Persamaan Di erensial Orde-2

Ukuran: px
Mulai penontonan dengan halaman:

Download "Persamaan Di erensial Orde-2"

Transkripsi

1 oki neswan FMIPA-ITB Persamaan Di erensial Orde- Persamaan diferensial orde-n adalah persamaan yang melibatkan x; y; dan turunan-turunan y; dengan yang paling tinggi adalah turunan ke-n: F x; y; y ; y ; : : : ; y (n) = : (1) Contoh (ln y) y + (y ) = ln x adalah persamaan linear orde-3. Masalah utama adalah menentukan solusi dari persamaan diferensial (1) ; yaitu fungsi y = g (x) yang memenuhi (1) ; yaitu jika disubstitusikan untuk y; maka persamaan ini dipenuhi, F x; g; g ; g ; : : : ; g (n) = : Persamaan diferensial yang akan dibahas adalah persamaan diferensial linear orde ; p (x) y + q (x) y + r (x) y = s (x) () dengan p (x) ; q (x) ; r (x) ; dan s (x) kontinu pada suatu interval buka I = (a; b) : Jika s (x) = ; p (x) y + q (x) y + r (x) y = ; (3) maka persamaan diferensial dikatakan homogen. Persamaan diferensial ini selalu punya solusi karena y (x) = pasti merupakan solusi. Solusi ini disebut solusi trivial. Notasi operator: Misalkan y (n) ditulis sebagai D n y: () dapat ditulis sebagai p (x) D + q (x) D + r (x) y = s (x) atau Ly = s (x) : {z } L Juga diasumsikan bahwa p (x) tidak pernah nol pada I: Secara umum, a (x) y (n) + a 1 (x) y (n 1) + + a n 1 (x) y + a n (x) y = k (x) (4) dapat ditulis sebagai a (x) D n + a 1 (x) D n a n 1 (x) D + a n (x) y = k (x) {z } L Ly = k (x) Dari sifat kelinearan turunan, kita peroleh bahwa L (cy) = cly dan L (y 1 + y ) = Ly 1 + Ly Jika u 1 (x) dan u (x) adalah dua penyelesaian dari PD homogen L (y) = ; yaitu maka untuk tiap c 1 dan c bilangan real, berlaku Lu 1 = dan Lu = ; L (c 1 u 1 + c u ) = c 1 L (u 1 ) + c L (u ) = Theorem 1 (Prinsip Superposisi) Jika u 1 (x) dan u (x) adalah dua penyelesaian dari persamaan diferensial linear homogen a (x) y (n) + a 1 (x) y (n 1) + + a n 1 (x) y + a n (x) y = dan c 1 ; c dua bilangan real, maka kombinasi linear y (x) = c 1 u 1 (x) + c u (x) juga merupakan solusi persamaan diferensial tersebut. 1

