TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.
|
|
|
- Ade Santoso
- 7 tahun lalu
- Tontonan:
Transkripsi
1 TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa kedua ruas sama jika da haya jika a = b. (c) Misalka utuk setiap ɛ > 0 berlaku a ɛ < b < a + ɛ. Buktika a = b. (d) Jika a, b R, da utuk setiap ε > 0 berlaku: a < b + ε, tujukka bahwa a b. (e) Jika a < x < b da a < y < b, buktika x y < b a. Berika iterpretasi geometrisya. (f) Jika a, b R, buktika bahwa: a 2 + b 2 = 0 jika da haya jika a = 0 = b. (g) Jika 0 a < b, tujukka bahwa: a 2 ab < b 2 (h) Jika 0 < a < b, tujukka bahwa: a < ab < b da 0 < <. b a (2) Misalka S R. Buktika S terbatas jika da haya jika terdapat K R sehigga x K utuk setiap x S. (3) Misalka S R terbatas di bawah. Buktika if S = H jika da haya jika utuk setiap ɛ > 0 terdapat x S sehigga x < H + ɛ. (4) Misalka S R himpua tak kosog yag terbatas di bawah. Buktika if S = sup{ x : x S}. (5) Misalka S R memuat suatu batas atasya, tujukka bahwa batas atas ii adalah suprimum dari S. (6) Misalka S R himpua terbatas da S 0 S himpua tak kosog. Buktika (7) Jika if S if S 0 sup S 0 sup S. S = { m } m, N, hitug sup(s) da if(s), jelaska jawaba ada. (8) Misalka A da B subhimpua tak kosog dari R yag terbatas di atas, da A + B = {a + b : a A, b B}. Buktika A + B terbatas di atas da sup(a + B) = sup A + sup B.
2 2 NOVEMBER 207 (9) Misalka H subhimpua bilaga real positif yag tak kosog da G = {/x : x H}. Jika H terbatas di atas, buktika bahwa G terbatas di bawah da if G = sup H. (0) Buktika if{ : N} = 0. 2 () Misalka x, y R da x < y. Buktika terdapat bilaga rasioal r sehigga x < r < y. (2) Buktika bahwa 5 2 dapat dibagi oleh 8 utuk semua N. (3) Dega megguaka iduksi matematika, buktika Ketaksamaa Beroulli berikut: ( + x) + x, da x >. Jika c k > 0, k =, 2,...,. Buktika: 2 (c + c c ) ( ). c c 2 c (4) Diketahui A da B dua subset bilaga real yag memeuhi, x A da y B berlaku: x < y. Tujukka bahwa: sup(a) if(b). Berika cotoh peyagkal utuk sup(a) < if(b). (5) Diketahui A da terbatas. sup(a) = α A. Tujukka bahwa jika β < α maka terdapat tak berhigga bayakya x A yag memeuhi: β < x < α. Apakah hal ii tetap bear jika sup(a) A? (6) Misalka a da b adalah bilaga-bilaga real dega a > 0. Jika S da terbatas diatas, tujukka bahwa: sup(ax + b) = a sup(s) + b. x S (7) Diketahui x > 0 bilaga real. Buktika terdapat secara tuggal N sehigga: x <. (8) Misalka x L,. Jika L < K tujukka bahwa ada N sehigga: jika > N maka x < K. (9) Buktika bahwa: (a) (b) (c) x 2 x =. x 2 x + x x + x + = 2. x x =.
