag cermi) b. (tiggi/bear beda = tiggi/bear bayaga)

Lebih terperinci

IR. STEVANUS ARIANTO 1

IR. STEVANUS ARIANTO 1 OPTIKA GEOMETRI Oleh : Ir. ARIANTO PEMANTULAN PEMBIASAN BERKAS CAHAYA CONTOH SOAL CONTOH SOAL INDEX BIAS INDEX BIAS RELATIF HUKUM PEMBIASAN MACAM PEMANTULAN HUKUM PEMANTULAN CONTOH SOAL CONTOH SOAL HUKUM

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter Pedahulua Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

BAB XV PEMBIASAN CAHAYA

BAB XV PEMBIASAN CAHAYA 243 BAB XV PEMBIASAN CAHAYA. Apakah yang dimakud dengan pembiaan cahaya? 2. Apakah yang dimakud indek bia? 3. Bagaimana iat-iat pembiaan cahaya? 4. Bagaimana pembentukan dan iat bayangan pada lena? 5.

Lebih terperinci

BAB IV DESKRIPSI ANALISIS DATA

BAB IV DESKRIPSI ANALISIS DATA BAB IV DESKRIPSI ANALISIS DATA A. Dekripi Data Peelitia ii megguaka peelitia ekperime, ubyek peelitiaya dibedaka mejadi dua kela, yaitu kela kotrol da kela ekperime. Kela kotrol pada peelitia ii merupaka

Lebih terperinci

Jl. Ganesha No. 10 Bandung, Telp. (022) , , Fax. (022) Homepage :

Jl. Ganesha No. 10 Bandung, Telp. (022) , , Fax. (022) Homepage : INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA Jl. Gaesha No. 0 Badug, 4032 Telp. (022) 2500834, 253427, Fax. (022) 2506452 Homepage : http://www.fi.itb.ac.id

Lebih terperinci

BAB 2 SOLUSI NUMERIK PERSAMAAN

BAB 2 SOLUSI NUMERIK PERSAMAAN BAB SOLUSI NUMERIK PERSAMAAN Dalam sais da rkayasa, kita srigkali harus mcari akar solusi dari prsamaa f 0. Jika f mrupaka fugsi poliomial liar atau kuadratis, solusi ksakya mudah utuk didapatka kara rumusya

Lebih terperinci

BAB 5 OPTIK FISIS. Prinsip Huygens : Setiap titik pada muka gelombang dapat menjadi sumber gelombang sekunder. 5.1 Interferensi

BAB 5 OPTIK FISIS. Prinsip Huygens : Setiap titik pada muka gelombang dapat menjadi sumber gelombang sekunder. 5.1 Interferensi BAB 5 OPTIK FISIS Prisip Huyges : Setiap titik pada muka gelombag dapat mejadi sumber gelombag sekuder. 5. Iterferesi - Iterferesi adalah gejala meyatuya dua atau lebih gelombag, membetuk gelombag yag

Lebih terperinci

XI. OPTIKA. Buku Ajar Fisika Dasar II Pendahuluan. Optika XI - 1

XI. OPTIKA. Buku Ajar Fisika Dasar II Pendahuluan. Optika XI - 1 XI - XI. OPTIKA. Pedahulua adalah ilmu yag mempelajari tetag cahaya atau lebih luasya lagi tetag spektrum elektromagetik. Karea itu aspek-aspek gelombag dari cahaya harus medapatka perhatia yag utama.

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

S - 1 Penggunaan Metode Bayesian Obyektif dalam Analisis Pengukuran Tingkat Kepuasan Pelanggan Berdasarkan Kuesioner

S - 1 Penggunaan Metode Bayesian Obyektif dalam Analisis Pengukuran Tingkat Kepuasan Pelanggan Berdasarkan Kuesioner PROSIDING ISBN : 978 979 6353 6 3 S - Pgguaa Mtod Baysia Obyktif dalam Aalisis Pgukura Tigkat Kpuasa Plagga Brdasarka Kusior Adi Stiawa Program Studi Matmatika, Fakultas Sais da Matmatika Uivrsitas Krist

Lebih terperinci

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga)