2 Theorem Jika p (x) ; q (x) ; dan r (x) kontinu pada interval buka I; p (x) 6= untuk tiap x I; maka persamaan diferensial linear homogen p (x) y + q (x) y + r (x) y = ; mempunyai dua solusi u 1 (x) dan u (x) yang bebas linear. Selain itu, untuk tiap solusi u 1 (x) dan u (x) yang bebas linear, maka untuk tiap solusi y (x) ; terdapat c 1 dan c sehingga y (x) = c 1 u 1 (x) + c u (x) : Catatan: dua solusi y 1 dan y disebut bebas linear jika satu adalah kelipatan dari yang lain, y 1 = cy atau y = dy 1 : Persamaan Diferensial Linear Orde- dengan Koe sien Konstan Persamaan diferensial orde- dengan koe sien konstan adalah persamaan () dengan p (x) ; q (x) ; dan r (x) adalah fungsi konstan, sebut p (x) = r; q (x) = q; dan r (x) = r: py" + qy + ry = s (x) : Karena p 6= ; maka persamaan ini dapat ditulis sebagai y" + ay + by = s (x) : Kita akan mulai dengan solusi jika s (x) = atau versi homogen Persamaan Diferensial Linear Homogen Orde- dengan Koe sien Konstan Diberikan persamaan difenresial Bila Dy = ry; maka y" + ay + by = ; a 6= : (5) D + ad + b y = ; a 6= : D y = D (Dy) = D (ry) = rdy = r y Solusi umum dari Dy = ry adalah y (x) = Ae rx : Solusi yang paling sederhana adalah y (x) = e rx : Jika y adalah solusi persamaan diferensial orde-1 Dy = ry; maka dapat disimpulkan bahwa jika D + ad + b y = D y + ady + by = r y + ary + by = r + ar + b y: r + ar + b = ; (6) maka y (x) = e rx juga solusi dari (5) : Persamaan (6) disebut persamaan bantu (auxilliary equation), dan g (r) = r + ar + b disebut polinom karakteristik dari (5).. Misalkan = a 4b adalah diskriminan dari persamaan bantu. terdapat diga kasus: > ; = ; dan < : Case 3 ( > ) Polinom karakteristik memiliki dua akar tunggal berbeda, sebut r 1 dan r ; r 1 6= r : Diperoleh dua akar yang bebas linear.u 1 (x) = e r1x dan u (x) = e rx : menurut Teorema di atas, adalah solusi umum (5). Case 4 ( = ) Karena = a 4b = ; y (x) = c 1 e r1x + c e rx r + ar + b = r + ar + r a 4 = + a =

3 polinom karakteristik mempunyai akar ganda, r = a Diperoleh satu solusi yaitu u (x) = e rx : Teorema di atas memberikan bahwa terdapat dua solusi yang bebas linear. Solusi kedua v (x) 6= u (x) : Misalkan v (x) = xu (x) = xe rx : Dv = e rx + rxe rx = (1 + rx) e rx D v = D (1 + rx) e rx = re rx + (1 + rx) re rx = r x + r e rx D + ad + b v = D v + adv + bv = r x + r + a (1 + rx) + bx e rx = ( r + ar + b x + (a + r) e rx = {z } {z } v (x) = xe rx juga merupakan solusi, u (x) dan v (x) bebas linear. solusi umum (5) berbentuk y (x) = c 1 e rx + c xe rx = (c 1 + c x) e rx Case 5 ( < ) Dalam hal ini, = a 4b < : akar-akar adalah dua bilangan kompleks yang saling konjugat r 1; = a p a 4b = a p 4b a + i ; dengan i = 1: Misalkan = a dan = p 4b a dan Ini memberikan dua solusi bebas linear r 1 = + i dan r = i: ~y 1 (x) = e r1x = e (+i)x = e x (cos + i sin ) ~y (x) = e rx = e ( i)x = e x (cos i sin ) Tetapi kedua solusi ini bernilai kompleks. Dengan menggunakan Prinsip Superposisi di atas, y 1 (x) = 1 ~y 1 (x) + 1 ~y (x) = e x cos y (x) = 1 i ~y 1 (x) 1 i ~y (x) = e x sin juga solusi dan keduanya bebas linear. solusi umum (5) adalah y (x) = c 1 y 1 (x) + c y (x) = e x (c 1 cos + c sin ) Theorem 6 Diberikan persamaan diferensial linear homogen orde- dengan koe sien konstan. y" + ay + by = ; a 6= (7) 1. Jika persamaan karakteristik mempunyai dua akar berbeda r 1 dan r ; maka solusi umum (7) adalah y (x) = c 1 e r1x + c e rx :. Jika persamaan karakteristik mempunyai hanya satu akar r = a ; maka solusi umum (7) adalah y (x) = c 1 e rx + c xe rx : 3. Jika persamaan karakteristik mempunyai dua akar kompleks r 1 = + i dan r = i; dengan = a ; = p 4b a ; maka solusi umum (7) adalah y (x) = e x (c 1 cos + c sin ) : 3