3 (d) TUGAS ANALISIS REAL LANJUT 3 x 5 =. x x + 3 (20) Misalka f : R R da c R. Tujukka: f(x) = L f(x + c) = L. x c x 0 (2) Misalka c adalah titik akumulasi dari A R da f : R R sedemikia sehigga: x c f(x)2 = L. Tujukka: bahwa jika L = 0 maka = L. Tujukka bahwa x c jika L 0 maka it tersebut belum tetu ada. (22) Misalka { x x Q f(x) = 0 x Q Tujukka bahwa f puya it haya di 0. (23) Misalka f, g adalah dua fugsi yag terdefiisi di R da c R. (a) Tujukka bahwa jika f da f + g mempuyai it di c maka g mempuyai it di c. (b) Jika f da fg mempuyai it di c, apakah g mempuyai it di c? Apa syarat yag harus ditambahka agar g mempuyai it di c. (24) (a) Tujukka bahwa tidak ada. (b) Tujukka bahwa ( ) si, ( ) x si, ada. (c) Syarat apa yag diperluka oleh f agar ( f(x) si ada. (25) Padag fugsi: f(x) = ), jika 0 x = m, dega (m, ) = 0 0 < x Q, Tetuka di maa fugsi f kotiu. (26) Tetuka di maa fugsi-fugsi berikut kotiu, (a) f(x) = [x 2 ] (b) f(x) = [ x ] (c) f(x) = [si x]
4 4 NOVEMBER 207 (27) Misalka f : R R yag kotiu di c da misalka f(c) > 0. Tujukka bahwa ada δ > 0 sehigga f positif di x c < δ. (28) Fugsi f : R R dikataka additive jika f(x+y) = f(x)+f(y) utuk setiap x, y. Buktika bahwa jika f kotiu pada sebuah titik, maka f kotiu di maa-maa. (29) Misalka f, g : R R kotiu di c, da misalka h(x) = sup{f(x), g(x)}. Tujukka h(x) = (f(x) + g(x)) + f(x) g(x). Kemudia tujukka h kotiu di 2 2 c. (30) Buktika bahwa: Jika I adalah iterval tutup yag terbatas da f : I R kotiu di I. Maka f kotiu seragam di I. (3) Tujukka bahwa f(x) = x kotiu seragam di [0, ]. (32) Fugsi f dikataka Lipschitz jika, terdapat L R sehigga: f(x) f(y) L x y, utuk setiap x, y. Tujukka bahwa fugsi yag memeuhi kodisi Lipschitz di I kotiu seragam di I. (33) Tujukka bahwa f(x) = x 2 Lipschitz di [0, 2]. (34) Periksa apakah: f(x) = x Lipschitz di [0, ]. (35) Buktika peryataa berikut: jika f kotiu pada [0, ) da kotiu seragam di [a, ), maka f kotiu seragam di [0, ). Tujukka bahwa x kotiu seragam di [0, ). (36) Tujukka bahwa: ( ) 0,. + (37) Misalka 0 < b <. Tujukka bahwa: (b ) 0 jika. (38) Tujukka ( ) 2 0,.! Tujukka utuk sebarag x > 0, ( ) x 0,.! (39) Tujukka: ( ) si 0,. (40) Misalka 0 < r < da x + x < r, utuk setiap. Buktika (x ) Cauchy. (4) Diketahui x + = ( 3 x + 2 ), N. 7 Misalka 0 < x <. (a) Tujukka 0 < x < utuk setiap. (b) Tujukka (x ) kotraktif.
5 TUGAS ANALISIS REAL LANJUT 5 (c) Tujukka bahwa jika (x ) r,, maka r memeuhi: r 3 7r + 2 = 0 (42) Misalka fugsi f : R R didefiisika sebagai { x 2 jika x Q f(x) := 0 jika x R Q. Buktika bahwa f mempuyai turua di 0, da kemudia cari f (0). (43) Misalka fugsi berilai real f mempuyai turua di c R da f(c) = 0. Buktika bahwa fugsi g(x) := f(x) mempuyai turua di c jika da haya jika f (c) = 0. (44) Dega megguaka Teorema Nilai Rata-rata, buktika bahwa si x si y x y utuk semua x, y R. (45) Misalka fugsi-fugsi f da g mempuyai turua di R da f(0) = g(0). Jika f (x) g (x) utuk setiap x 0, buktika bahwa f(x) g(x) utuk setiap x 0. (46) Buktika Teorema Nilai Rata-rata Cauchy: Jika f da g kotiu pada [a, b] da diferesiabel pada (a, b). Maka terdapat c (a, b) sehigga: f(b) f(a) g(b) g(a) = f (c) g (c) (47) Buktika (dega megguaka iduksi Matematika) bahwa: ( ) (fg) () (x) = f k k (x)g (k) (x). (48) Teorema Taylor: Misalka = da misalka f : [a, b] R sedemikia sehigga f dapat dituruka secara kotiu pada [a, b], da f (+) terdefiisi di (a, b). Jika x [a, b], maka utuk setiap x [a, b] terdapat c di atara x da x, sehigga: f(x) = f(x ) + f (k) (x ) (x x ) + f (+) (c) k! ( + )! (x x ) +. Misalka f(x) = + x. (a) Terapka Teorema Taylor utuk =. (b) Terapka Teorema Taylor utuk = 2. (c) Tujukka: + 2 x 8 x2 f(x) + 2 x.
HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.
Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =
Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan.
