Bab IV Persamaan Integral Batas
|
|
|
- Glenna Lie
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Bab IV Persamaan Integral Batas IV.1 Konvensi simbol ebelum memulai pembahasan, kita akan memperkenalkan sejumlah konvensi simbol yang akan digunakan pada tesis ini. imbol x, y, x 0 akan digunakan untuk menyatakan titik di R sebuah vektor di R. edang lambang subscript x 1, x untuk menyatakan komponen dari titik x = x 1, x ). edangkan simbol u superscript) u i menyatakan tensor di R. IV. Penentuan olusi Fundamental Pada bab 4 sebelumnya telah diperoleh persamaan dasar tokes Nonhomogen persamaan konstitutif ) dari proses deformasi benang viscoelastis menjadi droplet. P + η u = De t ) τ dengan u = u d dan τ = τ d. Melalui persamaan di atas, kita akan menentukan solusi fundamental solusi Green. Persamaan di atas ditulis dalam bentuk P + η u + gδx x 0 ) = 0 4.1) dengan u menyatakan solusi Green, dan x menyatakan titik pengamatan Observation Point) dan x 0 menyatakan titik sumber ource Point), P menyatakan tekanan isotropik, η menunjukkan kekentalan, g menyatakan vektor konstan, dan δ menyatakan fungsi Delta Dirac. Misal solusi Green dari persamaan 4.1) dituliskan dalam bentuk u i x) = 1 4πη G ijx, x 0 )g j 4.) dengan x 0 titik sumber, x titik pengamatan, dan G ij menyatakan fungsi Green, solusi fundamental propagator. Fungsi Green G ij yang kita punyai adalah fungsi Green pada aliran tak berhingga yang dibatasi oleh suatu permukaan. Titik pengamatan Observation Point) x menghampiri titik sumber x 0 sedemikian sehingga semua fungsi Green menghasilkan perilaku singularitas. Melalui teorema Divergensi Gauss yang dikenakan pada persamaan 4.) dan adanya persamaan kekontinuan, maka kita peroleh persamaan i u i = 0 G ij x, x 0 ) = 0 4.3)
2 7 dengan mengintegralkan persamaan 4.3) di luar domain yang dibatasi oleh permukaan, dan melalui teorema Divergensi Gauss diperoleh G ij x, x 0 )n i d = 0 4.4) titik sumber x 0 dapat diletakkan diluar, di dalam di batas domain. Misal kecepatan, tekanan, dan medan tegangan dinyatakan dalam bentuk fungsi Green P x) = 1 4π p jx, x 0 )g j π ij x) = 1 4πη T ijkx, x 0 )g j 4.5) yang mana u, p, T menyatakan tensor kecepatan, vektor tekanan, dan tensor tegangan yang dihubungkan dengan fungsi Green. Telah diasumsikan bahwa fluida tak-newton bersifat incompressible dan ada pengaruh pressure terhadap fluida tak-newton. Dengan demikian tensor tegangan total dapat dinyatakan π ij = P δ ij + τ ij 4.6) dengan ui x) τ ij = η + u ) kx) x k 4.7) Melalui persamaan 4.5)-4.7) diperoleh tensor tegangan yang dinyatakan dalam bentuk fungsi Green T. T ijk x, x 0 ) = δ ik p j x, x 0 ) + Gij x, x 0 ) + G ) kj x, x 0 ) x k 4.8) Masing-masing sisi diturunkan terhadap x i sedemikian sehingga diperoleh T ijk = p j x k + G kj x i 4.9) dan melalui persamaan 4.5) dan persamaan 4.1) 1 p j p j p ) ) j 1 u i + η + u j 4π x j x k 4πη x i x j ) + u k = gδx x x 0 ) k dan diperoleh p j x k + G kj x k melalui persamaan 4.9)-4.10) diperoleh = 4πδ kj δx x 0 ) 4.10) T ijk = T kij = 4πδ kj δx x 0 ) 4.11)