4 Persamaan Diferensial Linear Nonhomogen Orde- dengan Koe sien Konstan Misalkan kita akan menentukan solusi persamaan diferensial orde- linear nonhomogen y" + ay + by = s (x) : (8) dengan s (x) kontinu pada suatu interval buka I: Misalkan y p (x) adalah salah satu solusi dari (8) : Misalkan y (x) adalah sebarang solusi lain dari (8) dan y h (x) = y (x) y p (x) : dan diperoleh y p " + ay p + by p = s (x) dan y" + ay + by = s (x) (y + ay + by) yp + ayp + by p = s (x) s (x) = y yp + ay ayp + by by p = y yp + a y yp + b (y yp ) = (y y p ) + a (y y p ) + b (y y p ) = y h + ay h + by h = Dengan demikian y h (x) = y (x) y p (x) adalah solusi dari versi homogen (8) :, dapat disimpulkan bahwa setiap solusi y (x) dari (8) berbentuk y" + ay + by = (9) y (x) = y h (x) + y p (x) : Theorem 7 Solusi umum persamaan diferensial (8) berbentuk y (x) = y h (x) + y p (x) dengan y h (x) adalah solusi versi homogen (9) dan y p (x) adalah solusi khusus (partikular) dari (8) : Menentukan Solusi Khusus (Partikular) Bagaimana menentukan solusi khusus atau solusi partikular? Dua metode yang akan dibahas adalah Metode Koe sien Tak Tentu dan Metoda Variasi Parameter. Metode Koe sien Tak Tentu Metoda ini berlaku untuk kasus-kasus khusus dari s (x) ; yaitu jika s (x) adalah merupakan polinom atau hasil kali polinom p (x) dengan fungsi eksponensial atau dengan fungsi sinus atau kosinus, yaitu p (x) ; p (x) e rx ; p (x) sin kx; p (x) cos kx; p (x) e rx sin kx; p (x) e rx cos kx atau jumlah dari fungsi-fungsi seperti di atas. Contoh bentuk-bentuk s (x) 1 + x; e x ; xe x ; e x + cos x Example 8 Tentukan solusi umum persamaan diferensial nonhomogen y + y 3y = 1 + x : Solution 9 Persamaan versi homogennya adalah y + y 3y = : Bentuk karakteristiknya adalah r + r 3 = r + r 3 = (r + 3) (r 1) = : Persamaan karakteristik memiliki dua akar yaitu r = 1 dan r = y h (x) = c 1 e x + c e 3x : 3: solusi homogen adalah 4

5 Karena s (x) = 1 + x adalah polinom orde, maka y p juga merupakan polinom orde, sebab jika y (x) adalah polinom orde, maka y + y 3y juga polinom orde. Misalkan y = Ax + B dan y = A: y p (x) = Ax + Bx + C: y + y 3y = A + (Ax + B) 3 Ax + Bx + C = 1 + x ( 3A) x + (4A 3B) x + (A + B 3C) = 1 + x yang memberikan A + B 3C = 1 3A = 1; 4A 3B = ; A + B 3C = 1 4A 3B = 3A = 1 Solusinya adalah A = 1 3 ; B = 4 9 ; C = 3 7 : y p (x) = x 3 4x :, solusi umum adalah y (x) = y p (x) + y h (x) = x 3 4x c 1e x + c e 3x : Example 1 Tentukan solusi khusus dari y y = 3 cos x: Solution 11 Karena s (x) = cos x; maka kita mencoba y p (x) = A cos x + B sin x: Dengan demikian y p = A sin x + B cos x y p = 4A cos x 4B sin x y p y p = ( 4A cos x 4B sin x) ( A sin x + B cos x) = ( 4A B) cos x + (A 4B) sin x Sebagai solusi, y p y p = 3 cos x: ( 4A B) cos x + (A 4B) sin x = 3 cos x: haruslah 4A B = 3 dan A 4B = yang memberikan A = 3 5 ; B = 3 1 : solusi khususnya adalah y p (x) = 3 5 cos x 3 sin x: 1 Example 1 Tentukan solusi khusus persamaan diferensial y + y 3y = 4e 3x : Solution 13 Karena s (x) = 4e =3x ; maka kita mungkin mencoba y p = Ae 3x : Tetapi, y p + y p 3y p = 9Ae 3x 6e 3x 3A 3x = = 4e 3x 5