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga) INTEGRA FOURIER DISUSUN OEH : Klompok III (Tiga). Maruah (7 6). Yusi Oktavia (7 45 ) 3. Widya Elvi AS (7 45) 4. Azar Saarudi (7 454) 5. Irmaati (7 455) Mata Kuliah Dos Pgasuh Klas : Matmatika ajuta : Fadli,

Lebih terperinci

STRUKTUR BAJA I. Perhitungan Sambungan Las

STRUKTUR BAJA I. Perhitungan Sambungan Las STRUKTUR BAJA I rhituga Samuga Las Samuga Las Samuga as ada dua macam, yaitu: - as tumpu - as sudut Tgaga: σ as σ 0, 6σ a Las Tumpu: s s sa Utuk s s ---- ta as tumpu (a) s Utuk s s ----- ta as tumpu (a)

Lebih terperinci

Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta

Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta Oleh: Bambag Widodo, SPd SMA Negeri 9 Yogyakarta PETA KONSEP Prisip Superposisi Liier Sefase π π beda faseya : 0,2, 4,. beda litasa : 0,,2, 3,. terjadi iterferesi Kostruktif/ salig meguatka, amplitudo

Lebih terperinci

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT Catata Kuliah EL Aalisis Numrik BAB HAMPIRAN TAYLOR DAN ANALISIS GALAT. Pgatar Mtod Numrik Ktika kita mylsaika prsamaa-prsamaa matmatika di maa torma-tormaya masih dapat ditrapka, solusi aalitik atau solusi

Lebih terperinci

FIsika KARAKTERISTIK GELOMBANG. K e l a s. Kurikulum A. Pengertian Gelombang

FIsika KARAKTERISTIK GELOMBANG. K e l a s. Kurikulum A. Pengertian Gelombang Kurikulum 2013 FIika K e l a XI KARAKTERISTIK GELOMBANG Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami pengertian gelombang dan jeni-jeninya.

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. h asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. h asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pgrtia Turua Fugsi Diisi Turua ugsi adala ugsi yag ilaiya di c adala c c c asalka it ii ada. Coto Jika 3 4, maka turua di adala 3 4 3.. 4 3 4 4 4 4 4 4 3 3 3 4 Jika mmpuyai turua di

Lebih terperinci

ESTIMASI TITIK BAYESIAN OBYEKTIF

ESTIMASI TITIK BAYESIAN OBYEKTIF ESTIMASI TITIK BAYESIAN OBYEKTIF Adi Stiawa ([email protected]) Program Studi Matmatika, Fakultas Sais da Matmatika Uivrsitas Krist Satya Wacaa Jl Dipogoro 52-6 Salatiga 57, Idosia Abstrak Estimasi

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

Respon Frekuensi pada FIR Filter. Oleh:Tri Budi Sanrtoso ITS

Respon Frekuensi pada FIR Filter. Oleh:Tri Budi Sanrtoso ITS Rpo Frui pada FIR Filtr Olh:Tri Budi Sartoo Lab Siyal,, EEPIS-ITS ITS 1 Rpo iuoida pada itm FIR Suatu itm FIR diyataa: y[ ] b x[ ] h[ ] x[ ] 0 0 (1 Siyal iput cara umum mrupaa btu ompl dirit x[ ] x[ A

Lebih terperinci

BAB X PERENCANAAN HUBUNGAN BALOK- KOLOM (HBK)

BAB X PERENCANAAN HUBUNGAN BALOK- KOLOM (HBK) BAB X. Pereaaa Hubuga Balok Kolom GROUP BAB X PERENCANAAN HUBUNGAN BALOK- KOLOM (HBK) 10. Pereaaa Hubuga Balok Kolom Pereaaa hubuga balok kolom pada Struktur Ragka Pemikul Mome Khuu (SRPMK) dihitug berdaarka

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Pendugaan Parameter 1

Pendugaan Parameter 1 Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai

Lebih terperinci

Bab 5: Discrete Fourier Transform dan FFT

Bab 5: Discrete Fourier Transform dan FFT BAB 5 Dicrt Fourir Traform da FFT Bab 5: Dicrt Fourir Traform da FFT Dicrt Fourir Traform DFT. Dfiii Tuua Blaar Prta dapat mdfiiia DFT, da mghitugya. Utu mlaua aalii frui dari iyal watu dirit maa prlu