3 8 Kita memanfaatkan teorema Divergensi Gauss pada masing-masing sisi persamaan 4.11) diperoleh 4πδ T jk ijk d = T ijk x x 0 )n i x)dx) = πδ jk 4.1) 0 Pandang persamaan tokes Nonhomogen 4.1). Persamaan 4.1) juga persamaan Poisson. olusi fundamental dari persamaan Poisson sama dengan solusi fundamental dari persamaan Laplace. olusi fundamental dari persamaan Laplace akibatnya jj u i = δx x 0 ) 4.13) u i = 1 lnr) 4.14) π jj u i = 1 π jj lnr) = δx x 0 ) δx x 0 ) = 1 π ln r 4.15) dengan r = x x 0. Untuk menyeimbangkan dimensi dari persamaan 4.1), kita dapat menuliskan vektor tekanan pressure) P P = 1 ln r) g 4.16) π vektor tegangan g = g 1 i + g j) dan r = x 1 + x, akibatnya diperoleh ) P = 1 g 1 x 1 + g x π x 1 + x x 1 + x elanjutnya, persamaan 4.1) dapat ditulis dalam bentuk u = 1 η P gδx x 0)) 4.17) divergensi dari persamaan 4.17), diperoleh u ) = 1 η P + g δx x 0 )) ) P = 0 dengan mengambil Laplace dari persamaan 4.18), diperoleh 4.18) η 4 u P ) + g δx x 0 ) = 0
4 9 dari persamaan kekontinuan diperoleh persamaan biharmonik 4 u = ) dan dari persamaan 4.14)-4.16) ) 1 u = π g ln r ) 1 g π ln r 4.0) akibatnya diperoleh u = 1 πη g I ) lnr) 4.1) Penentuan solusi di atas dapat dilihat pada lampiran. Misal: u = 1 η g I ) H 4.) akibatnya u = ) 1 g I ) H ) 4.3) η dari persamaan 4.0) dan 4.1), diperoleh H = 1 lnr) 4.4) π dengan memberikan operator Laplace pada persamaan 4.3), berlaku persamaan biharmonik Melalui teorema Green kedua, diperoleh 4 H = δ x x 0 ) 4.5) H = 1 8π r lnr) 1) 4.6) dengan mensubstitusi nilai H ke persamaan 4.1), diperoleh persamaan di atas dapat ditulis u = 1 8πη g I ) r lnr) 1) 4.7) u = 1 8πη G ijg j G menyatakan fungsi Green solusi fundamental. G ij r) = 1 δ ik ln r + r ) ir k 4π r 4.8)
5 30 elanjutnya, kita akan menentukan tensor tegangan τ. Telah dijelaskan pada bab sebelumnya ui π ij = P δ ij + η + u ) j 4.9) x j dan pada subbab di atas diperoleh persamaan dari tensor kecepatan dengan r = x 1 + x dan u = 1 8πη )g I ) r ln r 1) P = 1 π x 1 g 1 + x g x 1 + x x 1 + x ) Misal π ij = 1 4π T ijkg j T ijk = 4ππ ik g j ui 4π P δ ij + η + u )) j g j 4.30) x j dengan mensubstitusi persamaan vektor kecepatan u dan vektor tekanan p ke persamaan 4.9), diperoleh persamaan T ijk = 1 π r i r j r k r 4 T ijk merupakan solusi fundamental bagi persamaan IV.3 P + η u + gδx x 0 ) = 0 Persamaan Integral Batas Pada sub bagian ini, kita akan membangun solusi untuk kecepatan dengan membangun persamaan integral batas. Diasumsikan bahwa tensor tegangan tak Newton awal diketahui η jj u l) i i P l) = De j t τ l) ij dalam 4.31) [ τ ij t j ] = 0 kondisi dinamik pada batas 4.3) 1 [ τ ij n j ] = σ + 1 ) n i kondisi dinamik pada 4.33) R 1 R dx i dt = u i kondisi kinematik padac. 4.34) τ ij 0) = Qδ ij tensor tegangan awal 4.35)