6 Ini tidak mungkin karena fungsi eksponensial tidak pernah nol. Hal ini karena persamaan karakteristik persamaan diferensial ini adalah r + r 3 = (r + 3) (r 1) = r = 3 adalah akarnya dan oleh karena itu e 3x adalah solusi homogen. tidak mungkin y p = Ae 3x : coba y p = Axe 3x : Substitusi pada persamaan memberikan y p = Ae 3x 3Axe 3x = (1 3x) Ae 3x y p = 3Ae 3x + ( 3) (1 3x) Ae 3x = (9x 6) Ae 3x y p + y p 3y p = (9x 6) Ae 3x + (1 3x) Ae 3x 3Axe 3x : = 4Ae 3x A = 1: Diperoleh 4Ae 3x = 4e 3x y p (x) = e 3x : Example 14 Tentukan solusi khusus persamaan diferensial y + 4y + 4y = 8e x : Solution 15 Persamaan diferensial y + 4y + 4y = 8e x memiliki persamaan karakteristik r + 4r + 4 = (r + ) = : diperoleh hanya satu akar, r = : solusi homogen adalah y h (x) = c 1 e x + c xe x = (c 1 + c x) e x : y p = Ae x maupun y p = Axe x akan memberikan yp + yp jauh lagi, yaitu y p (x) = Ax e x : Jadi 3y p = : Kita harus memodi kasi lebih y p (x) = Axe x Ax e x = Ax Ax e x y p (x) = (A Ax) e x 4 Ax Ax e x = 4x + x + 1 Ae x 8e x = y p + 4y p + 4y p = 4x + x + 1 Ae x + 4 Ax Ax e x + 4Ax e x = Ae x A = 4: y p (x) = 4x e x : Example 16 Tentukan solusi umum persamaan diferensial y 5y 6y = e x cos x Solution 17 Persamaan karakteristik ini adalah = r 5r 6 = (r 6) (r + 1) : r = 6 dan r = 1: y h (x) = c 1 e 6x + c e x : Karena e x adalah solusi homogen, maka y p (x) = Cxe x + A cos x + B sin x: 6

7 , y p (x) = Ce x Cxe x + B cos x A sin x = C (1 x) e x + B cos x A sin x y p (x) = Ce x C (1 x) e x B sin x A cos x = (x ) Ce x B sin x A cos x e x 7 cos x = y p 5y p 6y p = (x ) Ce x B sin x A cos x 5 (1 x) Ce x + B cos x A sin x 6 Cxe x + A cos x + B sin x = 7Ce x + ( 7A 5B) cos x + (5A 7B) sin x Diperoleh bahwa C = 1 7 ; A = 7 37 ; B = 5 37 : solusi umum adalah 7C = 1 7A 5B = 5A 7B = y p (x) = 1 7 xe x cos x sin x y (x) = 1 7 xe x cos x sin x + c 1e 6x + c e x : Berikut adalah tabel penentuan y p (x) persamaan diferensial y + ay + by = s (x) Metode Variasi Parameter khusus dari Metode ini, sifatnya lebih umum, digunakan untuk menentukan solusi y" + ay + by = s (x) (1) dengan menggunakan solusi umum homogennya. Misalkan u 1 (x) dan u (x) adalah dua solusi homogen yang bebas linear. Pada metode ini kita mengganti c 1 dan c pada solusi homogen dengan fungsi v 1 (x) dan v (x) y (x) = v 1 (x) u 1 (x) + v (x) u (x) atau singkatnya y = v 1 u 1 + v u 7