Bab Sistem Bilaga Real.. Aksioma Bilaga Real Misalka adalah himpua bilaga real, P himpua bilaga positif da fugsi + da. dari ke da asumsika memeuhi aksioma-aksioma berikut: Aksioma Lapaga Utuk semua bilaga
LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n
LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara
Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:
BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif
BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET
Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...
SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT
Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI
PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR
PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM [email protected] Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas
II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <
II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi
,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.
PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,
BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada
8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia
Distribusi Pendekatan (Limiting Distributions)
Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,
Hendra Gunawan. 12 Februari 2014
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg
ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS
DIKTAT KULIAH ANALISIS PENGANTAR ANALISIS REAL I (Itroductio to Real Aalysis I) M Zaki Riyato, SSi e-mail: zaki@mailugmacid http://zakimathwebid COPYRIGHT 008-009 Pegatar Aalisis Real I HALAMAN PERSEMBAHAN
Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4
Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika
PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR
PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM [email protected] Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember
2 BARISAN BILANGAN REAL
2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu
Pendiferensialan. Modul 1 PENDAHULUAN
Modul Pediferesiala Prof R Soematri D PENDAHULUAN alam modul ii dibahas fugsi berilai real yag didefiisika pada suatu iterval Defiisi derivatif suatu fugsi dimulai dega derivatif di suatu titik, kemudia
Pengertian Secara Intuisi
Pegertia Secara Ituisi Coba Gambarka grafik fugsi-fugsi berikut.. f ( ) +, pada [0,].. ) pada [0, ] da.. Dari grafik fugsi yag kamu peroleh, apa yag dapat kamu kataka tetag ilai-ilai ketiga fugsi tersebut
TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas
II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi
Definisi Integral Tentu
Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.
Sistem Bilangan Real. Modul 1 PENDAHULUAN
Modul 1 Sistem Bilaga Real Prof. R. Soematri D PENDAHULUAN alam modul ii aka dibahas sifat-sifat pokok bilaga real. Meskipu pembaca sudah akrab bear dega bilaga real amu modul ii aka membahasya lebih cermat
An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3
SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a
KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd
KELUARGA EKSPONENSIAL Utuk Memeuhi Tugas Mata Kuliah Statistika Iferesial Dose Pegampu: Nedra Mursetya Somasih Dwipa, M.Pd Disusu Oleh : V A4 Kelompok. Nuuk Rohaigsih (444009). Rochayati (444000) 3. Siam
Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi;
Modul 1 Operasi Dr. Ahmad Muchlis B PENDAHULUAN erapakah 97531 86042? Kalau Ada megguaka kalkulator, jawabaya amat bergatug pada tipe kalkulator yag Ada pakai. 9 Kalkulator ilmiah Casio fx-250 memberika
Teorema Nilai Rata-rata
Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi
Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT
Prosidig Semirata2015 bidag MIPA BKS-PTN Barat Uiversitas Tajugpura Potiaak EKSISTENSI DAN KETUNGGALAN TITIK TETAP DARI PEMETAAN KANNAN DI RUANG MODULAR (THE EXISTENCE AND UNIQUENESS OF A FIXED POINT FOR
An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3
BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a
KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN
KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.
B a b 1 I s y a r a t
34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat
Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram
Statistika Matematika Soal da embahasa M Samy Baladram Bab 4 Ubiasedess, Cosistecy, ad Limitig istributios Ubiasedess, Cosistecy, ad Limitig istributios 41 Ekspektasi Fugsi Key oits Ṫeorema 411 Jika T
Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,
Himpunan/Selang Kekonvergenan
oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)
LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang
2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua
Solusi Soal OSN 2012 Matematika SMA/MA Hari Pertama
Solusi Soal OSN Matematika SMA/MA Hari Pertama Soal 1. Buktika bahwa utuk sebarag bilaga asli a da b, bilaga adalah bilaga bulat geap tak egatif. = F P B (a, b) + KP K (a, b) a b Solusi. Pertama aka dibuktika
BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian
BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,
BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum
BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme
BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang
BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya
KEKONVERGENAN BARISAN DI DALAM RUANG
KEKONVERGENAN BARISAN DI DALAM RUANG FUNGSI KONTINU C[a, b] Firdaus Ubaidillah 1, Soepara Darmawijaya, Ch. Rii Idrati 1 Jurusa Matematika FMIPA Uiversitas Gadjah Mada Yogyakarta e-mail: [email protected]
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret
Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut
6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi
6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0
HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN
Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI
RUANG METRIK DENGAN SIFAT BOLA TERTUTUPNYA KOMPAK
Rahmawati Y. Ruag Metrik dega Sifat RUANG METRIK DENGAN SIFAT BOLA TERTUTUPNYA KOMPAK RAHMAWATI YULIYANI rahmawatiyuliyai @yahoo.co.id 08561299991 Program studi Tekik Iformatika, Fakultas Tekik, Matematika,
BARISAN TAK HINGGA DAN DERET TAK HINGGA
BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi
Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i
INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval
terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2
Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama
Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1
Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga
Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna
Iduksi matematik utuk memecahka problema deret da bilaga bulat betuk kuadrat sempura Oleh: Sutopo Jurusa Fisika FMIPA UM [email protected] Ditulis pada sekitar bula Februari 2011. Diuggah pada 3 Desember
MATEMATIKA DISKRIT FUNGSI
1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari
BARISAN DAN DERET. Nurdinintya Athari (NDT)
BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga
BAB I PENDAHULUAN. A. Latar Belakang Masalah
BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur
InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013
IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, [email protected]
Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.
Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A
PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati
Jural Matematika Muri da Terapa εpsilo Vol. 07, No.01, (2013), Hal. 33 44 PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Program Studi Matematika Fakultas Sais da Tekologi UIN Sua Kalijaga Yogyakarta
1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu
Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier
Deret Fourier. Modul 1 PENDAHULUAN
Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi
ANALISIS RIIL I. Disusun oleh Bambang Hendriya Guswanto, S.Si., M.Si. Siti Rahmah Nurshiami, S.Si., M.Si.
ANALISIS RIIL I Disusu oleh Bambag Hedriya Guswato, S.Si., M.Si. Siti Rahmah Nurshiami, S.Si., M.Si. PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM FAKULTAS SAINS DAN TEKNIK UNIVERSITAS
II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)
3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real
BAB : I SISTEM BILANGAN REAL
Ruag Barisa BAB : I SISTEM BILANGAN REAL Sebelum membicaraka barisa da deret aka dibicaraka lebih dahulu tetag bilaga real karea barisa da deret yag aka dibicaraka adalah barisa da deret bilaga real. Sistem
Kalkulus Rekayasa Hayati DERET
Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti
BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta
BAB II LANDASAN TEORI Pada bab ii aka dibahas megeai defiisi suatu rig serta beberaa sifat yag dierluka dalam embahasa oliomial ermutasi Pejelasa megeai rig dimulai dega defiisi dari suatu sistem matematika
PERTEMUAN 13. VEKTOR dalam R 3
PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde
Sistem Bilangan Kompleks (Bagian Ketiga)
Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:[email protected], [email protected] (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar
BAB II TINJAUAN PUSTAKA
3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi
BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA
BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,
BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga
BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya
BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya
5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Optimasi 2.1.1. Pegertia Optimasi Optimasi (Optimizatio) adalah aktivitas utuk medapatka hasil terbaik di bawah keadaa yag diberika. Tujua akhir dari semua aktivitas tersebut
Distribusi Sampel, Likelihood dan Penaksir
BAB 1 Distribusi Sampel, Likelihood da Peaksir 1.1 Sampel Acak Misalka X 1, X 2,..., X sampel acak berukura (radom sample of size ). Fugsi peluag -variat ya adalah f X1,X 2,,X (x 1, x 2,..., x ) = f Xi
Ruang Vektor. Modul 1 PENDAHULUAN
Modul Ruag Vektor Dr. Irawati D PENDAHULUAN alam buku materi okok Aljabar II ii kita secara erlaha-laha mulai megubah edekata kita dari edekata secara komutasi mejadi edekata yag lebih umum. Yag dimaksud
BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran
BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi
Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta
Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh
Koleksi Soal dan. Pembahasan MaG-D. Oleh: Arini Soesatyo Putri. Universitas Islam Negeri Sunan Gunung Djati Bandung [Date]
Koleksi Soal da Pembahasa MaG-D Oleh: Arii Soesatyo Putri Uiversitas Islam Negeri Sua Guug Djati Badug 06 [Date] Kata Pegatar Bismillahirrahmaairrahiim... Mathematical Aalysis ad Geometry Day (MaG-D) merupaka
I. PENDAHULUAN II. LANDASAN TEORI
I PENDAHULUAN 1 Latar belakag Model pertumbuha Solow-Swa (the Solow-Swa growth model) atau disebut juga model eoklasik (the eo-classical model) pertama kali dikembagka pada tahu 195 oleh Robert Solow da
ANALISIS REAL I DAN II
Catata Selama Kuliah ANALISIS REAL I DAN II Sebuah terjemaha dari sebagia buku Itroductios to Real Aalysis karaga Robert G. Bartle Drs. Jafar., M.Si Prited by: Abu Musa Al Khwarizmi KOMUNITAS STUDI AL
ANALISIS REAL I. Disusun Oleh : La Ode Muhammad Agush Salam. Dipergunakan untuk Mahasiswa S1 Prog. Studi Pend. Matematika Jurusan PMIPA