6 31 Teknik standar untuk merepresentasikan solusi masalah syarat batas di atas adalah dengan memanfaatkan solusi fundamentalnya. G ijk r) = 1 δ ik ln r + r ) ir k 4.36) 4π r T ijk r) = 1 r i r j r k 4.37) π r 4 Untuk melakukan itu, pertama, kita mentransformasi sistem koordinat Ox 1 x ke dalam sistem koordinat polar. Daerah batas didiskritisasi menjadi beberapa segmen garis. Titik pada batas dinamakan node. Akibatnya dengan mempertahankan orientasi positifnya, kita dapat menuliskan persamaan integral batasnya. jj u i y; x)u i y; x)d [ jj u i i P De j t τ ij ] d 4.38) [ jj u i y; x) i P De j t τ ij ] u i y; x) d 4.39) diperoleh persamaan integral batas c ik u i x) K ijk r)u i y)n j y)d 1 λ = 1 λ i P u i y; x)d De j t τ ij u i y; x)d 4.40) J ik r)κy)n i y)d J ik r) j τ NN ij y)d Integral domain pada persamaan integral di atas diuraikan melalui teorema Divergensi Gauss J ik r) j τ NN ij y)d = τ ij j J ik r)d + J ik r) τ ij r) n j y)) d Karena tensor tegangan tak Newton kontinu pada batas dan memiliki turunan terbatas maka ) τij NN n j = 0, akibatnya c ik u i x) K ijk r)u i y)n j y)d 1 J ik r)κn i y)d 4.41) λ = 1 τ ij r) j Jik NN y)d 4.4) λ Persamaan integral batas 4.4) mengandung dua kasus, yakni
7 3 a. Elemen batas sel internal tidak mengandung titik evaluasi. Elemen ini dinamakan elemen regular. K ijk r)u i y)n j y)d b. Elemen batas sel internal mengandung titik evaluasi. Elemen ini dinamakan elemen singular. J ik r)κn i y)d τ ij r) j J ik y)d Pada kasus pertama jarak antara titik evaluasi x dengan y harus lebih besar dari nol. Penentuan integral batas K ijkr)u i y)n j y)d menggunakan metode Gauss Legendre 1 titik. Berikut pada kasus kedua, jarak antara titik evaluasi x dengan y harus sama dengan nol. Penentuan integral batas J ikκn i d dan integral domain De t j u i y; x)d melalui penentuan solusi eksak.
Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton
Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton III.1 Stress dan Strain Salah satu hal yang penting dalam pengkonstruksian model proses deformasi suatu fluida adalah
Bab II Konsep Dasar Metode Elemen Batas
Bab II Konsep Dasar Metode Elemen Batas II.1 II.1.1 Kalkulus Dasar Teorema Gradien Misal menyatakan domain pada ruang dimensi dua dan menyatakan batas i x + j 2 2 x 2 + 2 2 elanjutnya, penentuan integral
Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik
Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Moh. Ivan Azis September 13, 2011 Daftar Isi 1 Pendahuluan 1 2 Masalah nilai batas 1 3 Persamaan integral batas 2 4 Hasil
ABSTRAK METODE ELEMEN BATAS UNTUK PENYELESAIAN MASALAH PEMBENTUKAN DROPLET PADA BENANG FLUIDA VISCOELASTIS A.WAHIDAH.AK NIM : 20105013.