8 Kita tambahkan satu syarat yaitu v 1u 1 + v u = (11) Substitusikan pada (1) y = v 1 u 1 + v u y = v 1 u 1 + v u + v1u 1 + vu v 1 u 1 + v u + v1u 1 + vu + a (v 1 u 1 + v u ) + b (v 1 u 1 + v u ) = s (x) v 1 (u 1 + au 1 + bu 1 ) {z } + v (u + au + bu ) + (v {z } 1u 1 + vu ) = s (x) Karena u 1 dan u solusi homogen, maka dua suku pertama adalah nol. Jadi v 1u 1 + v u = s (x) (1) dari (11) dan (1) ; kita harus menyelesaikan sistem persamaan linear dalam v 1 dan v v 1 u 1 + v u = v 1u 1 + v u = s (x) (13) Solusi dalam v 1 dan v adalah v 1 dan v ditentukan dengan integral. Example 18 Tentukan solusi umum y + y = tan x Solution 19 Persamaan karakteristik adalah dengan akar-akar kompleks r 1 = i dan r = v1 u s = u u 1 u 1 u ; v u 1 s = u u 1 u 1 u r + 1 = i: solusi umum homogen adalah y h (x) = c 1 cos x + c sin x: Dengan u 1 = cos x dan u = sin x; persamaan (13) memberikan v 1 cos x + v sin x = v1 ( sin x) + v cos x = tan x Dengan integral, Z v 1 (x) = v1 sin x tan x = cos x cos x + sin x sin x = sin x tan x = sin x cos x v cos x tan x = cos x cos x + sin x sin x = sin x sin x cos x dx = Z 1 cos x dx = cos x = ln jsec x tan xj + sin x + C 1 Z v (x) = sin xdx = cos x + C Z (sec x cos x) dx y p (x) = ( ln jsec x + tan xj + sin x) cos x + ( cos x) sin x = (cos x) ln jsec x + tan xj dan solusi umum adalah y (x) = c 1 cos x + c sin x (cos x) ln jsec x + tan xj 8

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

PD Orde 2 Lecture 3. Rudy Dikairono

PD Orde 2 Lecture 3. Rudy Dikairono PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

BAB III PERSAMAAN DIFERENSIAL LINIER

BAB III PERSAMAAN DIFERENSIAL LINIER BAB III PERSAMAAN DIFERENSIAL LINIER Bentuk umum PD orde-n adalah PD yang tidak dapat dinyatakan dalam bentuk di atas dikatakan tidak linier. Contoh: Jika F(x) pada persamaan (3.1) sama dengan nol maka

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Non Homogen Tk. 2 (Differential: Linier Non Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Solusi umum merupakan jumlah

Lebih terperinci

BAB IV PERSAMAAN TAKHOMOGEN

BAB IV PERSAMAAN TAKHOMOGEN BAB IV PERSAMAAN TAKHOMOGEN Kompetensi Mahasiswa mampu 1. Menentukan selesaian khusus PD tak homogen dengan metode koefisien tak tentu 2. Menentukan selesaian khusus PD tak homogen dengan metode variasi

Lebih terperinci

I. Sistem Persamaan Diferensial Linier Orde 1 (Review)

I. Sistem Persamaan Diferensial Linier Orde 1 (Review) I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu

Lebih terperinci

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx,

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx, 5. Persamaan Diferensian Dengan Variabel Terpisah Persamaan diferensial berbentuk y = f(), dengan f suatu fungsi kontinu pada suatu interval real, dapat dicari penyelesaiannya dengan cara mengintegralkan

Lebih terperinci

Deret Taylor. dengan radius kekonvergenan positif. Maka, dengan menggunakan teorema turunan deret pangkat, (x a) + f 00 (a) 2! (x a) 2 + f 000 (a) 3!