Lebih terperinci

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal BAB. Limit Fugsi Ole : Bambag Supraptoo, M.Si. Referesi : Kalkulus Edisi 9 Jilid (Varberg, Purcell, Rigdom) Hal 56 - Defiisi: Pegertia presisi tetag it Megataka bawa f ( ) L berarti bawa utuk tiap yag

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

ALAT-ALAT OPTIK 1 ALAT ALAT OPTIK. Kegunaan dari peralatan optik adalah untuk memperoleh penglihatan lebih baik,

ALAT-ALAT OPTIK 1 ALAT ALAT OPTIK. Kegunaan dari peralatan optik adalah untuk memperoleh penglihatan lebih baik, ALAT ALAT OPTIK. 8.4.1 MATA DAN KACA MATA. M A T A Kegunaan dari peralatan optik adalah untuk memperoleh penglihatan lebih baik, karena mata dapat dipandang ebagai alat optik maka pembahaan kita tentang

Lebih terperinci

Pengujian Hipotesis untuk selisih dua nilai tengah populasi

Pengujian Hipotesis untuk selisih dua nilai tengah populasi Pegujia Hipotei utuk eliih dua ilai tegah populai Hipotei Hipotei atu arah: H 0 : - 0 v H : - < 0 H 0 : - 0 v H : - > 0 Hipotei dua arah: H 0 : - = 0 v H : - 0 Statitik uji z h ( ( ) ) 0 Formula klik diketahui

Lebih terperinci

Sambungan Las. Sambungan las ada dua macam, yaitu: Tegangan: - las tumpul. - las sudut. las

Sambungan Las. Sambungan las ada dua macam, yaitu: Tegangan: - las tumpul. - las sudut. las Sambuga Las Sambuga as ada dua macam, yaitu: - as tumpu - as sudut Tgaga: as 0, 6 a Las Tumpu: s s s=a Utuk s = s ---- tba as tumpu (a) = s Utuk s s ----- tba as tumpu (a) = s mi as = a ---- = pajag as

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM 4.1 Peduga dega Kerel Seragam Pada bab ii diguaka peduga dega kerel eragam. Hal ii karea aya belum berail memperole ebara aimtotik dari

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan dengan Distribusi z (Tabel hal 175) Nilai α dan Selang kepercayaan yang lazim digunakan antara lain:

Pendugaan Parameter. Selang Kepercayaan dengan Distribusi z (Tabel hal 175) Nilai α dan Selang kepercayaan yang lazim digunakan antara lain: Peahulua Peugaa Parameter Peugaa Parameter Populai ilakuka ega megguaka ilai Statitik Sampel, Mial :. x iguaka ebagai peuga bagi µ. iguaka ebagai peuga bagi σ 3. p atau p$ iguaka ebagai peuga bagi π Peugaa

Lebih terperinci

TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t}

TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t} Elm Dasar Modl Atria. TEORI ANTRIAN Aktor utama customr da srvr. Elm dasar :. distribusi kdataga customr.. distribusi waktu playaa. 3. disai fasilitas playaa (sri, parall atau jariga). 4. disipli atria

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

5/12/2014. Tempat Kedudukan Akar(Root Locus Analysis) ROOT LOCUS ANALYSIS

5/12/2014. Tempat Kedudukan Akar(Root Locus Analysis) ROOT LOCUS ANALYSIS 5//04 Matakulah: T EDALI Tahu : 04 Pertemuaa 45 Tempat eduduka Akar(Root Lou Aaly) Learg Outome Pada akhr pertemua, dharapka mahawa aka mampu : meerapka aal da aplka Tempat keduduka Akar dalam dea tem

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI A II LANDASAN TEORI. Distribusi Pluag Diisi. (Walpol da M rs 995) Jika X adalah suatu variabl radom kotiu maka ugsi dsitas pluaga adalah suatu ugsi ag mmuhi kodisi: i. ; utuk x (- ) ii. = iii. = (.) Diisi.