ABSTRAK METODE ELEMEN BATAS UNTUK PENYELESAIAN MASALAH PEMBENTUKAN DROPLET PADA BENANG FLUIDA VISCOELASTIS Oleh A.WAHIDAH.AK NIM : 20105013 Proses deformasi benang fluida tak Newton (Viscoelastis) menjadi
METODE ELEMEN BATAS (MEB) UNTUK SOLUSI NUMERIK MASALAH STATIK DARI MATERIAL ELASTIS ISOTROPIK TAK-HOMOGEN
METODE ELEMEN BATAS (MEB) UNTUK SOLUSI NUMERIK MASALAH STATIK DARI MATERIAL ELASTIS ISOTROPIK TAK-HOMOGEN Mohammad Ivan Azis ) ABSTRACT A boundary element method is derived for the solution of static boundary
BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA
BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA 3.1 Deskripsi Masalah Permasalahan yang dibahas di dalam Tugas Akhir ini adalah mengenai aliran fluida yang mengalir keluar melalui sebuah celah
Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang
Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang Moh. Ivan Azis September 13, 2011 Abstrak Metode Elemen Batas untuk masalah perambatan gelombang akustik (harmonis) berhasil diturunkan pada tulisan
Integral Garis. Sesi XIII INTEGRAL 12/7/2015
2//25 Mata Kuliah : Matematika Rekayasa Lanjut Kode MK : TK 85 Pengampu : Achfas Zacoeb esi XIII INTEGRAL e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 823398339 Integral Garis Dari Gambar.,
BAB IV HASIL DAN PEMBAHASAN. dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik V dan
BAB IV HASIL DAN PEMBAHASAN 4. 1 Analisis Elektrohidrodinamik Analisis elektrohidrodinamik dimulai dengan mengevaluasi medan listrik dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan
Metode Elemen Batas (MEB) untuk Model Konduksi Panas
Metode Elemen Batas MEB) untuk Model Konduksi Panas Moh. Ivan Azis October 14, 011 Abstrak Metode Elemen Batas untuk masalah konduksi panas pada media ortotropik berhasil ditemukan pada tulisan ini. Solusi
BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak
BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan
DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)
DIKTAT KULIAH (IE-308) BAB 6 INTEGRAL GARIS Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI -
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1.Dasar Fluida Dalam buku yang berjudul Fundamental of Fluid Mechanics karya Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, dan Wade W. Huebsch, fluida didefinisikan sebagai
SATUAN ACARA PERKULIAHAN
Topik bahasan : Analisis Vektor Tujuan pembelajaran umum : Mahasiswa memahami kalkulus vektor dan dapat menerapkannya dalam bidang rekayasa. Jumlah pertemuan : 3 (tiga ) kali 1, 2 dan 3 1. Mengingat mbali
Teorema Divergensi, Teorema Stokes, dan Teorema Green
TEOREMA DIVERGENSI, STOKES, DAN GREEN Materi pokok pertemuan ke 13: 1. Teorema divergensi Gauss URAIAN MATERI Untuk memudahkan perhitungan seringkali dibutuhkan penyederhanaan bentuk integral yang berdasarkan
Model Perpindahan dan Penyebaran Pollutan
Model Perpindahan dan Penyebaran Pollutan Moh. Ivan Azis Abstrak Metode Elemen Batas diturunkan untuk penentuan solusi masalah nilai batas yang membangun model Model Perpindahan dan Penyebaran Pollutan.
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan
Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas
Teori Relativitas Mirza Satriawan December 7, 2010 Fluida Ideal dalam Relativitas Khusus Quiz 1 Tuliskan perumusan kelestarian jumlah partikel dengan memakai vektor-4 fluks jumlah partikel. 2 Tuliskan
Integral Vektor. (Pertemuan VII) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TK 47 Matematika III Integral Vektor (Pertemuan VII) Dr. AZ Jurusan Teknik ipil Fakultas Teknik Universitas Brawijaya Teorema Gauss Definisi : Jika V adalah volume yang dibatasi oleh suatu permukaan tertutup
Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks
Kode Mata Kuliah : TE 318 SKS : 3 Matematika Teknik I Prasarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Tujuan : Mahasiswa memahami permasalahan teknik dalam bentuk PD atau integral, serta
A suatu fungsi vektor yang mempunyai derivatif kontinu, maka
TEOEM DIVEGENI Teorema divergensi Gauss pabila V suatu ruang dibatasi dengan luasan tertutup, dan suatu fungsi vektor ang mempunai derivatif kontinu, maka V. dv.n d. d dengan n positif normal dari pada.
BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR
3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik
BAB 2 PDB Linier Order Satu 2.1 PDB Linier Order Satu Homogen PDB order satu dapat dinyatakan dalam atau dalam bentuk derivatif = f(x y) dx M(x y)dx +
BAB 1 Konsep Dasar 1 BAB 2 PDB Linier Order Satu 2.1 PDB Linier Order Satu Homogen PDB order satu dapat dinyatakan dalam atau dalam bentuk derivatif = f(x y) dx M(x y)dx + N(x y) = 0 (2.1) 2.1.1 PDB Eksak
PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016)
PEMBAHAAN KII-KII OAL UA KALKULU PEUBAH BANYAK (TA 5/6) Arini oesatyo Putri DEEMBER 3, 5 UNIVERITA ILAM NEGERI UNAN GUNUNG DJATI BANDUNG Pembahasan oal Kisi-Kisi UA Kalkulus Peubah Banyak Tahun Ajaran
UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK
UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +
METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT
METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT Agusman Sahari. 1 1 Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Dalam paper ini mendeskripsikan tentang solusi masalah transport polutan
Teori Ensambel. Bab Rapat Ruang Fase
Bab 2 Teori Ensambel 2.1 Rapat Ruang Fase Dalam bagian sebelumnya, kita telah menghitung sifat makroskopis dari suatu sistem terisolasi dengan nilai E, V dan N tertentu. Sekarang kita akan membangun suatu
PDP linear orde 2 Agus Yodi Gunawan
PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan
Fisika Matematika II 2011/2012
Fisika Matematika II 2/22 diterjemahkan dari: Mathematical Methods for Engineers and Scientists, 2, dan 3 K. T. Tang Penterjemah: Imamal Muttaqien dibantu oleh: Adam, Ma rifatush Sholiha, Nina Yunia, Yudi
II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.
2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS
GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)
Revisi ke: Tanggal: GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) SPMI-UNDIP/GBPP/xx.xx.xx/xxx Disetujui oleh Dekan Fak Mata Kuliah : Fisika Matematika II Kode/ Bobot : PAF 215/4 sks Deskripsi singkat : Mata
Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)
Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan
Teori Dasar Gelombang Gravitasi
Bab 2 Teori Dasar Gelombang Gravitasi 2.1 Gravitasi terlinearisasi Gravitasi terlinearisasi merupakan pendekatan yang memadai ketika metrik ruang waktu, g ab, terdeviasi sedikit dari metrik datar, η ab
BAB IV PERSAMAAN INTEGRAL FREDHOLM BENTUK KEDUA
BAB IV PERSAMAAN INTEGRAL FREDHOLM BENTUK KEDUA Pada bab III, kita telah memandang permasalahan aliran fluida pada celah pintu air dan memodelkan persamaan integralnya. Dari situ kita memperoleh sebuah
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Di antara beberapa disiplin ilmu, fisika
BAB 2 KAJIAN PUSTAKA DAN LANDASAN TEORI. Dalam beberapa tahun terakhir, model graph secara statistik telah diaplikasikan
BAB 2 KAJIAN PUSTAKA DAN LANDASAN TEORI Dalam beberapa tahun terakhir, model graph secara statistik telah diaplikasikan dengan baik pada aplikasi pengenalan suara, pengolahan citra (Willsky, 2002 dan Choi
iii Banda Aceh, Nopember 2008 Sabri, ST., MT
ii PRAKATA Buku ini menyajikan pembahasan dasar mengenai getaran mekanik dan ditulis untuk mereka yang baru belajar getaran. Getaran yang dibahas di sini adalah getaran linier, yaitu getaran yang persamaan
SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT
SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU Vanny Octary 1 Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika
BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK
BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK Dalam bab ini, kita akan mengamati perambatan gelombang pada fluida ideal dengan dasar rata. Perhatikan gambar di bawah ini. Gambar 3.1 Aliran Fluida pada Dasar
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Air merupakan kebutuhan penting bagi pertumbuhan tanaman. Namun, pada saat musim kemarau tiba atau di daerah dengan intensitas hujan rendah, ketersediaan air
Catatan Kuliah FI2101 Fisika Matematik IA
Khairul Basar atatan Kuliah FI2101 Fisika Matematik IA Semester I 2015-2016 Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung Bab 6 Analisa Vektor 6.1 Perkalian Vektor Pada bagian
FI2202 Listrik Magnet: Magnetostatika
FI2202 Listrik Magnet: Magnetostatika Agus Suroso 1 Sem. 2 2017-2018 Topik magnetostatika diawali dengan pembahasan mengenai gaya Lorentz (yaitu interaksi antara medan magnetik dengan muatan listrik yang
ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor
ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran
3.1 Integral Kirchhoff Pada Media Homogen
BAB 3 PEMBAHASAN 3.1 Integral Kirchhoff Pada Media Homogen Pada proses pengolahan data, seringkali kita menemui kesulitan untuk mendapatkan suatu informasi di posisi tertentu. Oleh karena itu, dibutuhkan
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan
Persamaan Di erensial Orde-2
oki neswan FMIPA-ITB Persamaan Di erensial Orde- Persamaan diferensial orde-n adalah persamaan yang melibatkan x; y; dan turunan-turunan y; dengan yang paling tinggi adalah turunan ke-n: F x; y; y ; y
Program Studi Teknik Mesin S1
SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMATIKA TEKNIK 2 KODE/SKS : IT042227 / 2 SKS Pertemuan Pokok Bahasan dan TIU 1 Pendahuluan Mahasiswa mengerti tentang mata kuliah Matematika Teknik 2 : bahan ajar,
Fourier Analysis & Its Applications in PDEs - Part II
Fourier Analysis & Its Applications in PDEs Hendra Gunawan http://personal.fmipa.itb.ac.id/hgunawan/ Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA WIDE 2010 5-6 August
BAB 2 PDB Linier Order Satu 2
BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan
FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2)
INTEGRAL, Vol. 1 No. 1, Maret 5 FUNGSI DELTA DIRAC Marwan Wirianto 1) dan Wono Setya Budhi ) 1) Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Katolik Parahyangan, Bandung
Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc
KALKULUS III Teorema Integral (Stokes Theorem) Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc 1 Stokes Theorem Review : Pada pembahasan sebelumnya, kepadatan sirkulasi atau curl pada bidang dua dimensi
Program Studi Teknik Mesin S1
SATUAN ACARA PERKULIAHAN MATA KULIAH : KALKULUS 3 KODE / SKS : IT042219 / 2 SKS Pertemuan Pokok Bahasan dan TIU Geometri pada bidang, vektor vektor pada bidang : pendekatan secara geometrik dan secara
BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR
A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang memiliki banyak manfaat, diantaranya sebagai salah satu ilmu bantu yang sangat penting dalam kehidupan
MA1201 KALKULUS 2A Do maths and you see the world
Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis
DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)
DIKTAT KULIAH (IE-308) BAB 7 INTEGRAL PERMUKAAN Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI
BAB II TINJAUAN PUSTAKA. Persoalan yang melibatkan model matematika sering kali muncul dalam
BAB II TINJAUAN PUSTAKA 2.1 Komputasi 2.1.1. Metode Analitik dan metode Numerik Persoalan yang melibatkan model matematika sering kali muncul dalam berbagai ilmu pengetahuan, seperti dalam bidang fisika,
perpindahan, kita peroleh persamaan differensial berikut :