Deret Taylor. dengan radius kekonvergenan positif. Maka, dengan menggunakan teorema turunan deret pangkat, (x a) + f 00 (a) 2! (x a) 2 + f 000 (a) 3! oki neswan (fmipa-itb) Deret Taylor Sebelumnya kita telah melihat bagaimana sebuah deret pangkat membangkitkan sebuah fungsi dengan domain merupakan interval kekonvergenan deret pangat tersebut. Sekarang

Lebih terperinci

Pecahan Parsial (Partial Fractions)

Pecahan Parsial (Partial Fractions) oki neswan (fmipa-itb) Pecahan Parsial (Partial Fractions) Diberikan fungsi rasional f (x) p(x) q(x) f (x) r(x) : Jika deg p deg q; maka r (x) ^p (x) q(x) ; dengan deg r < deg q: p (x) q (x) r (x) ^p (x)

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE - II.Persamaan Homogen dengan Koefisien Konstan Suatu persamaan linier homogen y + ay + by = 0 (1) mempunyai koefisien a dan b adalah konstan. Persamaan ini mempunyai

Lebih terperinci

PERSAMAAN DIFFERENSIAL LINIER

PERSAMAAN DIFFERENSIAL LINIER PERSAMAAN DIFFERENSIAL LINIER Persamaan Differensial Linier Pengertian : Suatu persamaan differensial orde satu dikatakan linier jika persamaan tersebut dapat dituliskan sbb: y + p x y = r(x) (1) linier

Lebih terperinci

BAB PDB Linier Order Satu

BAB PDB Linier Order Satu BAB 1 Konsep Dasar 1 BAB PDB Linier Order Satu BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua Untuk memulai pembahasan ini terlebih dahulu akan ditinjau beberapa teorema tentang konsep umum

Lebih terperinci

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN LINIER NON HOMOGEN Contoh PD linier non homogen orde 2. Bentuk umum persamaan PD Linier Non Homogen Orde 2, adalah sebagai berikut : y + f(x) y + g(x) y = r(x) ( 2-35) Solusi umum y(x) akan didapatkan

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II [MA4] PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Persamaan Diferensial Orde II PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka

Lebih terperinci

Persamaan Differensial Biasa

Persamaan Differensial Biasa Bab 7 cakul fi5080 by khbasar; sem1 2010-2011 Persamaan Differensial Biasa Dalam banyak persoalan fisika, suatu topik sering dinyatakan dalam bentuk perubahan (laju perubahan). Telah disinggung sebelumnya

Lebih terperinci

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2 Nurdininta Athari PERSAMAAN DIFFERENSIAL ORDE 2 2 PDB ORDE II Bentuk umum : + p() + g() = r() p(), g() disebut koefisien jika r() = 0, maka Persamaan Differensial diatas disebut homogen, sebalikna disebut

Lebih terperinci

BAB 2 PERSAMAAN DIFFERENSIAL BIASA

BAB 2 PERSAMAAN DIFFERENSIAL BIASA BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan

Lebih terperinci

BAB III PD LINIER HOMOGEN

BAB III PD LINIER HOMOGEN BAB III PD LINIER HOMOGEN Kompetensi Mahasiswa diharapkan. Mampu menentukan selesaian umum dari PD linier homogen orde dua dengan jenis akarakar karakteristik yang berbeda-beda. Memahami pengertian kebebaslinieran

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk

Lebih terperinci

Persamaan Diferensial Biasa. Rippi Maya

Persamaan Diferensial Biasa. Rippi Maya Persamaan Diferensial Biasa Rippi Maya Maret 204 ii Contents PENDAHULUAN. Solusi persamaan diferensial..................... 2.. Solusi Implisit dan Solusi Eksplisit............. 2..2 Solusi Umum dan Solusi

Lebih terperinci

Hendra Gunawan. 23 April 2014

Hendra Gunawan. 23 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 23 April 2014 Kuliah ang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13.2 Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

SOLUSI PERSAMAAN DIFFERENSIAL

SOLUSI PERSAMAAN DIFFERENSIAL SOLUSI PERSAMAAN DIFFERENSIAL PENGERTIAN SOLUSI. Solusi dari suatu persamaan differensial adalah persamaan yang memuat variabelvariabel dari persamaan differensial dan memenuhi persamaan differensial yang

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan : BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017 A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat c. Turunan pertama dari fungsi f di titik c ditulis f '( c ) didefinisikan sebagai: ( ) ( ) f x f '( c) = lim f c x c x c bila limitnya ada.