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui Statitika, Vol. No., 5 6 Mei Diagram Kedali Simpaga Baku Ekak utuk Proe Berditribui Normal dega Parameter Diketahui Aceg Komarudi Mutaqi, Suwada Program Studi Statitika Fakulta MIPA Uiverita Ilam Badug,

Lebih terperinci

Analisis Tegangan dan Regangan

Analisis Tegangan dan Regangan Repect, Profeionalim, & Entrepreneurhip Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : 3 SKS Analii Tegangan dan Regangan Pertemuan 1, 13 Repect, Profeionalim, & Entrepreneurhip TIU : Mahaiwa dapat menganalii

Lebih terperinci

METODA ROOT LOCUS. Stabilitas suatu sistem tergantung pada akar-akar persamaan karakteristik. E(s) G(s) - B(s) H(s)

METODA ROOT LOCUS. Stabilitas suatu sistem tergantung pada akar-akar persamaan karakteristik. E(s) G(s) - B(s) H(s) METODA ROOT LOCUS item Stailita uatu item tergantung ada akar-akar eramaan karakteritik R E G C - B H Dari Gamar di ata Gamar. Blok Diagram Sitem Pengaturan OLTF adalah GH CLTF adalah C G R GH Akar-akar

Lebih terperinci

Cara Pengisian Pada File Excel

Cara Pengisian Pada File Excel Cara Pegisia Pada ile Excel Pada tabel realisasi da keuaga ias Pekerjaa Umum Bia Marga Propisi Jawa Timur ii terdiri dari beberapa kolom seperti dibawah ii: atker Tahu Bula Adapu cara pegisia dari masig-masig

Lebih terperinci

BAB 4 SISTEM DINAMIK ORDE-TINGGI

BAB 4 SISTEM DINAMIK ORDE-TINGGI Stem Damk Ore-Tgg 47 BAB 4 SISTEM DINAMI ORDE-TINI Stem amk ore-tgg gabuga ua atau lebh tem amk ore-atu. Cotoh:. Level cotrol paa tagk-tagk, bak yag tem o- terka oteractg ytem maupu yag terterak teractg

Lebih terperinci

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1)

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1) STATISTICS Cofidece Iterval (Retag Keyakia) Cofidece Iterval () Etimai Parameter Ditribui abilita memiliki ejumlah parameter. Parameter-parameter tb umumya tak diketahui. Nilai parameter terebut diperkiraka

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Pedugaa Parameter HAZMIRA YOZZA JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Kompetei meyebutka klp ifereia tatitika & ruag ligkupya mejelaka metode pedugaa klaik da yarat-yarat peduga yag baik pada pedugaa

Lebih terperinci

LEVELLING 1. Cara pengukuran PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Poliban Teknik Sipil 2010LEVELLING 1

LEVELLING 1. Cara pengukuran PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Poliban Teknik Sipil 2010LEVELLING 1 LEVELLING 1 PENGUKURAN SIPAT DATAR Salmai,, ST, MS, MT 21 PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Jika dua titik mempuyai ketiggia yag berbeda, dikataka mempuyai beda tiggi. Beda tiggi dapat

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

GERAK MELINGKAR. Disusun oleh : Ir. ARIANTO

GERAK MELINGKAR. Disusun oleh : Ir. ARIANTO GEAK MELINGKA Diuun oleh : Ir. AIANTO DEFINISI GEAK MELINGKA PENGETIAN 1 ADIAN PEIODA DAN FEKENSI KELAJUAN ANGULE DAN KELAJUAN LINIE HUBUNGAN ANTA ODA GEAK BENDA DI LUA DINDING MELINGKA GEAK BENDA DI DALAM

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

JURUSAN TEKNIK ELEKTRO UNIVERSITAS PENDIDIKAN INDONESIA

JURUSAN TEKNIK ELEKTRO UNIVERSITAS PENDIDIKAN INDONESIA FIIKA OPTIK Diuu oleh : Dr. Dr. Jaja Kutija, M.c. JUUAN TEKNIK ELEKTO UNIVEITA PENDIDIKAN INDONEIA 04 DAFTA II Halama DAFTA II... i Modul I Teori Tetag Cahaya... Modul II Pematula da Pembiaa berdaarka

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

Statistika. Besaran Statistik

Statistika. Besaran Statistik Statitika Beara Statitik Itiarto Statitical Meaure Commo tatitical meaure Meaure of cetral tedecy Mea Mode Media Meaure of variability Rage Variace Stadard deviatio Meaure of a idividual i a populatio