1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan
Matematika Teknik Dasar-2 5 Perkalian Antar Vektor. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya
Matematika Teknik Dasar-2 5 Perkalian Antar Vektor Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Komponen-Komponen Vektor dalam Suku-Suku Vektor Satuan Artinya, OP = a (di sepanjang
Soal dan Solusi Materi Elektrostatika
P Soal dan Solusi Materi Elektrostatika 1. Tentukan medan listrik pada jarak z di atas salah satu ujung kawat sepanjang L yang membawa muatan berdistribusi seragam dengan rapat muatan, seperti gambar berikut
BAB III MENENTUKAN PRIORITAS DALAM AHP. Wharton School of Business University of Pennsylvania pada sekitar tahun 1970-an
BAB III MENENTUKAN PRIORITAS DALAM AHP Pada bab ini dibahas mengenai AHP yang dikembangkan oleh Thomas L Saaty di Wharton School of Business University of Pennsylvania pada sekitar tahun 970-an dan baru
Kontrol Optimum. MKO dengan Horizon Takhingga, Syarat Cukup. Toni Bakhtiar. Departemen Matematika IPB. Februari 2014
Kontrol Optimum MKO dengan Horizon Takhingga, Syarat Cukup Toni Bakhtiar Departemen Matematika IPB Februari 2014 [email protected] (IPB) MAT332 Kontrol Optimum Februari 2014 1 / 23 Outline MKO dengan
KALKULUS MULTIVARIABEL II
Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang
L mba b ng n g d a d n n n o n t o asi Ve V ktor
ANALISIS VEKTOR Vektor dan Skalar Macam-macam macam kuantitas dalam fisika seperti: temperatur, volume, dan kelajuan dapat ditentukan dengan angka riil (nyata). Kuantitas seperti disebut dengan skalar.
BAB III TENSOR. Berdasarkan uraian bab sebelumnya yang telah menjelaskan beberapa
BAB III TENSOR Berdasarkan uraian bab sebelumnya yang telah menjelaskan beberapa istilah dan materi pendukung yang berkaitan dengan tensor, pada bab ini akan dijelaskan pengertian dasar dari tensor. Tensor
Bab III Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Konstan
Ba III Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Konstan Pada a ini, akan diahas penyearan oksigen di pemuluh kapiler dan jaringan, dimana sel-sel di jaringan diasumsikan mengkonsumsi oksigen
BAB 2 TINJAUAN PUSTAKA
BAB TINJAUAN PUSTAKA.1 Model Aliran Dua-Fase Nonekulibrium pada Media Berpori Penelitian ini merupakan kajian ulang terhadap penelitian yang telah dilakukan oleh Juanes (008), dalam tulisannya yang berjudul
MODEL MATEMATIKA MANIPULATOR FLEKSIBEL
Bab 3 MODEL MATEMATIKA MANIPULATOR FLEKSIBEL Pada Bab ini akan dibahas mengenai model matematika dari manipulator fleksibel. Model matematika yang akan diturunkan akan menggunakan teori balok Timoshenko
9. Teori Aproksimasi
44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,
Bab IV Gravitasi Braneworld IV.1 Pendahuluan
Bab IV Gravitasi Braneworld IV.1 Pendahuluan Pada Bab III, telah diperoleh sebuah deskripsi teori efektif 4-dimensi dari teori 5- dimensi dengan cara mengkompaktifikasi pada orbifold dalam kerangka kerja
SATUAN ACARA PEMBELAJARAN (SAP)
SATUAN ACARA PEMBELAJARAN (SAP) Disetujui oleh Revisi ke:. Tanggal:. SPMI-UNDIP/SAP/xx.xx.xx/xxx Dekan Fak. Mata Kuliah : Fisika Matematika II Kode/ Bobot : PAF 215 /4 sks Pertemuan ke : 1 A. Kompetensi
PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30)
5 η = η di z = η (9) z x x z x x Dalam (Grosen 99) kondisi kinematik (9) kondisi dinamik () dapat dinyatakan dalam sistem Hamiltonian : δ H t = () δη δ H ηt = δ Dengan mengenalkan variabel baru u = x maka
Bab II Teori Pendukung
Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan difusi dan sebaran temperatur pada geometri menjadi hal yang penting dalam berbagai bidang, seperti bidang fisika, kimia maupun kedokteran. Persamaan