Had Out MATA KULIAH ANALISIS REAL I Disusu Oleh : La Ode Muhammad Agush Salam Diperguaka utuk Mahasiswa S Prog. Studi Ped. Matematika Jurusa PMIPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALUOLEO
JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN :
JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : 1410-8518 SYARAT CUKUP AGAR SUATU FUNGSI TERINTEGRAL HENSTOCK MUTLAK DI DALAM RUANG METRIK KOMPAK LOKAL Mauharawati Jurusa Matematika
I. DERET TAKHINGGA, DERET PANGKAT
I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da
RUANG VEKTOR MATRIKS FUZZY
RUANG VEKTOR MATRIKS FUZZY Siti Robiatul Adawiyah 1, Rade Sulaima 2 1 Jurusa Matematika, Fakultas Matematika da Ilmu Pegetahua Alam, Uiversitas Negeri Surabaya, 60231 2 Jurusa Matematika, Fakultas Matematika
FOURIER Juni 2014, Vol. 3, No. 1, TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI
FOURIER Jui 04, Vol. 3, No., 4 6 TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI Malahayati, Mutia Utami, Program Studi Matematika Fakultas Sais da tekologi
BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas.
BAB 1 PENDAHUUAN 1.1 atar Belakag Pada dasarya masalah optimisasi adalah suatu masalah utuk membuat ilai fugsi tujua mejadi maksimum atau miimum dega memperhatika pembatas pembatas yag ada. Dalam aplikasi
ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25
head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90
Solusi Numerik Persamaan Transport
Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa
BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1
BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka
Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3
Matematika Terapa Dose : Zaid Romegar Mair ST. M.Cs Pertemua 3 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Koloel Wahid Udi Lk. I Kel. Kayuara Sekayu 30711 web:www.polsky.ac.id mail: [email protected] Tel.
Hendra Gunawan. 14 Februari 2014
MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga
Semigrup Matriks Admitting Struktur Ring
Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: [email protected] bstrak Diberika adalah rig komutatif dega eleme satua da adalah
Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:
Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira
1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A.
. Seorag pedagag membeli barag utuk dijual seharga Rp. 0.000,00. Bila pedagag tersebut meghedaki utug 0 %, maka barag tersebut harus dijual dega harga A. Rp. 00.000,00 D. Rp. 600.000,00 B. Rp. 00.000,00
REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA
Jural Matematika UNAND Vol. 3 No. Hal. 7 34 ISSN : 33 9 c Jurusa Matematika FMIPA UNAND REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA EKA RAHMI KAHAR, DODI DEVIANTO Program
Barisan dan Deret. Modul 1 PENDAHULUAN
Modul Barisa da Deret Reto Wika Tyasig Ada P PENDAHULUAN okok bahasa dalam modul ii terdiri atas dua kegiata belajar. Yag pertama tetag barisa, yag kedua tetag deret da cotoh-cotoh pemakaia deret. Pembahasa
BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.
BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha
Barisan Dan Deret Arimatika
Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta
BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah
BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk
BAB I INDUKSI MATEMATIK. Beberapa Prinsip Induksi Matematik (PIM) yang perlu diketahui: 1. Sederhana 2. Yang dirampatkan (generalized) 3.
BAB I INDUKSI MATEMATIK Iduksi matematik merupaka salah satu metode pembuktia yag baku di dalam matematika, yag meyataka kebeara dari suatu peryataa tetag semua bilaga asli atau kadag-kadag semua bilaga
oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka
Itegral etu Jika fugsi kotiu yag didefiisika utuk, kita bagi selag mejadi selag bagia berlebar sama Misalka berupa titik ujug selag bagia ii da pilih titik sampel di dalam selag bagia ii, sehigga terletak
theresiaveni.wordpress.com NAMA : KELAS :
theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu