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

Himpunan Kritis Pada Graph Caterpillar

Himpunan Kritis Pada Graph Caterpillar 1 0 Himpua Kritis Pada Graph Caterpillar Chairul Imro, Budi Setiyoo, R. Simajutak, Edy T. Baskoro {imro-its,budi}@matematika.its.ac.id, {rio,ebaskoro}@ds.math.itb.ac.id Ues, Semarag, 4 7 Juli 006 Abstrak

Lebih terperinci

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Setiap pria da waita sukses adalah pemimpipemimpi besar. Mereka berimajiasi tetag masa depa mereka, berbuat sebaik mugki dalam setiap hal,

Lebih terperinci

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A.

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A. . Seorag pedagag membeli barag utuk dijual seharga Rp. 0.000,00. Bila pedagag tersebut meghedaki utug 0 %, maka barag tersebut harus dijual dega harga A. Rp. 00.000,00 D. Rp. 600.000,00 B. Rp. 00.000,00

Lebih terperinci

Meetuka Parameter Model Cauchy utuk A (1,587) Kosta Baha Polistirea Dzarril Maulidiyah 1, D. J. Djoko H Satjojo 1, Mauludi A Pamugkas 1, Ubaidillah 1 1) Jurusa Fisika FMIPA Uiv. Brawijaya Email: [email protected]

Lebih terperinci

BAB XIV CAHAYA DAN PEMANTULANYA

BAB XIV CAHAYA DAN PEMANTULANYA 227 BAB XIV CAHAYA DAN PEMANTULANYA. Apakah cahaya terebut? 2. Bagaimana ifat perambatan cahaya? 3. Bagaimana ifat pemantulan cahaya? 4. Bagaimana pembentukan dan ifat bayangan pada cermin? 5. Bagaimana

Lebih terperinci

BAB II LANDASAN TEORI. kesetimbangan, linearisasi, bilangan reproduksi dasar, analisa kestabilan, kriteria

BAB II LANDASAN TEORI. kesetimbangan, linearisasi, bilangan reproduksi dasar, analisa kestabilan, kriteria BAB II LANDASAN EORI Pada bab ii aka dibahas tori tori pdukug yag aka diguaka pada bab slajutya, atara lai modl matmatika, modl pidmik SIR klasik, ilai ig, prsamaaa difrsial, sistm prsamaa difrsial, titik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih -- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa

Lebih terperinci

SIFAT SIFAT TRANSFORMASI LINEAR DARI R KE R

SIFAT SIFAT TRANSFORMASI LINEAR DARI R KE R SIF SIF RNSFORMSI LINER m DRI R KE R Diuu utuk memeuhi uga Mata Kuliah ljabar Liear Doe Pegampu : Dr. Suroo, M. Pd Diuu oleh : Kelompok. ge Chritie rii ( 84.55 ). dik Setyo Nugroho ( 84.65 ). Beti Lutvi

Lebih terperinci

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk OPERASI ALJABAR. Ubahlah betuk kuadrat di bawah ii mejadi betuk ( a b) c 4 8 4 4 0 4. Uraika betuk di bawah ii ( 5)( ) [ ]( )( )( ) [ ]( ) ( ) ( ). Tetuka ilai a, b, da c, jika ( )( 4 )( ) = a b c 6 (

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

MODUL PRAKTIKUM Statistik Inferens (MIK 411)

MODUL PRAKTIKUM Statistik Inferens (MIK 411) MODUL PRAKTIKUM tatistik Iferes (MIK 4) Disusu Oleh Nada Aula Rumaa, KM., MKM UNIVERITA EA UNGGUL 07 Revisi (tgl) : 0 (0 Desember 07) / 4 UJI T DEPENDEN/BERPAANGAN (PAIRED T TET) A. Pedahulua Uji t berpasaga,

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

Metode Statistika Pertemuan XI-XII

Metode Statistika Pertemuan XI-XII /4/0 Metode Statitika Pertemua XI-XII Statitika Ifereia: Pegujia Hipotei Populai : = 0 Butuh pembuktia berdaarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : 5 Ok, itu adalah pegujia hipotei,