TURUNAN DALAM RUANG DIMENSI-n
TURUNAN DALAM RUANG DIMENSI-n A. Fungsi Dua Variabel atau Lebih Dalam subbab ini, fungsi dua variabel atau lebih dikaji dari tiga sudut pandang: secara verbal (melalui uraian dalam kata-kata) secara aljabar
Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL
Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu
Solusi Persamaan Linier Simultan
Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem
Pemodelan Matematika dan Metode Numerik
Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari
BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari
BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode
BAB Solusi Persamaan Fungsi Polinomial
BAB Konsep Dasar BAB Solusi Persamaan Fungsi Polinomial BAB Interpolasi dan Aproksimasi Polinomial. Norm Denisi.. (Norm vektor) Norm vektor adalah pemetaan dari suatu fungsi terhadap setiap x IR N yang
DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)
DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan
Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA
Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert
TRANSPOR POLUTAN. April 14. Pollutan Transport
TRANSPOR POLUTAN April 14 Pollutan Transport 2 Transpor Polutan Persamaan Konveksi-Difusi Penyelesaian Analitis Rerensi Graf and Altinakar, 1998, Fluvial Hydraulics, Chapter 8, pp. 517-609, J. Wiley and
Aplikasi Aljabar Lanjar pada Metode Numerik
Aplikasi Aljabar Lanjar pada Metode Numerik IF223 Aljabar Geometri Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF223 Aljabar Geometri Apa itu Metode Numerik? Numerik: berhubungan
3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17,
3. ORBIT KEPLERIAN AS 2201 Mekanika Benda Langit 1 3.1 PENDAHULUAN Mekanika Newton pada mulanya dimanfaatkan untuk menentukan gerak orbit benda dalam Tatasurya. Misalkan Matahari bermassa M pada titik
11. Konvolusi. Misalkan f dan g fungsi yang terdefinisi pada R. Konvolusi dari f dan g adalah fungsi f g yang didefinisikan sebagai.
11. Konvolusi Operasi konvolusi yang akan kita bahas di sini sebetulnya pernah kita jumpai pada pembahasan deret Fourier (ketika membuktikan kekonvergenan jumlah parsialnya). Operasi konvolusi merupakan
I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.
I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk
METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT
METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika
Matematika Dasar INTEGRAL PERMUKAAN
Matematika asar INTEGRAL PERMUKAAN Misal suatu permukaan yang dinyatakan dengan persamaan z = f( x,y ) dan merupakan proyeksi pada bidang XOY. Bila diberikan lapangan vektor F( x,y,z ) = f( x,y,z ) i +
Metode elemen batas untuk menyelesaikan masalah perpindahan panas
Metode elemen batas untuk menyelesaikan masalah perpindahan panas Imam Solekhudin 1 Jurusan Matematika FMIPA UGM Yogyakarta, [email protected] Abstrak. Permasalahan perpindahan panas keadaan stasioner dimodelkan
Kunci Jawaban Quis 1 (Bab 1,2 dan 3) tipe 1
Kunci Jawaban Quis (Bab,2 dan 3) tipe. Tentukan representasi deret Taylor dari f(x) = ln( + x) di sekitar a =. Tuliskan sampai turunan ke 5. Kemudian estimasilah ln(.2) dengan menggunakan deret Taylor
BAB II KONSEP DAN TEORI DASAR. Pada bab ini akan dibahas beberapa konsep dan teori dasar yang. digunakan untuk membahas bab-bab selanjutnya.
BAB II KONSEP DAN TEORI DASAR Pada bab ini akan dibahas beberapa konsep dan teori dasar yang digunakan untuk membahas bab-bab selanjutnya. 2.1 BIOINFORMATIKA Keberhasilan para ahli dalam mengungkap barisan
1 BAB 4 ANALISIS DAN BAHASAN
1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5