Lebih terperinci

Hendra Gunawan. 25 April 2014

Hendra Gunawan. 25 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 April 014 Kuliah yang Lalu 15.11 Persamaan Diferensial Linear Orde, Homogen 15. Persamaan Diferensial Linear Orde, Tak Homogen 15.3 Penggunaan Persamaan

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi

Lebih terperinci

Department of Mathematics FMIPAUNS

Department of Mathematics FMIPAUNS Lecture 2: Metode Operator A. Metode Operator untuk Sistem Linear dengan Koefisien Konstan Pada bagian ini akan dibicarakan cara menentukan penyelesaian sistem persamaan diferensial linear dengan menggunakan

Lebih terperinci

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema,

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa hal yang menjadi landasan dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

Pengintegralan Fungsi Rasional

Pengintegralan Fungsi Rasional Pengintegralan Fungsi Rasional Ahmad Kamsyakawuni, M.Kom Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember 25 Maret 2014 Pengintegralan Fungsi Rasional 1 Pengintegralan Fungsi Rasional 2

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam

Lebih terperinci

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRAL TAK TENTU subtitusi parsial Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id DEFINISI Untuk ungsi yang terdeinisi pada selang terbuka I, dpt ditentukan ungsi

Lebih terperinci

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.

Lebih terperinci

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

Teknik Pengintegralan

Teknik Pengintegralan Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL Bila persamaan diferensial linear homogen memiliki koefisien constant maka persamaan tersebut dapat diselesaikan dengan metoda aljabar (seperti yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

BAB IV PERSAMAAN DIFERENSIAL LINIER

BAB IV PERSAMAAN DIFERENSIAL LINIER BAB IV PERSAMAAN DIFERENSIAL LINIER Tujuan Instruksional: Mampu memahami konsep PD Linier Mampu memahami konsep ketakbebasan linier, determinan Wronski dan superposisi Mampu memahami metode penyelesaian

Lebih terperinci

Senin, 18 JUNI 2001 Waktu : 2,5 jam

Senin, 18 JUNI 2001 Waktu : 2,5 jam UJIAN AKHIR SEMESTER KALKULUS I Senin, 8 JUNI Waktu :,5 jam SETIAP NOMOR MEMPUNYAI BOBOT. Tentukan (a) x + sin x dx (b) x x p x dx. Tentukan dy dx jika (a) y +) (x + ln x (b) y sin p x. Tentukan ln x p

Lebih terperinci

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d MA1201 KALKULUS 2A (Kelas 10) Bab 8: dan Do maths and you see the world ? Pengantar Bentuk tak tentu? Bentuk apa? Bentuk tak tentu yang dimaksud adalah bentuk limit dengan nilai seolah-olah : 0 0 ; ; 0

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

PRAKTIKUM 3 PAM 253 PERSAMAAN DIFERENSIAL BIASA

PRAKTIKUM 3 PAM 253 PERSAMAAN DIFERENSIAL BIASA PRAKTIKUM 3 PAM 253 PERSAMAAN DIFERENSIAL BIASA TOPIK: PERSAMAAN DIFERENSIAL BIASA ORDE DUA ========== Dalam praktikum ini selalu gunakan Worksheet Mode dengan tipe input Maple Notation ========== I. Pendahuluan

Lebih terperinci

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi TURUNAN Ide awal turunan: Garis singgung Tali busur c +, f c + Garis singgung c, f c c P h c+h f c + f c Kemiringan garis singgung di titik P: f c + f c lim Definisi Turunan fungsi f adalah fungsi lain

Lebih terperinci

AB = c, AC = b dan BC = a, maka PQ =. 1

AB = c, AC = b dan BC = a, maka PQ =. 1 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 9. Jika a, b, maka pernyataan di bawah ini yang benar adalah A. B. a b ab C. ab b a D. ab ab E. ab ab ab b a karena pada jawaban terdapat ab maka selesaikan