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

b. peluang terjadinya peristiwa yang diperhatikan mendekati nol (p 0). c. perkalian n.p =, sehingga p = /n.

b. peluang terjadinya peristiwa yang diperhatikan mendekati nol (p 0). c. perkalian n.p =, sehingga p = /n. 0 DISTRIBUSI POISSO Distribusi Poisso ii diprolh dari distribusi biomial, apabila dalam distribusi biomial brlau syarat-syarat sbagai briut: a. baya pgulaga sprimya sagat bsar ( ). b. pluag trjadiya pristiwa

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

BAB III : ALAT-ALAT OPTIK

BAB III : ALAT-ALAT OPTIK BAB III : ALAT-ALAT OPTIK Pada bab ini mmbaa tntang bbrapa lat optik yang mnggunakan lna, prti : mata dan kacamata (lna kontak), lup (kaca pmbar), mikrokop, tropong (tlkop). III.. Mata manuia dan Kacamata

Lebih terperinci

MENENTUKAN KEANDALAN PADA MODEL STRESS-STRENGTH DARI SATU KOMPONEN

MENENTUKAN KEANDALAN PADA MODEL STRESS-STRENGTH DARI SATU KOMPONEN MENENTUKAN KEANDALAN PADA MODEL TRE-TRENGTH DARI ATU KOMPONEN ROMAN IREGAR Fakulta Matatika Da Ilu Pgtahua Jurua Matatika Uivrita uatra Utara PENDAHULUAN Praiga ag aki ktat di duia bii da idutri utuk adaa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

PDP 03 Tipe Data, Operator dan Expresi

PDP 03 Tipe Data, Operator dan Expresi PDP 03 Tipe Data, Operator da Expresi Petujuk Umum: Selesaika semua permasalaha di bawah ii dega alat batu compiler gcc (migw atau code block) Sebagai peujag utuk megerjaka pdp 03 di lab. Maka ada harus

Lebih terperinci

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES) rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1

Lebih terperinci

INFERENSI STATISTIS: UJI HIPOTESIS

INFERENSI STATISTIS: UJI HIPOTESIS Uiversitas Gadjah Mada Fakultas Tekik Departeme Tekik Sipil da Ligkuga INFERENSI STATISTIS: UJI HIPOTESIS Statistika da Probabilitas Model Matematis vs Pegukura komparasi garis teoretik (prediksi meurut

Lebih terperinci

BAB IV VIBRASI KRISTAL

BAB IV VIBRASI KRISTAL BAB IV VIBRASI KRISTAL MATERI : Gtaran (Vibrai) Krital 4..praaan dipri untuk krital brbai atu ato. 4..kcpatan klopok (group vlocity) 4.3 praaan dipri untuk krital brbai dua ato. 4.4.cabang optik 4.5.cabang

Lebih terperinci

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga ESTIMASI Salah atu aek utuk mearik keimula megeai uatu oulai dega memakai amel yag diambil dari oulai terebut megguaka etimai (eakira) Jika arameter oulai diimbolka dega θ maka θ yag tidak diketahui hargaya

Lebih terperinci

1. Pendahuluan. Materi 3 Pengujuan Hipotesis

1. Pendahuluan. Materi 3 Pengujuan Hipotesis Materi 3 Pegujua Hiotesis. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu atau lebih oulasi) Kebeara suatu hiotesis diuji dega megguaka statistik samel hiotesis

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHuesa (Volume 3 No 3) 014 MINIMUM PENUTUP TITIK DAN MINIMUM PENUTUP SISI PADA GRAF KOMPLIT DAN GRAF BIPARTIT KOMPLIT Yessi Riskiada Kusumawardai Program Studi S1 Matematika, Fakultas Matematika da Ilmu

Lebih terperinci

TEORI ANTRIAN. A. Definisi dan Unsur-unsur Dasar Model Antrian

TEORI ANTRIAN. A. Definisi dan Unsur-unsur Dasar Model Antrian TEORI ANTRIAN Tori atria mrupaka studi matmatis mgai atria atau waitig lis yag di dalamya disdiaka bbrapa altratif modl matmatika yag dapat diguaka utuk mtuka bbrapa karaktristik da optimasi dalam pgambila

Lebih terperinci