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

PERSAMAAN DIFERENSIAL (PD)

PERSAMAAN DIFERENSIAL (PD) PERSAMAAN DIFERENSIAL (PD) A. PENGERTIAN Persamaan yang mengandung variabel dan beberapa fungsi turunan terhadap variabel tersebut. CONTOH : + 5 5 0 disebut PD orde I + 6 + 7 0 disebut PD orde II B. PEMBENTUKAN

Lebih terperinci

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya 1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku

Lebih terperinci

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35 Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

BAB 2 PDB Linier Order Satu 2.1 PDB Linier Order Satu Homogen PDB order satu dapat dinyatakan dalam atau dalam bentuk derivatif = f(x y) dx M(x y)dx +

BAB 2 PDB Linier Order Satu 2.1 PDB Linier Order Satu Homogen PDB order satu dapat dinyatakan dalam atau dalam bentuk derivatif = f(x y) dx M(x y)dx + BAB 1 Konsep Dasar 1 BAB 2 PDB Linier Order Satu 2.1 PDB Linier Order Satu Homogen PDB order satu dapat dinyatakan dalam atau dalam bentuk derivatif = f(x y) dx M(x y)dx + N(x y) = 0 (2.1) 2.1.1 PDB Eksak

Lebih terperinci

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan.

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. Kriteria apa saa yang dapat digunakan untuk menentukan properti

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

4. Dibawah ini persamaan diferensial ordo dua berderajat satu adalah

4. Dibawah ini persamaan diferensial ordo dua berderajat satu adalah Pilihlah jawaban yang benar dengan cara mencakra huruf didepan jawaban yang saudara anggap benar pada lembar jawaban 1. Dibawah ini bentuk persamaan diferensial biasa linier homogen adalah a. y + xy =

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

Linear Lokal = Mempunyai Turunan

Linear Lokal = Mempunyai Turunan oki neswan FMIPA-ITB Linear Lokal = Mempunyai Turunan De nisi turunan fungsi untuk dua peubah tampak sangat berbeda dari turunan untuk fungsi satu peubah De nition 1 Fungsi f : A! R; A R; dikatakan mempunyai

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

Persamaan Parametrik

Persamaan Parametrik oki neswan (fmipa-itb) Persamaan Parametrik Kita telah lama terbiasa dengan kurva yang dide nisikan oleh sebuah persamaan yang menghubungkan koordinat x dan y: Contohnya persamaan eksplisit seperti y x

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR Persamaan linear Bentuk umun persamaan linear satu vareabel Ax + b = 0 dengan a,b R ; a 0, x adalah vareabel Contoh: Tentukan penyelesaian dari 4x-8 = 0 Penyelesaian.

Lebih terperinci

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu.

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Kuliah PD Pertemuan ke-1: Motivasi: 1. Mekanika A. Hukum Newton ke-: Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Misalkan F: gaya, m: massa benda, a: percepatan,

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

Asimtot.wordpress.com FUNGSI TRANSENDEN

Asimtot.wordpress.com FUNGSI TRANSENDEN FUNGSI TRANSENDEN 7.1 Fungsi Logaritma Asli 7.2 Fungsi-fungsi Balikan dan Turunannya 7.3 Fungsi-fungsi Eksponen Asli 7.4 Fungsi Eksponen dan Logaritma Umum 7.5 Pertumbuhan dan Peluruhan Eksponen 7.6 Persamaan

Lebih terperinci

Turunan Fungsi. h asalkan limit ini ada.

Turunan Fungsi. h asalkan limit ini ada. Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim

Lebih terperinci

Analisis Riil II: Diferensiasi

Analisis Riil II: Diferensiasi Definisi Turunan Definisi dan Teorema Aturan Rantai Fungsi Invers Definisi (Turunan) Misalkan I R sebuah interval, f : I R, dan c I. Bilangan riil L dikatakan turunan dari f di c jika diberikan sebarang

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci